1 //===- subzero/src/IceVariableSplitting.cpp - Local variable splitting ----===//
2 //
3 //                        The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Aggressive block-local variable splitting to improve linear-scan
12 /// register allocation.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "IceVariableSplitting.h"
17 
18 #include "IceCfg.h"
19 #include "IceCfgNode.h"
20 #include "IceClFlags.h"
21 #include "IceInst.h"
22 #include "IceOperand.h"
23 #include "IceTargetLowering.h"
24 
25 namespace Ice {
26 
27 namespace {
28 
29 /// A Variable is "allocable" if it is a register allocation candidate but
30 /// doesn't already have a register.
isAllocable(const Variable * Var)31 bool isAllocable(const Variable *Var) {
32   if (Var == nullptr)
33     return false;
34   return !Var->hasReg() && Var->mayHaveReg();
35 }
36 
37 /// A Variable is "inf" if it already has a register or is infinite-weight.
isInf(const Variable * Var)38 bool isInf(const Variable *Var) {
39   if (Var == nullptr)
40     return false;
41   return Var->hasReg() || Var->mustHaveReg();
42 }
43 
44 /// VariableMap is a simple helper class that keeps track of the latest split
45 /// version of the original Variables, as well as the instruction containing the
46 /// last use of the Variable within the current block.  For each entry, the
47 /// Variable is tagged with the CfgNode that it is valid in, so that we don't
48 /// need to clear the entire Map[] vector for each block.
49 class VariableMap {
50 private:
51   VariableMap() = delete;
52   VariableMap(const VariableMap &) = delete;
53   VariableMap &operator=(const VariableMap &) = delete;
54 
55   struct VarInfo {
56     /// MappedVar is the latest mapped/split version of the Variable.
57     Variable *MappedVar = nullptr;
58     /// MappedVarNode is the block in which MappedVar is valid.
59     const CfgNode *MappedVarNode = nullptr;
60     /// LastUseInst is the last instruction in the block that uses the Variable
61     /// as a source operand.
62     const Inst *LastUseInst = nullptr;
63     /// LastUseNode is the block in which LastUseInst is valid.
64     const CfgNode *LastUseNode = nullptr;
65     VarInfo() = default;
66 
67   private:
68     VarInfo(const VarInfo &) = delete;
69     VarInfo &operator=(const VarInfo &) = delete;
70   };
71 
72 public:
VariableMap(Cfg * Func)73   explicit VariableMap(Cfg *Func)
74       : Func(Func), NumVars(Func->getNumVariables()), Map(NumVars) {}
75   /// Reset the mappings at the start of a block.
reset(const CfgNode * CurNode)76   void reset(const CfgNode *CurNode) {
77     Node = CurNode;
78     // Do a prepass through all the instructions, marking which instruction is
79     // the last use of each Variable within the block.
80     for (const Inst &Instr : Node->getInsts()) {
81       if (Instr.isDeleted())
82         continue;
83       for (SizeT i = 0; i < Instr.getSrcSize(); ++i) {
84         if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr.getSrc(i))) {
85           const SizeT VarNum = getVarNum(SrcVar);
86           Map[VarNum].LastUseInst = &Instr;
87           Map[VarNum].LastUseNode = Node;
88         }
89       }
90     }
91   }
92   /// Get Var's current mapping (or Var itself if it has no mapping yet).
get(Variable * Var) const93   Variable *get(Variable *Var) const {
94     const SizeT VarNum = getVarNum(Var);
95     Variable *MappedVar = Map[VarNum].MappedVar;
96     if (MappedVar == nullptr)
97       return Var;
98     if (Map[VarNum].MappedVarNode != Node)
99       return Var;
100     return MappedVar;
101   }
102   /// Create a new linked Variable in the LinkedTo chain, and set it as Var's
103   /// latest mapping.
makeLinked(Variable * Var)104   Variable *makeLinked(Variable *Var) {
105     Variable *NewVar = Func->makeVariable(Var->getType());
106     NewVar->setRegClass(Var->getRegClass());
107     NewVar->setLinkedTo(get(Var));
108     const SizeT VarNum = getVarNum(Var);
109     Map[VarNum].MappedVar = NewVar;
110     Map[VarNum].MappedVarNode = Node;
111     return NewVar;
112   }
113   /// Given Var that is LinkedTo some other variable, re-splice it into the
114   /// LinkedTo chain so that the chain is ordered by Variable::getIndex().
