1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2009
4 * Sergey Kubushyn, himself, ksi@koi8.net
5 *
6 * Changes for unified multibus/multiadapter I2C support.
7 *
8 * (C) Copyright 2001
9 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
10 */
11
12 /*
13 * I2C Functions similar to the standard memory functions.
14 *
15 * There are several parameters in many of the commands that bear further
16 * explanations:
17 *
18 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
19 * Each I2C chip on the bus has a unique address. On the I2C data bus,
20 * the address is the upper seven bits and the LSB is the "read/write"
21 * bit. Note that the {i2c_chip} address specified on the command
22 * line is not shifted up: e.g. a typical EEPROM memory chip may have
23 * an I2C address of 0x50, but the data put on the bus will be 0xA0
24 * for write and 0xA1 for read. This "non shifted" address notation
25 * matches at least half of the data sheets :-/.
26 *
27 * {addr} is the address (or offset) within the chip. Small memory
28 * chips have 8 bit addresses. Large memory chips have 16 bit
29 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
30 * Many non-memory chips have multiple registers and {addr} is used
31 * as the register index. Some non-memory chips have only one register
32 * and therefore don't need any {addr} parameter.
33 *
34 * The default {addr} parameter is one byte (.1) which works well for
35 * memories and registers with 8 bits of address space.
36 *
37 * You can specify the length of the {addr} field with the optional .0,
38 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
39 * manipulating a single register device which doesn't use an address
40 * field, use "0.0" for the address and the ".0" length field will
41 * suppress the address in the I2C data stream. This also works for
42 * successive reads using the I2C auto-incrementing memory pointer.
43 *
44 * If you are manipulating a large memory with 2-byte addresses, use
45 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
46 *
47 * Then there are the unfortunate memory chips that spill the most
48 * significant 1, 2, or 3 bits of address into the chip address byte.
49 * This effectively makes one chip (logically) look like 2, 4, or
50 * 8 chips. This is handled (awkwardly) by #defining
51 * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
52 * {addr} field (since .1 is the default, it doesn't actually have to
53 * be specified). Examples: given a memory chip at I2C chip address
54 * 0x50, the following would happen...
55 * i2c md 50 0 10 display 16 bytes starting at 0x000
56 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
57 * i2c md 50 100 10 display 16 bytes starting at 0x100
58 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
59 * i2c md 50 210 10 display 16 bytes starting at 0x210
60 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
61 * This is awfully ugly. It would be nice if someone would think up
62 * a better way of handling this.
63 *
64 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
65 */
66
67 #include <common.h>
68 #include <bootretry.h>
69 #include <cli.h>
70 #include <command.h>
71 #include <console.h>
72 #include <dm.h>
73 #include <edid.h>
74 #include <environment.h>
75 #include <errno.h>
76 #include <i2c.h>
77 #include <malloc.h>
78 #include <asm/byteorder.h>
79 #include <linux/compiler.h>
80
81 /* Display values from last command.
82 * Memory modify remembered values are different from display memory.
83 */
84 static uint i2c_dp_last_chip;
85 static uint i2c_dp_last_addr;
86 static uint i2c_dp_last_alen;
87 static uint i2c_dp_last_length = 0x10;
88
89 static uint i2c_mm_last_chip;
90 static uint i2c_mm_last_addr;
91 static uint i2c_mm_last_alen;
92
93 /* If only one I2C bus is present, the list of devices to ignore when
94 * the probe command is issued is represented by a 1D array of addresses.
95 * When multiple buses are present, the list is an array of bus-address
96 * pairs. The following macros take care of this */
97
98 #if defined(CONFIG_SYS_I2C_NOPROBES)
99 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
100 static struct
101 {
102 uchar bus;
103 uchar addr;
104 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
105 #define GET_BUS_NUM i2c_get_bus_num()
106 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
107 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
108 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
109 #else /* single bus */
110 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
111 #define GET_BUS_NUM 0
112 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
113 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
114 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
115 #endif /* defined(CONFIG_SYS_I2C) */
116 #endif
117
118 #define DISP_LINE_LEN 16
119
120 /*
121 * Default for driver model is to use the chip's existing address length.
122 * For legacy code, this is not stored, so we need to use a suitable
123 * default.
124 */
125 #ifdef CONFIG_DM_I2C
126 #define DEFAULT_ADDR_LEN (-1)
127 #else
128 #define DEFAULT_ADDR_LEN 1
129 #endif
130
131 #ifdef CONFIG_DM_I2C
132 static struct udevice *i2c_cur_bus;
133
cmd_i2c_set_bus_num(unsigned int busnum)134 static int cmd_i2c_set_bus_num(unsigned int busnum)
135 {
136 struct udevice *bus;
137 int ret;
138
139 ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
140 if (ret) {
141 debug("%s: No bus %d\n", __func__, busnum);
142 return ret;
143 }
144 i2c_cur_bus = bus;
145
146 return 0;
147 }
148
i2c_get_cur_bus(struct udevice ** busp)149 static int i2c_get_cur_bus(struct udevice **busp)
150 {
151 #ifdef CONFIG_I2C_SET_DEFAULT_BUS_NUM
152 if (!i2c_cur_bus) {
153 if (cmd_i2c_set_bus_num(CONFIG_I2C_DEFAULT_BUS_NUMBER)) {
154 printf("Default I2C bus %d not found\n",
155 CONFIG_I2C_DEFAULT_BUS_NUMBER);
156 return -ENODEV;
157 }
158 }
159 #endif
160
161 if (!i2c_cur_bus) {
162 puts("No I2C bus selected\n");
163 return -ENODEV;
164 }
165 *busp = i2c_cur_bus;
166
167 return 0;
168 }
169
i2c_get_cur_bus_chip(uint chip_addr,struct udevice ** devp)170 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
171 {
172 struct udevice *bus;
173 int ret;
174
175 ret = i2c_get_cur_bus(&bus);
176 if (ret)
177 return ret;
178
179 return i2c_get_chip(bus, chip_addr, 1, devp);
180 }
181
182 #endif
183
184 /**
185 * i2c_init_board() - Board-specific I2C bus init
186 *
187 * This function is the default no-op implementation of I2C bus
188 * initialization. This function can be overridden by board-specific
189 * implementation if needed.
190 */
191 __weak
i2c_init_board(void)192 void i2c_init_board(void)
193 {
194 }
195
196 /* TODO: Implement architecture-specific get/set functions */
197
198 /**
199 * i2c_get_bus_speed() - Return I2C bus speed
200 *
201 * This function is the default implementation of function for retrieveing
202 * the current I2C bus speed in Hz.
203 *
204 * A driver implementing runtime switching of I2C bus speed must override
205 * this function to report the speed correctly. Simple or legacy drivers
206 * can use this fallback.
207 *
208 * Returns I2C bus speed in Hz.
209 */
210 #if !defined(CONFIG_SYS_I2C) && !defined(CONFIG_DM_I2C)
211 /*
212 * TODO: Implement architecture-specific get/set functions
213 * Should go away, if we switched completely to new multibus support
214 */
215 __weak
i2c_get_bus_speed(void)216 unsigned int i2c_get_bus_speed(void)
217 {
218 return CONFIG_SYS_I2C_SPEED;
219 }
220
221 /**
222 * i2c_set_bus_speed() - Configure I2C bus speed
223 * @speed: Newly set speed of the I2C bus in Hz
224 *
225 * This function is the default implementation of function for setting
226 * the I2C bus speed in Hz.
227 *
228 * A driver implementing runtime switching of I2C bus speed must override
229 * this function to report the speed correctly. Simple or legacy drivers
230 * can use this fallback.
