1# TensorFlow
2
3TensorFlow is a computational dataflow graph library.
4
5## Getting started
6
7
8### Python API example
9The following is an example python code to do a simple matrix multiply
10of two constants and get the result from a locally-running TensorFlow
11process.
12
13First, bring in tensorflow python dependency
14
15//third_party/py/tensorflow
16
17to get the python TensorFlow API.
18
19Then:
20
21```python
22import tensorflow as tf
23
24with tf.Session():
25  input1 = tf.constant(1.0, shape=[1, 1], name="input1")
26  input2 = tf.constant(2.0, shape=[1, 1], name="input2")
27  output = tf.matmul(input1, input2)
28
29  # Run graph and fetch the output
30  result = output.eval()
31  print result
32```
33
34### C++ API Example
35
36If you are running TensorFlow locally, link your binary with
37
38//third_party/tensorflow/core
39
40and link in the operation implementations you want to supported, e.g.,
41
42//third_party/tensorflow/core:kernels
43
44An example program to take a GraphDef and run it using TensorFlow
45using the C++ Session API:
46
47```c++
48#include <memory>
49#include <string>
50#include <vector>
51
52#include "tensorflow/core/framework/graph.pb.h"
53#include "tensorflow/core/public/session.h"
54#include "tensorflow/core/framework/tensor.h"
55
56int main(int argc, char** argv) {
57  // Construct your graph.
58  tensorflow::GraphDef graph = ...;
59
60  // Create a Session running TensorFlow locally in process.
61  std::unique_ptr<tensorflow::Session> session(tensorflow::NewSession({}));
62
63  // Initialize the session with the graph.
64  tensorflow::Status s = session->Create(graph);
65  if (!s.ok()) { ... }
66
67  // Specify the 'feeds' of your network if needed.
68  std::vector<std::pair<string, tensorflow::Tensor>> inputs;
69
70  // Run the session, asking for the first output of "my_output".
71  std::vector<tensorflow::Tensor> outputs;
72  s = session->Run(inputs, {"my_output:0"}, {}, &outputs);
73  if (!s.ok()) { ... }
74
75  // Do something with your outputs
76  auto output_vector = outputs[0].vec<float>();
77  if (output_vector(0) > 0.5) { ... }
78
79  // Close the session.
80  session->Close();
81
82  return 0;
83}
84```
85
86For a more fully-featured C++ example, see
87`tensorflow/cc/tutorials/example_trainer.cc`
88