spliceBlockLocalLinkedToChain(Variable * Var)115   void spliceBlockLocalLinkedToChain(Variable *Var) {
116     Variable *LinkedTo = Var->getLinkedTo();
117     assert(LinkedTo != nullptr);
118     assert(Var->getIndex() > LinkedTo->getIndex());
119     const SizeT VarNum = getVarNum(LinkedTo);
120     Variable *Link = Map[VarNum].MappedVar;
121     if (Link == nullptr || Map[VarNum].MappedVarNode != Node)
122       return;
123     Variable *LinkParent = Link->getLinkedTo();
124     while (LinkParent != nullptr && LinkParent->getIndex() >= Var->getIndex()) {
125       Link = LinkParent;
126       LinkParent = Link->getLinkedTo();
127     }
128     Var->setLinkedTo(LinkParent);
129     Link->setLinkedTo(Var);
130   }
131   /// Return whether the given Variable has any uses as a source operand within
132   /// the current block.  If it has no source operand uses, but is assigned as a
133   /// dest variable in some instruction in the block, then we needn't bother
134   /// splitting it.
isDestUsedInBlock(const Variable * Dest) const135   bool isDestUsedInBlock(const Variable *Dest) const {
136     return Map[getVarNum(Dest)].LastUseNode == Node;
137   }
138   /// Return whether the given instruction is the last use of the given Variable
139   /// within the current block.  If it is, then we needn't bother splitting the
140   /// Variable at this instruction.
isInstLastUseOfVar(const Variable * Var,const Inst * Instr)141   bool isInstLastUseOfVar(const Variable *Var, const Inst *Instr) {
142     return Map[getVarNum(Var)].LastUseInst == Instr;
143   }
144 
145 private:
146   Cfg *const Func;
147   // NumVars is for the size of the Map array.  It can be const because any new
148   // Variables created during the splitting pass don't need to be mapped.
149   const SizeT NumVars;
150   CfgVector<VarInfo> Map;
151   const CfgNode *Node = nullptr;
152   /// Get Var's VarNum, and do some validation.
getVarNum(const Variable * Var) const153   SizeT getVarNum(const Variable *Var) const {
154     const SizeT VarNum = Var->getIndex();
155     assert(VarNum < NumVars);
156     return VarNum;
157   }
158 };
159 
160 /// LocalVariableSplitter tracks the necessary splitting state across
161 /// instructions.
162 class LocalVariableSplitter {
163   LocalVariableSplitter() = delete;
164   LocalVariableSplitter(const LocalVariableSplitter &) = delete;
165   LocalVariableSplitter &operator=(const LocalVariableSplitter &) = delete;
166 
167 public:
LocalVariableSplitter(Cfg * Func)168   explicit LocalVariableSplitter(Cfg *Func)
169       : Target(Func->getTarget()), VarMap(Func) {}
170   /// setNode() is called before processing the instructions of a block.
setNode(CfgNode * CurNode)171   void setNode(CfgNode *CurNode) {
172     Node = CurNode;
173     VarMap.reset(Node);
174     LinkedToFixups.clear();
175   }
176   /// finalizeNode() is called after all instructions in the block are
177   /// processed.
finalizeNode()178   void finalizeNode() {
179     // Splice in any preexisting LinkedTo links into the single chain.  These
180     // are the ones that were recorded during setInst().
181     for (Variable *Var : LinkedToFixups) {
182       VarMap.spliceBlockLocalLinkedToChain(Var);
183     }
184   }
185   /// setInst() is called before processing the next instruction.  The iterators
186   /// are the insertion points for a new instructions, depending on whether the
187   /// new instruction should be inserted before or after the current
188   /// instruction.
setInst(Inst * CurInst,InstList::iterator Cur,InstList::iterator Next)189   void setInst(Inst *CurInst, InstList::iterator Cur, InstList::iterator Next) {
190     Instr = CurInst;
191     Dest = Instr->getDest();
192     IterCur = Cur;
193     IterNext = Next;
194     ShouldSkipRemainingInstructions = false;
195     // Note any preexisting LinkedTo relationships that were created during
196     // target lowering.  Record them in LinkedToFixups which is then processed
197     // in finalizeNode().