231 *
232 * Returns zero on success, negative value on error.
233 */
234 __weak
i2c_set_bus_speed(unsigned int speed)235 int i2c_set_bus_speed(unsigned int speed)
236 {
237 if (speed != CONFIG_SYS_I2C_SPEED)
238 return -1;
239
240 return 0;
241 }
242 #endif
243
244 /**
245 * get_alen() - Small parser helper function to get address length
246 *
247 * Returns the address length.
248 */
get_alen(char * arg,int default_len)249 static uint get_alen(char *arg, int default_len)
250 {
251 int j;
252 int alen;
253
254 alen = default_len;
255 for (j = 0; j < 8; j++) {
256 if (arg[j] == '.') {
257 alen = arg[j+1] - '0';
258 break;
259 } else if (arg[j] == '\0')
260 break;
261 }
262 return alen;
263 }
264
265 enum i2c_err_op {
266 I2C_ERR_READ,
267 I2C_ERR_WRITE,
268 };
269
i2c_report_err(int ret,enum i2c_err_op op)270 static int i2c_report_err(int ret, enum i2c_err_op op)
271 {
272 printf("Error %s the chip: %d\n",
273 op == I2C_ERR_READ ? "reading" : "writing", ret);
274
275 return CMD_RET_FAILURE;
276 }
277
278 /**
279 * do_i2c_read() - Handle the "i2c read" command-line command
280 * @cmdtp: Command data struct pointer
281 * @flag: Command flag
282 * @argc: Command-line argument count
283 * @argv: Array of command-line arguments
284 *
285 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
286 * on error.
287 *
288 * Syntax:
289 * i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
290 */
do_i2c_read(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])291 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
292 {
293 uint chip;
294 uint devaddr, length;
295 int alen;
296 u_char *memaddr;
297 int ret;
298 #ifdef CONFIG_DM_I2C
299 struct udevice *dev;
300 #endif
301
302 if (argc != 5)
303 return CMD_RET_USAGE;
304
305 /*
306 * I2C chip address
307 */
308 chip = simple_strtoul(argv[1], NULL, 16);
309
310 /*
311 * I2C data address within the chip. This can be 1 or
312 * 2 bytes long. Some day it might be 3 bytes long :-).
313 */
314 devaddr = simple_strtoul(argv[2], NULL, 16);
315 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
316 if (alen > 3)
317 return CMD_RET_USAGE;
318
319 /*
320 * Length is the number of objects, not number of bytes.
321 */
322 length = simple_strtoul(argv[3], NULL, 16);
323
324 /*
325 * memaddr is the address where to store things in memory
326 */
327 memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
328
329 #ifdef CONFIG_DM_I2C
330 ret = i2c_get_cur_bus_chip(chip, &dev);
331 if (!ret && alen != -1)
332 ret = i2c_set_chip_offset_len(dev, alen);
333 if (!ret)
334 ret = dm_i2c_read(dev, devaddr, memaddr, length);
335 #else
336 ret = i2c_read(chip, devaddr, alen, memaddr, length);
337 #endif
338 if (ret)
339 return i2c_report_err(ret, I2C_ERR_READ);
340
341 return 0;
342 }
343
do_i2c_write(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])344 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
345 {
346 uint chip;
347 uint devaddr, length;
348 int alen;
349 u_char *memaddr;
350 int ret;
351 #ifdef CONFIG_DM_I2C
352 struct udevice *dev;
353 struct dm_i2c_chip *i2c_chip;
354 #endif
355
356 if ((argc < 5) || (argc > 6))
357 return cmd_usage(cmdtp);
358
359 /*
360 * memaddr is the address where to store things in memory
361 */
362 memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
363
364 /*
365 * I2C chip address
366 */
367 chip = simple_strtoul(argv[2], NULL, 16);
368
369 /*
370 * I2C data address within the chip. This can be 1 or
371 * 2 bytes long. Some day it might be 3 bytes long :-).
372 */
373 devaddr = simple_strtoul(argv[3], NULL, 16);
374 alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
375 if (alen > 3)
376 return cmd_usage(cmdtp);
377
378 /*
379 * Length is the number of bytes.
380 */
381 length = simple_strtoul(argv[4], NULL, 16);
382
383 #ifdef CONFIG_DM_I2C
384 ret = i2c_get_cur_bus_chip(chip, &dev);
385 if (!ret && alen != -1)
386 ret = i2c_set_chip_offset_len(dev, alen);
387 if (ret)
388 return i2c_report_err(ret, I2C_ERR_WRITE);
389 i2c_chip = dev_get_parent_platdata(dev);
390 if (!i2c_chip)
391 return i2c_report_err(ret, I2C_ERR_WRITE);
392 #endif
393
394 if (argc == 6 && !strcmp(argv[5], "-s")) {
395 /*
396 * Write all bytes in a single I2C transaction. If the target
397 * device is an EEPROM, it is your responsibility to not cross
398 * a page boundary. No write delay upon completion, take this
399 * into account if linking commands.
400 */
401 #ifdef CONFIG_DM_I2C
402 i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
403 ret = dm_i2c_write(dev, devaddr, memaddr, length);
404 #else
405 ret = i2c_write(chip, devaddr, alen, memaddr, length);
406 #endif
407 if (ret)
408 return i2c_report_err(ret, I2C_ERR_WRITE);
409 } else {
410 /*
411 * Repeated addressing - perform <length> separate
412 * write transactions of one byte each
413 */
414 while (length-- > 0) {
415 #ifdef CONFIG_DM_I2C
416 i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
417 ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
418 #else
419 ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
420 #endif
421 if (ret)
422 return i2c_report_err(ret, I2C_ERR_WRITE);
423 /*
424 * No write delay with FRAM devices.
425 */
426 #if !defined(CONFIG_SYS_I2C_FRAM)
427 udelay(11000);
428 #endif
429 }
430 }
431 return 0;
432 }
433
434 #ifdef CONFIG_DM_I2C
do_i2c_flags(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])435 static int do_i2c_flags(cmd_tbl_t *cmdtp, int flag, int argc,
436 char *const argv[])
437 {
438 struct udevice *dev;
439 uint flags;
440 int chip;
441 int ret;
442
443 if (argc < 2)
444 return CMD_RET_USAGE;
445
446 chip = simple_strtoul(argv[1], NULL, 16);
447 ret = i2c_get_cur_bus_chip(chip, &dev);
448 if (ret)
449 return i2c_report_err(ret, I2C_ERR_READ);
450
451 if (argc > 2) {
452 flags = simple_strtoul(argv[2], NULL, 16);
453 ret = i2c_set_chip_flags(dev, flags);
454 } else {
455 ret = i2c_get_chip_flags(dev, &flags);
456 if (!ret)
457 printf("%x\n", flags);
458 }
459 if (ret)
460 return i2c_report_err(ret, I2C_ERR_READ);
461
462 return 0;
463 }
464
do_i2c_olen(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])465 static int do_i2c_olen(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
466 {
467 struct udevice *dev;
468 uint olen;
469 int chip;
470 int ret;
471
472 if (argc < 2)
473 return CMD_RET_USAGE;
474
475 chip = simple_strtoul(argv[1], NULL, 16);
476 ret = i2c_get_cur_bus_chip(chip, &dev);
477 if (ret)
478 return i2c_report_err(ret, I2C_ERR_READ);
479
480 if (argc > 2) {
481 olen = simple_strtoul(argv[2], NULL, 16);
482 ret = i2c_set_chip_offset_len(dev, olen);
483 } else {
484 ret = i2c_get_chip_offset_len(dev);
485 if (ret >= 0) {
486 printf("%x\n", ret);
487 ret = 0;
488 }
489 }
490 if (ret)
491 return i2c_report_err(ret, I2C_ERR_READ);
492
493 return 0;
494 }
495 #endif
496
497 /**
498 * do_i2c_md() - Handle the "i2c md" command-line command
499 * @cmdtp: Command data struct pointer
500 * @flag: Command flag
501 * @argc: Command-line argument count
502 * @argv: Array of command-line arguments
503 *
504 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
505 * on error.
