1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include <gtest/gtest.h>
16 #include "tensorflow/lite/interpreter.h"
17 #include "tensorflow/lite/kernels/register.h"
18 #include "tensorflow/lite/kernels/test_util.h"
19 #include "tensorflow/lite/model.h"
20 
21 namespace tflite {
22 namespace {
23 
24 using ::testing::ElementsAre;
25 using ::testing::ElementsAreArray;
26 
27 template <typename T>
28 class PowOpModel : public SingleOpModel {
29  public:
PowOpModel(const TensorData & input1,const TensorData & input2,const TensorData & output)30   PowOpModel(const TensorData& input1, const TensorData& input2,
31              const TensorData& output) {
32     input1_ = AddInput(input1);
33     input2_ = AddInput(input2);
34     output_ = AddOutput(output);
35     SetBuiltinOp(BuiltinOperator_POW, BuiltinOptions_PowOptions,
36                  CreatePowOptions(builder_).Union());
37     BuildInterpreter({GetShape(input1_), GetShape(input2_)});
38   }
39 
input1()40   int input1() { return input1_; }
input2()41   int input2() { return input2_; }
42 
GetOutput()43   std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
GetOutputShape()44   std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
45 
46  private:
47   int input1_;
48   int input2_;
49   int output_;
50 };
51 
TEST(PowOpModel,Simple)52 TEST(PowOpModel, Simple) {
53   PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}},
54                             {TensorType_INT32, {1, 2, 2, 1}},
55                             {TensorType_INT32, {}});
56   model.PopulateTensor<int32_t>(model.input1(), {12, 2, 7, 8});
57   model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 1});
58   model.Invoke();
59   EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
60   EXPECT_THAT(model.GetOutput(), ElementsAre(12, 4, 343, 8));
61 }
62 
TEST(PowOpModel,NegativeAndZeroValue)63 TEST(PowOpModel, NegativeAndZeroValue) {
64   PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}},
65                             {TensorType_INT32, {1, 2, 2, 1}},
66                             {TensorType_INT32, {}});
67   model.PopulateTensor<int32_t>(model.input1(), {0, 2, -7, 8});
68   model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 0});
69   model.Invoke();
70   EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
71   EXPECT_THAT(model.GetOutput(), ElementsAre(0, 4, -343, 1));
72 }
73 
TEST(PowOpModel,Float)74 TEST(PowOpModel, Float) {
75   PowOpModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}},
76                           {TensorType_FLOAT32, {1, 2, 2, 1}},
77                           {TensorType_FLOAT32, {}});
78   model.PopulateTensor<float>(model.input1(), {0.3, 0.4, 0.7, 5.8});
79   model.PopulateTensor<float>(model.input2(), {0.5, 2.7, 3.1, 3.2});
80   model.Invoke();
81   EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
82   EXPECT_THAT(model.GetOutput(),
83               ElementsAreArray(ArrayFloatNear(
84                   {0.5477226, 0.08424846, 0.33098164, 277.313}, 1e-3)));
85 }
86 
TEST(PowOpModel,NegativeFloatTest)87 TEST(PowOpModel, NegativeFloatTest) {
88   PowOpModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}},
89                           {TensorType_FLOAT32, {1, 2, 2, 1}},
90                           {TensorType_FLOAT32, {}});
91   model.PopulateTensor<float>(model.input1(), {0.3, 0.4, 0.7, 5.8});
92   model.PopulateTensor<float>(model.input2(), {0.5, -2.7, 3.1, -3.2});
93   model.Invoke();
94   EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
95   EXPECT_THAT(model.GetOutput(),
96               ElementsAreArray(ArrayFloatNear(
97                   {0.5477226, 11.869653, 0.33098164, 0.003606}, 1e-3)));
98 }
99 
TEST(PowOpModel,BroadcastTest)100 TEST(PowOpModel, BroadcastTest) {
101   PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}},
102                             {TensorType_INT32, {1}}, {TensorType_INT32, {}});
103   model.PopulateTensor<int32_t>(model.input1(), {12, 2, 7, 8});
104   model.PopulateTensor<int32_t>(model.input2(), {4});
105   model.Invoke();
106   EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
107   EXPECT_THAT(model.GetOutput(), ElementsAre(20736, 16, 2401, 4096));
108 }
109 
110 }  // namespace
111 }  // namespace tflite
112 
main(int argc,char ** argv)113 int main(int argc, char** argv) {
114   ::tflite::LogToStderr();
115   ::testing::InitGoogleTest(&argc, argv);
116   return RUN_ALL_TESTS();
117 }
118