198     if (Dest != nullptr && Dest->getLinkedTo() != nullptr) {
199       LinkedToFixups.emplace_back(Dest);
200     }
201   }
shouldSkipRemainingInstructions() const202   bool shouldSkipRemainingInstructions() const {
203     return ShouldSkipRemainingInstructions;
204   }
isUnconditionallyExecuted() const205   bool isUnconditionallyExecuted() const { return WaitingForLabel == nullptr; }
206 
207   /// Note: the handle*() functions return true to indicate that the instruction
208   /// has now been handled and that the instruction loop should continue to the
209   /// next instruction in the block (and return false otherwise).  In addition,
210   /// they set the ShouldSkipRemainingInstructions flag to indicate that no more
211   /// instructions in the block should be processed.
212 
213   /// Handle an "unwanted" instruction by returning true;
handleUnwantedInstruction()214   bool handleUnwantedInstruction() {
215     // We can limit the splitting to an arbitrary subset of the instructions,
216     // and still expect correct code.  As such, we can do instruction-subset
217     // bisection to help debug any problems in this pass.
218     static constexpr char AnInstructionHasNoName[] = "";
219     if (!BuildDefs::minimal() &&
220         !getFlags().matchSplitInsts(AnInstructionHasNoName,
221                                     Instr->getNumber())) {
222       return true;
223     }
224     if (!llvm::isa<InstTarget>(Instr)) {
225       // Ignore non-lowered instructions like FakeDef/FakeUse.
226       return true;
227     }
228     return false;
229   }
230 
231   /// Process a potential label instruction.
handleLabel()232   bool handleLabel() {
233     if (!Instr->isLabel())
234       return false;
235     // A Label instruction shouldn't have any operands, so it can be handled
236     // right here and then move on.
237     assert(Dest == nullptr);
238     assert(Instr->getSrcSize() == 0);
239     if (Instr == WaitingForLabel) {
240       // If we found the forward-branch-target Label instruction we're waiting
241       // for, then clear the WaitingForLabel state.
242       WaitingForLabel = nullptr;
243     } else if (WaitingForLabel == nullptr && WaitingForBranchTo == nullptr) {
244       // If we found a new Label instruction while the WaitingFor* state is
245       // clear, then set things up for this being a backward branch target.
246       WaitingForBranchTo = Instr;
247     } else {
248       // We see something we don't understand, so skip to the next block.
249       ShouldSkipRemainingInstructions = true;
250     }
251     return true;
252   }
253 
254   /// Process a potential intra-block branch instruction.
handleIntraBlockBranch()255   bool handleIntraBlockBranch() {
256     const Inst *Label = Instr->getIntraBlockBranchTarget();
257     if (Label == nullptr)
258       return false;
259     // An intra-block branch instruction shouldn't have any operands, so it can
260     // be handled right here and then move on.
261     assert(Dest == nullptr);
262     assert(Instr->getSrcSize() == 0);
263     if (WaitingForBranchTo == Label && WaitingForLabel == nullptr) {
264       WaitingForBranchTo = nullptr;
265     } else if (WaitingForBranchTo == nullptr &&
266                (WaitingForLabel == nullptr || WaitingForLabel == Label)) {
267       WaitingForLabel = Label;
268     } else {
269       // We see something we don't understand, so skip to the next block.
270       ShouldSkipRemainingInstructions = true;
271     }
272     return true;
273   }
274 
275   /// Specially process a potential "Variable=Variable" assignment instruction,
276   /// when it conforms to certain patterns.
handleSimpleVarAssign()277   bool handleSimpleVarAssign() {
278     if (!Instr->isVarAssign())
279       return false;
280     const bool DestIsInf = isInf(Dest);
281     const bool DestIsAllocable = isAllocable(Dest);
282     auto *SrcVar = llvm::cast<Variable>(Instr->getSrc(0));
283     const bool SrcIsInf = isInf(SrcVar);
284     const bool SrcIsAllocable = isAllocable(SrcVar);
285     if (DestIsInf && SrcIsInf) {
286       // The instruction:
287       //   t:inf = u:inf
288       // No transformation is needed.
289       return true;
290     }
291     if (DestIsInf && SrcIsAllocable && Dest->getType() == SrcVar->getType()) {
292       // The instruction:
293       //   t:inf = v
294       // gets transformed to:
295       //   t:inf = v1
296       //   v2 = t:inf
297       // where:
298       //   v1 := map[v]
299       //   v2 := linkTo(v)
300       //   map[v] := v2
301       //
302       // If both v2 and its linkedToStackRoot get a stack slot, then "v2=t:inf"
303       // is recognized as a redundant assignment and elided.