506 *
507 * Syntax:
508 * i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
509 */
do_i2c_md(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])510 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
511 {
512 uint chip;
513 uint addr, length;
514 int alen;
515 int j, nbytes, linebytes;
516 int ret;
517 #ifdef CONFIG_DM_I2C
518 struct udevice *dev;
519 #endif
520
521 /* We use the last specified parameters, unless new ones are
522 * entered.
523 */
524 chip = i2c_dp_last_chip;
525 addr = i2c_dp_last_addr;
526 alen = i2c_dp_last_alen;
527 length = i2c_dp_last_length;
528
529 if (argc < 3)
530 return CMD_RET_USAGE;
531
532 if ((flag & CMD_FLAG_REPEAT) == 0) {
533 /*
534 * New command specified.
535 */
536
537 /*
538 * I2C chip address
539 */
540 chip = simple_strtoul(argv[1], NULL, 16);
541
542 /*
543 * I2C data address within the chip. This can be 1 or
544 * 2 bytes long. Some day it might be 3 bytes long :-).
545 */
546 addr = simple_strtoul(argv[2], NULL, 16);
547 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
548 if (alen > 3)
549 return CMD_RET_USAGE;
550
551 /*
552 * If another parameter, it is the length to display.
553 * Length is the number of objects, not number of bytes.
554 */
555 if (argc > 3)
556 length = simple_strtoul(argv[3], NULL, 16);
557 }
558
559 #ifdef CONFIG_DM_I2C
560 ret = i2c_get_cur_bus_chip(chip, &dev);
561 if (!ret && alen != -1)
562 ret = i2c_set_chip_offset_len(dev, alen);
563 if (ret)
564 return i2c_report_err(ret, I2C_ERR_READ);
565 #endif
566
567 /*
568 * Print the lines.
569 *
570 * We buffer all read data, so we can make sure data is read only
571 * once.
572 */
573 nbytes = length;
574 do {
575 unsigned char linebuf[DISP_LINE_LEN];
576 unsigned char *cp;
577
578 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
579
580 #ifdef CONFIG_DM_I2C
581 ret = dm_i2c_read(dev, addr, linebuf, linebytes);
582 #else
583 ret = i2c_read(chip, addr, alen, linebuf, linebytes);
584 #endif
585 if (ret)
586 return i2c_report_err(ret, I2C_ERR_READ);
587 else {
588 printf("%04x:", addr);
589 cp = linebuf;
590 for (j=0; j<linebytes; j++) {
591 printf(" %02x", *cp++);
592 addr++;
593 }
594 puts (" ");
595 cp = linebuf;
596 for (j=0; j<linebytes; j++) {
597 if ((*cp < 0x20) || (*cp > 0x7e))
598 puts (".");
599 else
600 printf("%c", *cp);
601 cp++;
602 }
603 putc ('\n');
604 }
605 nbytes -= linebytes;
606 } while (nbytes > 0);
607
608 i2c_dp_last_chip = chip;
609 i2c_dp_last_addr = addr;
610 i2c_dp_last_alen = alen;
611 i2c_dp_last_length = length;
612
613 return 0;
614 }
615
616 /**
617 * do_i2c_mw() - Handle the "i2c mw" command-line command
618 * @cmdtp: Command data struct pointer
619 * @flag: Command flag
620 * @argc: Command-line argument count
621 * @argv: Array of command-line arguments
622 *
623 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
624 * on error.
625 *
626 * Syntax:
627 * i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
628 */
do_i2c_mw(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])629 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
630 {
631 uint chip;
632 ulong addr;
633 int alen;
634 uchar byte;
635 int count;
636 int ret;
637 #ifdef CONFIG_DM_I2C
638 struct udevice *dev;
639 #endif
640
641 if ((argc < 4) || (argc > 5))
642 return CMD_RET_USAGE;
643
644 /*
645 * Chip is always specified.
646 */
647 chip = simple_strtoul(argv[1], NULL, 16);
648
649 /*
650 * Address is always specified.
651 */
652 addr = simple_strtoul(argv[2], NULL, 16);
653 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
654 if (alen > 3)
655 return CMD_RET_USAGE;
656
657 #ifdef CONFIG_DM_I2C
658 ret = i2c_get_cur_bus_chip(chip, &dev);
659 if (!ret && alen != -1)
660 ret = i2c_set_chip_offset_len(dev, alen);
661 if (ret)
662 return i2c_report_err(ret, I2C_ERR_WRITE);
663 #endif
664 /*
665 * Value to write is always specified.
666 */
667 byte = simple_strtoul(argv[3], NULL, 16);
668
669 /*
670 * Optional count
671 */
672 if (argc == 5)
673 count = simple_strtoul(argv[4], NULL, 16);
674 else
675 count = 1;
676
677 while (count-- > 0) {
678 #ifdef CONFIG_DM_I2C
679 ret = dm_i2c_write(dev, addr++, &byte, 1);
680 #else
681 ret = i2c_write(chip, addr++, alen, &byte, 1);
682 #endif
683 if (ret)
684 return i2c_report_err(ret, I2C_ERR_WRITE);
685 /*
686 * Wait for the write to complete. The write can take
687 * up to 10mSec (we allow a little more time).
688 */
689 /*
690 * No write delay with FRAM devices.
691 */
692 #if !defined(CONFIG_SYS_I2C_FRAM)
693 udelay(11000);
694 #endif
695 }
696
697 return 0;
698 }
699
700 /**
701 * do_i2c_crc() - Handle the "i2c crc32" command-line command
702 * @cmdtp: Command data struct pointer
703 * @flag: Command flag
704 * @argc: Command-line argument count
705 * @argv: Array of command-line arguments
706 *
707 * Calculate a CRC on memory
708 *
709 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
710 * on error.
711 *
712 * Syntax:
713 * i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
714 */
do_i2c_crc(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])715 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
716 {
717 uint chip;
718 ulong addr;
719 int alen;
720 int count;
721 uchar byte;
722 ulong crc;
723 ulong err;
724 int ret = 0;
725 #ifdef CONFIG_DM_I2C
726 struct udevice *dev;
727 #endif
728
729 if (argc < 4)
730 return CMD_RET_USAGE;
731
732 /*
733 * Chip is always specified.
734 */
735 chip = simple_strtoul(argv[1], NULL, 16);
736
737 /*
738 * Address is always specified.
739 */
740 addr = simple_strtoul(argv[2], NULL, 16);
741 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
742 if (alen > 3)
743 return CMD_RET_USAGE;
744
745 #ifdef CONFIG_DM_I2C
746 ret = i2c_get_cur_bus_chip(chip, &dev);
747 if (!ret && alen != -1)
748 ret = i2c_set_chip_offset_len(dev, alen);
749 if (ret)
750 return i2c_report_err(ret, I2C_ERR_READ);
751 #endif
752 /*
753 * Count is always specified
754 */
755 count = simple_strtoul(argv[3], NULL, 16);
756
757 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
758 /*
759 * CRC a byte at a time. This is going to be slooow, but hey, the
760 * memories are small and slow too so hopefully nobody notices.