304       //
305       // Note that if the dest and src types are different, then this is
306       // actually a truncation operation, which would make "v2=t:inf" an invalid
307       // instruction.  In this case, the type test will make it fall through to
308       // the general case below.
309       Variable *OldMapped = VarMap.get(SrcVar);
310       Instr->replaceSource(0, OldMapped);
311       if (isUnconditionallyExecuted()) {
312         // Only create new mapping state if the instruction is unconditionally
313         // executed.
314         if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) {
315           Variable *NewMapped = VarMap.makeLinked(SrcVar);
316           Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
317           Node->getInsts().insert(IterNext, Mov);
318         }
319       }
320       return true;
321     }
322     if (DestIsAllocable && SrcIsInf) {
323       if (!VarMap.isDestUsedInBlock(Dest)) {
324         return true;
325       }
326       // The instruction:
327       //   v = t:inf
328       // gets transformed to:
329       //   v = t:inf
330       //   v2 = t:inf
331       // where:
332       //   v2 := linkTo(v)
333       //   map[v] := v2
334       //
335       // If both v2 and v get a stack slot, then "v2=t:inf" is recognized as a
336       // redundant assignment and elided.
337       if (isUnconditionallyExecuted()) {
338         // Only create new mapping state if the instruction is unconditionally
339         // executed.
340         Variable *NewMapped = VarMap.makeLinked(Dest);
341         Inst *Mov = Target->createLoweredMove(NewMapped, SrcVar);
342         Node->getInsts().insert(IterNext, Mov);
343       } else {
344         // For a conditionally executed instruction, add a redefinition of the
345         // original Dest mapping, without creating a new linked variable.
346         Variable *OldMapped = VarMap.get(Dest);
347         Inst *Mov = Target->createLoweredMove(OldMapped, SrcVar);
348         Mov->setDestRedefined();
349         Node->getInsts().insert(IterNext, Mov);
350       }
351       return true;
352     }
353     assert(!ShouldSkipRemainingInstructions);
354     return false;
355   }
356 
357   /// Process the dest Variable of a Phi instruction.
handlePhi()358   bool handlePhi() {
359     assert(llvm::isa<InstPhi>(Instr));
360     const bool DestIsAllocable = isAllocable(Dest);
361     if (!DestIsAllocable)
362       return true;
363     if (!VarMap.isDestUsedInBlock(Dest))
364       return true;
365     Variable *NewMapped = VarMap.makeLinked(Dest);
366     Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
367     Node->getInsts().insert(IterCur, Mov);
368     return true;
369   }
370 
371   /// Process an arbitrary instruction.
handleGeneralInst()372   bool handleGeneralInst() {
373     const bool DestIsAllocable = isAllocable(Dest);
374     // The (non-variable-assignment) instruction:
375     //   ... = F(v)
376     // where v is not infinite-weight, gets transformed to:
377     //   v2 = v1
378     //   ... = F(v1)
379     // where:
380     //   v1 := map[v]
381     //   v2 := linkTo(v)
382     //   map[v] := v2
383     // After that, if the "..." dest=u is not infinite-weight, append:
384     //   u2 = u
385     // where:
386     //   u2 := linkTo(u)
387     //   map[u] := u2
388     for (SizeT i = 0; i < Instr->getSrcSize(); ++i) {
389       // Iterate over the top-level src vars.  Don't bother to dig into
390       // e.g. MemOperands because their vars should all be infinite-weight.
391       // (This assumption would need to change if the pass were done
392       // pre-lowering.)
393       if (auto *SrcVar = llvm::dyn_cast<Variable>(Instr->getSrc(i))) {
394         const bool SrcIsAllocable = isAllocable(SrcVar);
395         if (SrcIsAllocable) {
396           Variable *OldMapped = VarMap.get(SrcVar);
397           if (isUnconditionallyExecuted()) {
398             if (!VarMap.isInstLastUseOfVar(SrcVar, Instr)) {
399               Variable *NewMapped = VarMap.makeLinked(SrcVar);
400               Inst *Mov = Target->createLoweredMove(NewMapped, OldMapped);
401               Node->getInsts().insert(IterCur, Mov);
402             }
403           }
404           Instr->replaceSource(i, OldMapped);
405         }
406       }
407     }
408     // Transformation of Dest is the same as the "v=t:inf" case above.