761 */
762 crc = 0;
763 err = 0;
764 while (count-- > 0) {
765 #ifdef CONFIG_DM_I2C
766 ret = dm_i2c_read(dev, addr, &byte, 1);
767 #else
768 ret = i2c_read(chip, addr, alen, &byte, 1);
769 #endif
770 if (ret)
771 err++;
772 crc = crc32 (crc, &byte, 1);
773 addr++;
774 }
775 if (err > 0)
776 i2c_report_err(ret, I2C_ERR_READ);
777 else
778 printf ("%08lx\n", crc);
779
780 return 0;
781 }
782
783 /**
784 * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
785 * @cmdtp: Command data struct pointer
786 * @flag: Command flag
787 * @argc: Command-line argument count
788 * @argv: Array of command-line arguments
789 *
790 * Modify memory.
791 *
792 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
793 * on error.
794 *
795 * Syntax:
796 * i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
797 * i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
798 */
799 static int
mod_i2c_mem(cmd_tbl_t * cmdtp,int incrflag,int flag,int argc,char * const argv[])800 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
801 {
802 uint chip;
803 ulong addr;
804 int alen;
805 ulong data;
806 int size = 1;
807 int nbytes;
808 int ret;
809 #ifdef CONFIG_DM_I2C
810 struct udevice *dev;
811 #endif
812
813 if (argc != 3)
814 return CMD_RET_USAGE;
815
816 bootretry_reset_cmd_timeout(); /* got a good command to get here */
817 /*
818 * We use the last specified parameters, unless new ones are
819 * entered.
820 */
821 chip = i2c_mm_last_chip;
822 addr = i2c_mm_last_addr;
823 alen = i2c_mm_last_alen;
824
825 if ((flag & CMD_FLAG_REPEAT) == 0) {
826 /*
827 * New command specified. Check for a size specification.
828 * Defaults to byte if no or incorrect specification.
829 */
830 size = cmd_get_data_size(argv[0], 1);
831
832 /*
833 * Chip is always specified.
834 */
835 chip = simple_strtoul(argv[1], NULL, 16);
836
837 /*
838 * Address is always specified.
839 */
840 addr = simple_strtoul(argv[2], NULL, 16);
841 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
842 if (alen > 3)
843 return CMD_RET_USAGE;
844 }
845
846 #ifdef CONFIG_DM_I2C
847 ret = i2c_get_cur_bus_chip(chip, &dev);
848 if (!ret && alen != -1)
849 ret = i2c_set_chip_offset_len(dev, alen);
850 if (ret)
851 return i2c_report_err(ret, I2C_ERR_WRITE);
852 #endif
853
854 /*
855 * Print the address, followed by value. Then accept input for
856 * the next value. A non-converted value exits.
857 */
858 do {
859 printf("%08lx:", addr);
860 #ifdef CONFIG_DM_I2C
861 ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
862 #else
863 ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
864 #endif
865 if (ret)
866 return i2c_report_err(ret, I2C_ERR_READ);
867
868 data = cpu_to_be32(data);
869 if (size == 1)
870 printf(" %02lx", (data >> 24) & 0x000000FF);
871 else if (size == 2)
872 printf(" %04lx", (data >> 16) & 0x0000FFFF);
873 else
874 printf(" %08lx", data);
875
876 nbytes = cli_readline(" ? ");
877 if (nbytes == 0) {
878 /*
879 * <CR> pressed as only input, don't modify current
880 * location and move to next.
881 */
882 if (incrflag)
883 addr += size;
884 nbytes = size;
885 /* good enough to not time out */
886 bootretry_reset_cmd_timeout();
887 }
888 #ifdef CONFIG_BOOT_RETRY_TIME
889 else if (nbytes == -2)
890 break; /* timed out, exit the command */
891 #endif
892 else {
893 char *endp;
894
895 data = simple_strtoul(console_buffer, &endp, 16);
896 if (size == 1)
897 data = data << 24;
898 else if (size == 2)
899 data = data << 16;
900 data = be32_to_cpu(data);
901 nbytes = endp - console_buffer;
902 if (nbytes) {
903 /*
904 * good enough to not time out
905 */
906 bootretry_reset_cmd_timeout();
907 #ifdef CONFIG_DM_I2C
908 ret = dm_i2c_write(dev, addr, (uchar *)&data,
909 size);
910 #else
911 ret = i2c_write(chip, addr, alen,
912 (uchar *)&data, size);
913 #endif
914 if (ret)
915 return i2c_report_err(ret,
916 I2C_ERR_WRITE);
917 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
918 udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
919 #endif
920 if (incrflag)
921 addr += size;
922 }
923 }
924 } while (nbytes);
925
926 i2c_mm_last_chip = chip;
927 i2c_mm_last_addr = addr;
928 i2c_mm_last_alen = alen;
929
930 return 0;
931 }
932
933 /**
934 * do_i2c_probe() - Handle the "i2c probe" command-line command
935 * @cmdtp: Command data struct pointer
936 * @flag: Command flag
937 * @argc: Command-line argument count
938 * @argv: Array of command-line arguments
939 *
940 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
941 * on error.
942 *
943 * Syntax:
944 * i2c probe {addr}
945 *
946 * Returns zero (success) if one or more I2C devices was found
947 */
do_i2c_probe(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])948 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
949 {
950 int j;
951 int addr = -1;
952 int found = 0;
953 #if defined(CONFIG_SYS_I2C_NOPROBES)
954 int k, skip;
955 unsigned int bus = GET_BUS_NUM;
956 #endif /* NOPROBES */
957 int ret;
958 #ifdef CONFIG_DM_I2C
959 struct udevice *bus, *dev;
960
961 if (i2c_get_cur_bus(&bus))
962 return CMD_RET_FAILURE;
963 #endif
964
965 if (argc == 2)
966 addr = simple_strtol(argv[1], 0, 16);
967
968 puts ("Valid chip addresses:");
969 for (j = 0; j < 128; j++) {
970 if ((0 <= addr) && (j != addr))
971 continue;
972
973 #if defined(CONFIG_SYS_I2C_NOPROBES)
974 skip = 0;
975 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
976 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
977 skip = 1;
978 break;
979 }
980 }
981 if (skip)
982 continue;
983 #endif
984 #ifdef CONFIG_DM_I2C
985 ret = dm_i2c_probe(bus, j, 0, &dev);
986 #else
987 ret = i2c_probe(j);
988 #endif
989 if (ret == 0) {
990 printf(" %02X", j);
991 found++;
992 }
993 }
994 putc ('\n');
995
996 #if defined(CONFIG_SYS_I2C_NOPROBES)
997 puts ("Excluded chip addresses:");
998 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
999 if (COMPARE_BUS(bus,k))
1000 printf(" %02X", NO_PROBE_ADDR(k));
1001 }
1002 putc ('\n');
1003 #endif
1004
1005 return (0 == found);
1006 }
1007
1008 /**
1009 * do_i2c_loop() - Handle the "i2c loop" command-line command
1010 * @cmdtp: Command data struct pointer
1011 * @flag: Command flag
1012 * @argc: Command-line argument count
1013 * @argv: Array of command-line arguments
1014 *
1015 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1016 * on error.
1017 *
1018 * Syntax:
1019 * i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
1020 * {length} - Number of bytes to read
1021 * {delay} - A DECIMAL number and defaults to 1000 uSec
1022 */
do_i2c_loop(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1023 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1024 {
1025 uint chip;
1026 int alen;
1027 uint addr;
1028 uint length;
1029 u_char bytes[16];
1030 int delay;
1031 int ret;
1032 #ifdef CONFIG_DM_I2C
1033 struct udevice *dev;
1034 #endif
1035
1036 if (argc < 3)
1037 return CMD_RET_USAGE;
1038
1039 /*
1040 * Chip is always specified.
1041 */
1042 chip = simple_strtoul(argv[1], NULL, 16);
1043
1044 /*
1045 * Address is always specified.
1046 */
1047 addr = simple_strtoul(argv[2], NULL, 16);
1048 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1049 if (alen > 3)
1050 return CMD_RET_USAGE;
1051 #ifdef CONFIG_DM_I2C
1052 ret = i2c_get_cur_bus_chip(chip, &dev);
1053 if (!ret && alen != -1)
1054 ret = i2c_set_chip_offset_len(dev, alen);
1055 if (ret)
1056 return i2c_report_err(ret, I2C_ERR_WRITE);
1057 #endif
1058
1059 /*
1060 * Length is the number of objects, not number of bytes.
1061 */
1062 length = 1;
1063 length = simple_strtoul(argv[3], NULL, 16);
1064 if (length > sizeof(bytes))
1065 length = sizeof(bytes);
1066
1067 /*
1068 * The delay time (uSec) is optional.
1069 */
1070 delay = 1000;
1071 if (argc > 3)
1072 delay = simple_strtoul(argv[4], NULL, 10);
1073 /*
1074 * Run the loop...
1075 */
1076 while (1) {
1077 #ifdef CONFIG_DM_I2C
1078 ret = dm_i2c_read(dev, addr, bytes, length);
1079 #else
1080 ret = i2c_read(chip, addr, alen, bytes, length);
1081 #endif
1082 if (ret)
1083 i2c_report_err(ret, I2C_ERR_READ);
1084 udelay(delay);
1085 }
1086
1087 /* NOTREACHED */
1088 return 0;
1089 }
1090
1091 /*
1092 * The SDRAM command is separately configured because many
1093 * (most?) embedded boards don't use SDRAM DIMMs.
1094 *
1095 * FIXME: Document and probably move elsewhere!
1096 */
1097 #if defined(CONFIG_CMD_SDRAM)
print_ddr2_tcyc(u_char const b)1098 static void print_ddr2_tcyc (u_char const b)
1099 {
1100 printf ("%d.", (b >> 4) & 0x0F);
1101 switch (b & 0x0F) {
1102 case 0x0:
1103 case 0x1:
1104 case 0x2:
1105 case 0x3:
1106 case 0x4:
1107 case 0x5:
1108 case 0x6:
1109 case 0x7:
1110 case 0x8:
1111 case 0x9:
1112 printf ("%d ns\n", b & 0x0F);
1113 break;
1114 case 0xA:
1115 puts ("25 ns\n");
1116 break;
1117 case 0xB:
1118 puts ("33 ns\n");
1119 break;
1120 case 0xC:
1121 puts ("66 ns\n");
1122 break;
1123 case 0xD:
1124 puts ("75 ns\n");
1125 break;
1126 default:
1127 puts ("?? ns\n");
1128 break;
1129 }
1130 }
1131
decode_bits(u_char const b,char const * str[],int const do_once)1132 static void decode_bits (u_char const b, char const *str[], int const do_once)
1133 {
1134 u_char mask;
1135
1136 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1137 if (b & mask) {
1138 puts (*str);
1139 if (do_once)
1140 return;
1141 }
1142 }
1143 }
1144
1145 /*
1146 * Syntax:
1147 * i2c sdram {i2c_chip}
1148 */
do_sdram(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1149 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1150 {
1151 enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
1152
1153 uint chip;
1154 u_char data[128];
1155 u_char cksum;
1156 int j, ret;
1157 #ifdef CONFIG_DM_I2C
1158 struct udevice *dev;
1159 #endif
1160
1161 static const char *decode_CAS_DDR2[] = {
1162 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1163 };
1164
1165 static const char *decode_CAS_default[] = {
1166 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1167 };
1168
1169 static const char *decode_CS_WE_default[] = {
1170 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1171 };
1172
1173 static const char *decode_byte21_default[] = {
1174 " TBD (bit 7)\n",
1175 " Redundant row address\n",
1176 " Differential clock input\n",
1177 " Registerd DQMB inputs\n",
1178 " Buffered DQMB inputs\n",
1179 " On-card PLL\n",
1180 " Registered address/control lines\n",
1181 " Buffered address/control lines\n"
1182 };
1183
1184 static const char *decode_byte22_DDR2[] = {
1185 " TBD (bit 7)\n",
1186 " TBD (bit 6)\n",
1187 " TBD (bit 5)\n",
1188 " TBD (bit 4)\n",
1189 " TBD (bit 3)\n",
1190 " Supports partial array self refresh\n",
1191 " Supports 50 ohm ODT\n",
1192 " Supports weak driver\n"
1193 };
1194
1195 static const char *decode_row_density_DDR2[] = {
1196 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
1197 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
1198 };
1199
1200 static const char *decode_row_density_default[] = {
1201 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
1202 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
1203 };
1204
1205 if (argc < 2)
1206 return CMD_RET_USAGE;
1207
1208 /*
1209 * Chip is always specified.
1210 */
1211 chip = simple_strtoul (argv[1], NULL, 16);
1212
1213 #ifdef CONFIG_DM_I2C
1214 ret = i2c_get_cur_bus_chip(chip, &dev);
1215 if (!ret)
1216 ret = dm_i2c_read(dev, 0, data, sizeof(data));
1217 #else
1218 ret = i2c_read(chip, 0, 1, data, sizeof(data));
1219 #endif
1220 if (ret) {
1221 puts ("No SDRAM Serial Presence Detect found.\n");
1222 return 1;
1223 }
1224
1225 cksum = 0;
1226 for (j = 0; j < 63; j++) {
1227 cksum += data[j];
1228 }
1229 if (cksum != data[63]) {
1230 printf ("WARNING: Configuration data checksum failure:\n"
1231 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1232 }
1233 printf ("SPD data revision %d.%d\n",
1234 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
1235 printf ("Bytes used 0x%02X\n", data[0]);
1236 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
1237
1238 puts ("Memory type ");
1239 switch (data[2]) {
1240 case 2:
1241 type = EDO;
1242 puts ("EDO\n");
1243 break;
1244 case 4:
1245 type = SDRAM;
1246 puts ("SDRAM\n");
1247 break;
1248 case 7:
1249 type = DDR;
1250 puts("DDR\n");
1251 break;
1252 case 8:
1253 type = DDR2;
1254 puts ("DDR2\n");
1255 break;
1256 case 11:
1257 type = DDR3;
1258 puts("DDR3\n");
1259 break;
1260 case 12:
1261 type = DDR4;
1262 puts("DDR4\n");
1263 break;
1264 default:
1265 type = unknown;
1266 puts ("unknown\n");
1267 break;
1268 }
1269
1270 puts ("Row address bits ");
1271 if ((data[3] & 0x00F0) == 0)
1272 printf ("%d\n", data[3] & 0x0F);
1273 else
1274 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1275
1276 puts ("Column address bits ");
1277 if ((data[4] & 0x00F0) == 0)
1278 printf ("%d\n", data[4] & 0x0F);
1279 else
1280 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1281
1282 switch (type) {
1283 case DDR2:
1284 printf ("Number of ranks %d\n",
1285 (data[5] & 0x07) + 1);
1286 break;
1287 default:
1288 printf ("Module rows %d\n", data[5]);
1289 break;
1290 }
1291
1292 switch (type) {
1293 case DDR2:
1294 printf ("Module data width %d bits\n", data[6]);
1295 break;
1296 default:
1297 printf ("Module data width %d bits\n",
1298 (data[7] << 8) | data[6]);
1299 break;
1300 }
1301
1302 puts ("Interface signal levels ");
1303 switch(data[8]) {
1304 case 0: puts ("TTL 5.0 V\n"); break;
1305 case 1: puts ("LVTTL\n"); break;
1306 case 2: puts ("HSTL 1.5 V\n"); break;
1307 case 3: puts ("SSTL 3.3 V\n"); break;
1308 case 4: puts ("SSTL 2.5 V\n"); break;
1309 case 5: puts ("SSTL 1.8 V\n"); break;