409     if (DestIsAllocable && VarMap.isDestUsedInBlock(Dest)) {
410       if (isUnconditionallyExecuted()) {
411         Variable *NewMapped = VarMap.makeLinked(Dest);
412         Inst *Mov = Target->createLoweredMove(NewMapped, Dest);
413         Node->getInsts().insert(IterNext, Mov);
414       } else {
415         Variable *OldMapped = VarMap.get(Dest);
416         Inst *Mov = Target->createLoweredMove(OldMapped, Dest);
417         Mov->setDestRedefined();
418         Node->getInsts().insert(IterNext, Mov);
419       }
420     }
421     return true;
422   }
423 
424 private:
425   TargetLowering *Target;
426   CfgNode *Node = nullptr;
427   Inst *Instr = nullptr;
428   Variable *Dest = nullptr;
429   InstList::iterator IterCur;
430   InstList::iterator IterNext;
431   bool ShouldSkipRemainingInstructions = false;
432   VariableMap VarMap;
433   CfgVector<Variable *> LinkedToFixups;
434   /// WaitingForLabel and WaitingForBranchTo are for tracking intra-block
435   /// control flow.
436   const Inst *WaitingForLabel = nullptr;
437   const Inst *WaitingForBranchTo = nullptr;
438 };
439 
440 } // end of anonymous namespace
441 
442 /// Within each basic block, rewrite Variable references in terms of chained
443 /// copies of the original Variable.  For example:
444 ///   A = B + C
445 /// might be rewritten as:
446 ///   B1 = B
447 ///   C1 = C
448 ///   A = B + C
449 ///   A1 = A
450 /// and then:
451 ///   D = A + B
452 /// might be rewritten as:
453 ///   A2 = A1
454 ///   B2 = B1
455 ///   D = A1 + B1
456 ///   D1 = D
457 ///
458 /// The purpose is to present the linear-scan register allocator with smaller
459 /// live ranges, to help mitigate its "all or nothing" allocation strategy,
460 /// while counting on its preference mechanism to keep the split versions in the
461 /// same register when possible.
462 ///
463 /// When creating new Variables, A2 is linked to A1 which is linked to A, and
464 /// similar for the other Variable linked-to chains.  Rewrites apply only to
465 /// Variables where mayHaveReg() is true.
466 ///
467 /// At code emission time, redundant linked-to stack assignments will be
468 /// recognized and elided.  To illustrate using the above example, if A1 gets a
469 /// register but A and A2 are on the stack, the "A2=A1" store instruction is
470 /// redundant since A and A2 share the same stack slot and A1 originated from A.
471 ///
472 /// Simple assignment instructions are rewritten slightly differently, to take
473 /// maximal advantage of Variables known to have registers.
474 ///
475 /// In general, there may be several valid ways to rewrite an instruction: add
476 /// the new assignment instruction either before or after the original
477 /// instruction, and rewrite the original instruction with either the old or the
478 /// new variable mapping.  We try to pick a strategy most likely to avoid
479 /// potential performance problems.  For example, try to avoid storing to the
480 /// stack and then immediately reloading from the same location.  One
481 /// consequence is that code might be generated that loads a register from a
482 /// stack location, followed almost immediately by another use of the same stack
483 /// location, despite its value already being available in a register as a
484 /// result of the first instruction.  However, the performance impact here is
485 /// likely to be negligible, and a simple availability peephole optimization
486 /// could clean it up.
487 ///
488 /// This pass potentially adds a lot of new instructions and variables, and as
489 /// such there are compile-time performance concerns, particularly with liveness
490 /// analysis and register allocation.  Note that for liveness analysis, the new
491 /// variables have single-block liveness, so they don't increase the size of the
492 /// liveness bit vectors that need to be merged across blocks.  As a result, the
493 /// performance impact is likely to be linearly related to the number of new
494 /// instructions, rather than number of new variables times number of blocks
495 /// which would be the case if they were multi-block variables.
splitBlockLocalVariables(Cfg * Func)496 void splitBlockLocalVariables(Cfg *Func) {
497   if (!getFlags().getSplitLocalVars())
498     return;
499   TimerMarker _(TimerStack::TT_splitLocalVars, Func);
500   LocalVariableSplitter Splitter(Func);
501   // TODO(stichnot): Fix this mechanism for LinkedTo variables and stack slot
502   // assignment.