1310 default: puts ("unknown\n"); break;
1311 }
1312
1313 switch (type) {
1314 case DDR2:
1315 printf ("SDRAM cycle time ");
1316 print_ddr2_tcyc (data[9]);
1317 break;
1318 default:
1319 printf ("SDRAM cycle time %d.%d ns\n",
1320 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
1321 break;
1322 }
1323
1324 switch (type) {
1325 case DDR2:
1326 printf ("SDRAM access time 0.%d%d ns\n",
1327 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1328 break;
1329 default:
1330 printf ("SDRAM access time %d.%d ns\n",
1331 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1332 break;
1333 }
1334
1335 puts ("EDC configuration ");
1336 switch (data[11]) {
1337 case 0: puts ("None\n"); break;
1338 case 1: puts ("Parity\n"); break;
1339 case 2: puts ("ECC\n"); break;
1340 default: puts ("unknown\n"); break;
1341 }
1342
1343 if ((data[12] & 0x80) == 0)
1344 puts ("No self refresh, rate ");
1345 else
1346 puts ("Self refresh, rate ");
1347
1348 switch(data[12] & 0x7F) {
1349 case 0: puts ("15.625 us\n"); break;
1350 case 1: puts ("3.9 us\n"); break;
1351 case 2: puts ("7.8 us\n"); break;
1352 case 3: puts ("31.3 us\n"); break;
1353 case 4: puts ("62.5 us\n"); break;
1354 case 5: puts ("125 us\n"); break;
1355 default: puts ("unknown\n"); break;
1356 }
1357
1358 switch (type) {
1359 case DDR2:
1360 printf ("SDRAM width (primary) %d\n", data[13]);
1361 break;
1362 default:
1363 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
1364 if ((data[13] & 0x80) != 0) {
1365 printf (" (second bank) %d\n",
1366 2 * (data[13] & 0x7F));
1367 }
1368 break;
1369 }
1370
1371 switch (type) {
1372 case DDR2:
1373 if (data[14] != 0)
1374 printf ("EDC width %d\n", data[14]);
1375 break;
1376 default:
1377 if (data[14] != 0) {
1378 printf ("EDC width %d\n",
1379 data[14] & 0x7F);
1380
1381 if ((data[14] & 0x80) != 0) {
1382 printf (" (second bank) %d\n",
1383 2 * (data[14] & 0x7F));
1384 }
1385 }
1386 break;
1387 }
1388
1389 if (DDR2 != type) {
1390 printf ("Min clock delay, back-to-back random column addresses "
1391 "%d\n", data[15]);
1392 }
1393
1394 puts ("Burst length(s) ");
1395 if (data[16] & 0x80) puts (" Page");
1396 if (data[16] & 0x08) puts (" 8");
1397 if (data[16] & 0x04) puts (" 4");
1398 if (data[16] & 0x02) puts (" 2");
1399 if (data[16] & 0x01) puts (" 1");
1400 putc ('\n');
1401 printf ("Number of banks %d\n", data[17]);
1402
1403 switch (type) {
1404 case DDR2:
1405 puts ("CAS latency(s) ");
1406 decode_bits (data[18], decode_CAS_DDR2, 0);
1407 putc ('\n');
1408 break;
1409 default:
1410 puts ("CAS latency(s) ");
1411 decode_bits (data[18], decode_CAS_default, 0);
1412 putc ('\n');
1413 break;
1414 }
1415
1416 if (DDR2 != type) {
1417 puts ("CS latency(s) ");
1418 decode_bits (data[19], decode_CS_WE_default, 0);
1419 putc ('\n');
1420 }
1421
1422 if (DDR2 != type) {
1423 puts ("WE latency(s) ");
1424 decode_bits (data[20], decode_CS_WE_default, 0);
1425 putc ('\n');
1426 }
1427
1428 switch (type) {
1429 case DDR2:
1430 puts ("Module attributes:\n");
1431 if (data[21] & 0x80)
1432 puts (" TBD (bit 7)\n");
1433 if (data[21] & 0x40)
1434 puts (" Analysis probe installed\n");
1435 if (data[21] & 0x20)
1436 puts (" TBD (bit 5)\n");
1437 if (data[21] & 0x10)
1438 puts (" FET switch external enable\n");
1439 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1440 if (data[20] & 0x11) {
1441 printf (" %d active registers on DIMM\n",
1442 (data[21] & 0x03) + 1);
1443 }
1444 break;
1445 default:
1446 puts ("Module attributes:\n");
1447 if (!data[21])
1448 puts (" (none)\n");
1449 else
1450 decode_bits (data[21], decode_byte21_default, 0);
1451 break;
1452 }
1453
1454 switch (type) {
1455 case DDR2:
1456 decode_bits (data[22], decode_byte22_DDR2, 0);
1457 break;
1458 default:
1459 puts ("Device attributes:\n");
1460 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
1461 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1462 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1463 else puts (" Upper Vcc tolerance 10%\n");
1464 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1465 else puts (" Lower Vcc tolerance 10%\n");
1466 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1467 if (data[22] & 0x04) puts (" Supports precharge all\n");
1468 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1469 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1470 break;
1471 }
1472
1473 switch (type) {
1474 case DDR2:
1475 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1476 print_ddr2_tcyc (data[23]);
1477 break;
1478 default:
1479 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1480 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1481 break;
1482 }
1483
1484 switch (type) {
1485 case DDR2:
1486 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1487 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1488 break;
1489 default:
1490 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1491 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1492 break;
1493 }
1494
1495 switch (type) {
1496 case DDR2:
1497 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1498 print_ddr2_tcyc (data[25]);
1499 break;
1500 default:
1501 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1502 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1503 break;
1504 }
1505
1506 switch (type) {
1507 case DDR2:
1508 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1509 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1510 break;
1511 default:
1512 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1513 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1514 break;
1515 }
1516
1517 switch (type) {
1518 case DDR2:
1519 printf ("Minimum row precharge %d.%02d ns\n",
1520 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1521 break;
1522 default:
1523 printf ("Minimum row precharge %d ns\n", data[27]);
1524 break;
1525 }
1526
1527 switch (type) {
1528 case DDR2:
1529 printf ("Row active to row active min %d.%02d ns\n",
1530 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1531 break;
1532 default:
1533 printf ("Row active to row active min %d ns\n", data[28]);
1534 break;
1535 }
1536
1537 switch (type) {
1538 case DDR2:
1539 printf ("RAS to CAS delay min %d.%02d ns\n",
1540 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1541 break;
1542 default:
1543 printf ("RAS to CAS delay min %d ns\n", data[29]);
1544 break;
1545 }
1546
1547 printf ("Minimum RAS pulse width %d ns\n", data[30]);
1548
1549 switch (type) {
1550 case DDR2:
1551 puts ("Density of each row ");
1552 decode_bits (data[31], decode_row_density_DDR2, 1);
1553 putc ('\n');
1554 break;
1555 default:
1556 puts ("Density of each row ");
1557 decode_bits (data[31], decode_row_density_default, 1);
1558 putc ('\n');
1559 break;
1560 }
1561
1562 switch (type) {
1563 case DDR2:
1564 puts ("Command and Address setup ");
1565 if (data[32] >= 0xA0) {
1566 printf ("1.%d%d ns\n",
1567 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1568 } else {
1569 printf ("0.%d%d ns\n",
1570 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1571 }
1572 break;
1573 default:
1574 printf ("Command and Address setup %c%d.%d ns\n",
1575 (data[32] & 0x80) ? '-' : '+',
1576 (data[32] >> 4) & 0x07, data[32] & 0x0F);
1577 break;
1578 }
1579
1580 switch (type) {
1581 case DDR2:
1582 puts ("Command and Address hold ");
1583 if (data[33] >= 0xA0) {
1584 printf ("1.%d%d ns\n",
1585 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1586 } else {
1587 printf ("0.%d%d ns\n",
1588 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1589 }
1590 break;
1591 default:
1592 printf ("Command and Address hold %c%d.%d ns\n",
1593 (data[33] & 0x80) ? '-' : '+',
1594 (data[33] >> 4) & 0x07, data[33] & 0x0F);
1595 break;
1596 }
1597
1598 switch (type) {
1599 case DDR2:
1600 printf ("Data signal input setup 0.%d%d ns\n",
1601 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
1602 break;
1603 default:
1604 printf ("Data signal input setup %c%d.%d ns\n",
1605 (data[34] & 0x80) ? '-' : '+',
1606 (data[34] >> 4) & 0x07, data[34] & 0x0F);
1607 break;
1608 }
1609
1610 switch (type) {
1611 case DDR2:
1612 printf ("Data signal input hold 0.%d%d ns\n",
1613 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
1614 break;
1615 default:
1616 printf ("Data signal input hold %c%d.%d ns\n",
1617 (data[35] & 0x80) ? '-' : '+',
1618 (data[35] >> 4) & 0x07, data[35] & 0x0F);
1619 break;
1620 }
1621
1622 puts ("Manufacturer's JEDEC ID ");
1623 for (j = 64; j <= 71; j++)
1624 printf ("%02X ", data[j]);
1625 putc ('\n');
1626 printf ("Manufacturing Location %02X\n", data[72]);
1627 puts ("Manufacturer's Part Number ");
1628 for (j = 73; j <= 90; j++)
1629 printf ("%02X ", data[j]);
1630 putc ('\n');
1631 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1632 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
1633 puts ("Assembly Serial Number ");
1634 for (j = 95; j <= 98; j++)
1635 printf ("%02X ", data[j]);
1636 putc ('\n');
1637
1638 if (DDR2 != type) {
1639 printf ("Speed rating PC%d\n",
1640 data[126] == 0x66 ? 66 : data[126]);
1641 }
1642 return 0;
1643 }
1644 #endif
1645
1646 /*
1647 * Syntax:
1648 * i2c edid {i2c_chip}
1649 */
1650 #if defined(CONFIG_I2C_EDID)
do_edid(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1651 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1652 {
1653 uint chip;
1654 struct edid1_info edid;
1655 int ret;
1656 #ifdef CONFIG_DM_I2C
1657 struct udevice *dev;
1658 #endif
1659
1660 if (argc < 2) {
1661 cmd_usage(cmdtp);
1662 return 1;
1663 }
1664
1665 chip = simple_strtoul(argv[1], NULL, 16);
1666 #ifdef CONFIG_DM_I2C
1667 ret = i2c_get_cur_bus_chip(chip, &dev);
1668 if (!ret)
1669 ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1670 #else
1671 ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1672 #endif
1673 if (ret)
1674 return i2c_report_err(ret, I2C_ERR_READ);
1675
1676 if (edid_check_info(&edid)) {
1677 puts("Content isn't valid EDID.\n");
1678 return 1;
1679 }
1680
1681 edid_print_info(&edid);
1682 return 0;
1683
1684 }
1685 #endif /* CONFIG_I2C_EDID */
1686
1687 #ifdef CONFIG_DM_I2C
show_bus(struct udevice * bus)1688 static void show_bus(struct udevice *bus)
1689 {
1690 struct udevice *dev;
1691
1692 printf("Bus %d:\t%s", bus->req_seq, bus->name);
1693 if (device_active(bus))
1694 printf(" (active %d)", bus->seq);
1695 printf("\n");
1696 for (device_find_first_child(bus, &dev);
1697 dev;
1698 device_find_next_child(&dev)) {
1699 struct dm_i2c_chip *chip = dev_get_parent_platdata(dev);
1700
1701 printf(" %02x: %s, offset len %x, flags %x\n",
1702 chip->chip_addr, dev->name, chip->offset_len,
1703 chip->flags);
1704 }
1705 }
1706 #endif
1707
1708 /**
1709 * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1710 * @cmdtp: Command data struct pointer
1711 * @flag: Command flag
1712 * @argc: Command-line argument count
1713 * @argv: Array of command-line arguments
1714 *
1715 * Returns zero always.
1716 */
1717 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
do_i2c_show_bus(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1718 static int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc,
1719 char * const argv[])
1720 {
1721 if (argc == 1) {
1722 /* show all busses */
1723 #ifdef CONFIG_DM_I2C
1724 struct udevice *bus;
1725 struct uclass *uc;
1726 int ret;
1727
1728 ret = uclass_get(UCLASS_I2C, &uc);
1729 if (ret)
1730 return CMD_RET_FAILURE;
1731 uclass_foreach_dev(bus, uc)
1732 show_bus(bus);
1733 #else
1734 int i;
1735
1736 for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1737 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1738 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1739 int j;
1740
1741 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1742 if (i2c_bus[i].next_hop[j].chip == 0)
1743 break;
1744 printf("->%s@0x%2x:%d",
1745 i2c_bus[i].next_hop[j].mux.name,
1746 i2c_bus[i].next_hop[j].chip,
1747 i2c_bus[i].next_hop[j].channel);
1748 }
1749 #endif
1750 printf("\n");
1751 }
1752 #endif
1753 } else {
1754 int i;
1755
1756 /* show specific bus */
1757 i = simple_strtoul(argv[1], NULL, 10);
1758 #ifdef CONFIG_DM_I2C
1759 struct udevice *bus;
1760 int ret;
1761
1762 ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1763 if (ret) {
1764 printf("Invalid bus %d: err=%d\n", i, ret);
1765 return CMD_RET_FAILURE;
1766 }
1767 show_bus(bus);
1768 #else
1769 if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1770 printf("Invalid bus %d\n", i);
1771 return -1;
1772 }
1773 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1774 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1775 int j;
1776 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1777 if (i2c_bus[i].next_hop[j].chip == 0)
1778 break;
1779 printf("->%s@0x%2x:%d",
1780 i2c_bus[i].next_hop[j].mux.name,
1781 i2c_bus[i].next_hop[j].chip,
1782 i2c_bus[i].next_hop[j].channel);
1783 }
1784 #endif
1785 printf("\n");
1786 #endif
1787 }
1788
1789 return 0;
1790 }
1791 #endif
1792
1793 /**
1794 * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1795 * @cmdtp: Command data struct pointer
1796 * @flag: Command flag
1797 * @argc: Command-line argument count
1798 * @argv: Array of command-line arguments
1799 *
1800 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1801 * on error.
1802 */
1803 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS) || \
1804 defined(CONFIG_DM_I2C)
do_i2c_bus_num(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1805 static int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc,
1806 char * const argv[])
1807 {
1808 int ret = 0;
1809 int bus_no;
1810
1811 if (argc == 1) {
1812 /* querying current setting */
1813 #ifdef CONFIG_DM_I2C
1814 struct udevice *bus;
1815
1816 if (!i2c_get_cur_bus(&bus))
1817 bus_no = bus->seq;
1818 else
1819 bus_no = -1;
1820 #else
1821 bus_no = i2c_get_bus_num();
1822 #endif
1823 printf("Current bus is %d\n", bus_no);
1824 } else {
1825 bus_no = simple_strtoul(argv[1], NULL, 10);
1826 #if defined(CONFIG_SYS_I2C)
1827 if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1828 printf("Invalid bus %d\n", bus_no);
1829 return -1;
1830 }
1831 #endif
1832 printf("Setting bus to %d\n", bus_no);
1833 #ifdef CONFIG_DM_I2C
1834 ret = cmd_i2c_set_bus_num(bus_no);
1835 #else
1836 ret = i2c_set_bus_num(bus_no);
1837 #endif
1838 if (ret)
1839 printf("Failure changing bus number (%d)\n", ret);
1840 }
1841
1842 return ret ? CMD_RET_FAILURE : 0;
1843 }
1844 #endif /* defined(CONFIG_SYS_I2C) */
1845
1846 /**
1847 * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1848 * @cmdtp: Command data struct pointer
1849 * @flag: Command flag
1850 * @argc: Command-line argument count
1851 * @argv: Array of command-line arguments
1852 *
1853 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1854 * on error.
1855 */
do_i2c_bus_speed(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1856 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1857 {
1858 int speed, ret=0;
1859
1860 #ifdef CONFIG_DM_I2C
1861 struct udevice *bus;
1862
1863 if (i2c_get_cur_bus(&bus))
1864 return 1;
1865 #endif
1866 if (argc == 1) {
1867 #ifdef CONFIG_DM_I2C
1868 speed = dm_i2c_get_bus_speed(bus);
1869 #else
1870 speed = i2c_get_bus_speed();
1871 #endif
1872 /* querying current speed */
1873 printf("Current bus speed=%d\n", speed);
1874 } else {
1875 speed = simple_strtoul(argv[1], NULL, 10);
1876 printf("Setting bus speed to %d Hz\n", speed);
1877 #ifdef CONFIG_DM_I2C
1878 ret = dm_i2c_set_bus_speed(bus, speed);
1879 #else
1880 ret = i2c_set_bus_speed(speed);
1881 #endif
1882 if (ret)
1883 printf("Failure changing bus speed (%d)\n", ret);
1884 }
1885
1886 return ret ? CMD_RET_FAILURE : 0;
1887 }
1888
1889 /**
1890 * do_i2c_mm() - Handle the "i2c mm" command-line command
1891 * @cmdtp: Command data struct pointer
1892 * @flag: Command flag
1893 * @argc: Command-line argument count
1894 * @argv: Array of command-line arguments
1895 *
1896 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1897 * on error.
1898 */
do_i2c_mm(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1899 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1900 {
1901 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1902 }
1903
1904 /**
1905 * do_i2c_nm() - Handle the "i2c nm" command-line command
1906 * @cmdtp: Command data struct pointer
1907 * @flag: Command flag
1908 * @argc: Command-line argument count
1909 * @argv: Array of command-line arguments
1910 *
1911 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1912 * on error.
1913 */
do_i2c_nm(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1914 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1915 {
1916 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1917 }
1918
1919 /**
1920 * do_i2c_reset() - Handle the "i2c reset" command-line command
1921 * @cmdtp: Command data struct pointer
1922 * @flag: Command flag
1923 * @argc: Command-line argument count
1924 * @argv: Array of command-line arguments
1925 *
1926 * Returns zero always.
1927 */
do_i2c_reset(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1928 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1929 {
1930 #if defined(CONFIG_DM_I2C)
1931 struct udevice *bus;
1932
1933 if (i2c_get_cur_bus(&bus))
1934 return CMD_RET_FAILURE;
1935 if (i2c_deblock(bus)) {
1936 printf("Error: Not supported by the driver\n");
1937 return CMD_RET_FAILURE;
1938 }
1939 #elif defined(CONFIG_SYS_I2C)
1940 i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1941 #else
1942 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1943 #endif
1944 return 0;
1945 }
1946
1947 static cmd_tbl_t cmd_i2c_sub[] = {
1948 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1949 U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1950 #endif
1951 U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1952 #if defined(CONFIG_SYS_I2C) || \
1953 defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1954 U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1955 #endif /* CONFIG_I2C_MULTI_BUS */
1956 #if defined(CONFIG_I2C_EDID)
1957 U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1958 #endif /* CONFIG_I2C_EDID */
1959 U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1960 U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1961 U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1962 U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1963 U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1964 U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1965 U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1966 U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1967 #ifdef CONFIG_DM_I2C
1968 U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1969 U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
1970 #endif
1971 U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1972 #if defined(CONFIG_CMD_SDRAM)
1973 U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1974 #endif
1975 U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1976 };
1977
i2c_reloc(void)1978 static __maybe_unused void i2c_reloc(void)
1979 {
1980 static int relocated;
1981
1982 if (!relocated) {
1983 fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1984 relocated = 1;
1985 };
1986 }
1987
1988 /**
1989 * do_i2c() - Handle the "i2c" command-line command
1990 * @cmdtp: Command data struct pointer
1991 * @flag: Command flag
1992 * @argc: Command-line argument count
1993 * @argv: Array of command-line arguments
1994 *
1995 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1996 * on error.
1997 */
do_i2c(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1998 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1999 {
2000 cmd_tbl_t *c;
2001
2002 #ifdef CONFIG_NEEDS_MANUAL_RELOC
2003 i2c_reloc();
2004 #endif
2005
2006 if (argc < 2)
2007 return CMD_RET_USAGE;
2008
2009 /* Strip off leading 'i2c' command argument */
2010 argc--;
2011 argv++;
2012
2013 c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
2014
2015 if (c)
2016 return c->cmd(cmdtp, flag, argc, argv);
2017 else
2018 return CMD_RET_USAGE;
2019 }
2020
2021 /***************************************************/
2022 #ifdef CONFIG_SYS_LONGHELP
2023 static char i2c_help_text[] =
2024 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
2025 "bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
2026 #endif
2027 "crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
2028 #if defined(CONFIG_SYS_I2C) || \
2029 defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
2030 "i2c dev [dev] - show or set current I2C bus\n"
2031 #endif /* CONFIG_I2C_MULTI_BUS */
2032 #if defined(CONFIG_I2C_EDID)
2033 "i2c edid chip - print EDID configuration information\n"
2034 #endif /* CONFIG_I2C_EDID */
2035 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
2036 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
2037 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
2038 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
2039 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
2040 "i2c probe [address] - test for and show device(s) on the I2C bus\n"
2041 "i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
2042 "i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
2043 " to I2C; the -s option selects bulk write in a single transaction\n"
2044 #ifdef CONFIG_DM_I2C
2045 "i2c flags chip [flags] - set or get chip flags\n"
2046 "i2c olen chip [offset_length] - set or get chip offset length\n"
2047 #endif
2048 "i2c reset - re-init the I2C Controller\n"
2049 #if defined(CONFIG_CMD_SDRAM)
2050 "i2c sdram chip - print SDRAM configuration information\n"
2051 #endif
2052 "i2c speed [speed] - show or set I2C bus speed";
2053 #endif
2054
2055 U_BOOT_CMD(
2056 i2c, 7, 1, do_i2c,
2057 "I2C sub-system",
2058 i2c_help_text
2059 );
2060