503   //
504   // To work around shortcomings with stack frame mapping, we want to arrange
505   // LinkedTo structure such that within one block, the LinkedTo structure
506   // leading to a root forms a list, not a tree.  A LinkedTo root can have
507   // multiple children linking to it, but only one per block.  Furthermore,
508   // because stack slot mapping processes variables in numerical order, the
509   // LinkedTo chain needs to be ordered such that when A->getLinkedTo() == B,
510   // then A->getIndex() > B->getIndex().
511   //
512   // To effect this, while processing a block we keep track of preexisting
513   // LinkedTo relationships via the LinkedToFixups vector, and at the end of the
514   // block we splice them in such that the block has a single chain for each
515   // root, ordered by getIndex() value.
516   CfgVector<Variable *> LinkedToFixups;
517   for (CfgNode *Node : Func->getNodes()) {
518     // Clear the VarMap and LinkedToFixups at the start of every block.
519     LinkedToFixups.clear();
520     Splitter.setNode(Node);
521     auto &Insts = Node->getInsts();
522     auto Iter = Insts.begin();
523     auto IterEnd = Insts.end();
524     // TODO(stichnot): Figure out why Phi processing usually degrades
525     // performance.  Disable for now.
526     static constexpr bool ProcessPhis = false;
527     if (ProcessPhis) {
528       for (Inst &Instr : Node->getPhis()) {
529         if (Instr.isDeleted())
530           continue;
531         Splitter.setInst(&Instr, Iter, Iter);
532         Splitter.handlePhi();
533       }
534     }
535     InstList::iterator NextIter;
536     for (; Iter != IterEnd && !Splitter.shouldSkipRemainingInstructions();
537          Iter = NextIter) {
538       NextIter = Iter;
539       ++NextIter;
540       Inst *Instr = iteratorToInst(Iter);
541       if (Instr->isDeleted())
542         continue;
543       Splitter.setInst(Instr, Iter, NextIter);
544 
545       // Before doing any transformations, take care of the bookkeeping for
546       // intra-block branching.
547       //
548       // This is tricky because the transformation for one instruction may
549       // depend on a transformation for a previous instruction, but if that
550       // previous instruction is not dynamically executed due to intra-block
551       // control flow, it may lead to an inconsistent state and incorrect code.
552       //
553       // We want to handle some simple cases, and reject some others:
554       //
555       // 1. For something like a select instruction, we could have:
556       //   test cond
557       //   dest = src_false
558       //   branch conditionally to label
559       //   dest = src_true
560       //   label:
561       //
562       // Between the conditional branch and the label, we need to treat dest and
563       // src variables specially, specifically not creating any new state.
564       //
565       // 2. Some 64-bit atomic instructions may be lowered to a loop:
566       //   label:
567       //   ...
568       //   branch conditionally to label
569       //
570       // No special treatment is needed, but it's worth tracking so that case #1
571       // above can also be handled.
572       //
573       // 3. Advanced switch lowering can create really complex intra-block
574       // control flow, so when we recognize this, we should just stop splitting
575       // for the remainder of the block (which isn't much since a switch
576       // instruction is a terminator).
577       //
578       // 4. Other complex lowering, e.g. an i64 icmp on a 32-bit architecture,
579       // can result in an if/then/else like structure with two labels.  One
580       // possibility would be to suspect splitting for the remainder of the
581       // lowered instruction, and then resume for the remainder of the block,
582       // but since we don't have high-level instruction markers, we might as
583       // well just stop splitting for the remainder of the block.
584       if (Splitter.handleLabel())
585         continue;
586       if (Splitter.handleIntraBlockBranch())
587         continue;
588       if (Splitter.handleUnwantedInstruction())
589         continue;
590 
591       // Intra-block bookkeeping is complete, now do the transformations.
592 
593       // Determine the transformation based on the kind of instruction, and
594       // whether its Variables are infinite-weight.  New instructions can be
595       // inserted before the current instruction via Iter, or after the current
596       // instruction via NextIter.
597       if (Splitter.handleSimpleVarAssign())
598         continue;
599       if (Splitter.handleGeneralInst())
600         continue;
601     }
602     Splitter.finalizeNode();
603   }
604 
605   Func->dump("After splitting local variables");
606 }
607 
608 } // end of namespace Ice
609