1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2008 Freescale Semiconductor, Inc.
4  */
5 
6 #include <common.h>
7 #include <fsl_ddr_sdram.h>
8 
9 #include <fsl_ddr.h>
10 /*
11  * Calculate the Density of each Physical Rank.
12  * Returned size is in bytes.
13  *
14  * Study these table from Byte 31 of JEDEC SPD Spec.
15  *
16  *		DDR I	DDR II
17  *	Bit	Size	Size
18  *	---	-----	------
19  *	7 high	512MB	512MB
20  *	6	256MB	256MB
21  *	5	128MB	128MB
22  *	4	 64MB	 16GB
23  *	3	 32MB	  8GB
24  *	2	 16MB	  4GB
25  *	1	  2GB	  2GB
26  *	0 low	  1GB	  1GB
27  *
28  * Reorder Table to be linear by stripping the bottom
29  * 2 or 5 bits off and shifting them up to the top.
30  *
31  */
32 static unsigned long long
compute_ranksize(unsigned int mem_type,unsigned char row_dens)33 compute_ranksize(unsigned int mem_type, unsigned char row_dens)
34 {
35 	unsigned long long bsize;
36 
37 	/* Bottom 5 bits up to the top. */
38 	bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
39 	bsize <<= 27ULL;
40 	debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
41 
42 	return bsize;
43 }
44 
45 /*
46  * Convert a two-nibble BCD value into a cycle time.
47  * While the spec calls for nano-seconds, picos are returned.
48  *
49  * This implements the tables for bytes 9, 23 and 25 for both
50  * DDR I and II.  No allowance for distinguishing the invalid
51  * fields absent for DDR I yet present in DDR II is made.
52  * (That is, cycle times of .25, .33, .66 and .75 ns are
53  * allowed for both DDR II and I.)
54  */
55 static unsigned int
convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)56 convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
57 {
58 	/* Table look up the lower nibble, allow DDR I & II. */
59 	unsigned int tenths_ps[16] = {
60 		0,
61 		100,
62 		200,
63 		300,
64 		400,
65 		500,
66 		600,
67 		700,
68 		800,
69 		900,
70 		250,	/* This and the next 3 entries valid ... */
71 		330,	/* ...  only for tCK calculations. */
72 		660,
73 		750,
74 		0,	/* undefined */
75 		0	/* undefined */
76 	};
77 
78 	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
79 	unsigned int tenth_ns = spd_val & 0x0F;
80 	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
81 
82 	return ps;
83 }
84 
85 static unsigned int
convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)86 convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
87 {
88 	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
89 	unsigned int hundredth_ns = spd_val & 0x0F;
90 	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
91 
92 	return ps;
93 }
94 
95 static unsigned int byte40_table_ps[8] = {
96 	0,
97 	250,
98 	330,
99 	500,
100 	660,
101 	750,
102 	0,	/* supposed to be RFC, but not sure what that means */
103 	0	/* Undefined */
104 };
105 
106 static unsigned int
compute_trfc_ps_from_spd(unsigned char trctrfc_ext,unsigned char trfc)107 compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
108 {
109 	return (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
110 		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
111 }
112 
113 static unsigned int
compute_trc_ps_from_spd(unsigned char trctrfc_ext,unsigned char trc)114 compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
115 {
116 	return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
117 }
118 
119 /*
120  * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
121  * Table from SPD Spec, Byte 12, converted to picoseconds and
122  * filled in with "default" normal values.
123  */
124 static unsigned int
determine_refresh_rate_ps(const unsigned int spd_refresh)125 determine_refresh_rate_ps(const unsigned int spd_refresh)
126 {
127 	unsigned int refresh_time_ps[8] = {
128 		15625000,	/* 0 Normal    1.00x */
129 		3900000,	/* 1 Reduced    .25x */
130 		7800000,	/* 2 Extended   .50x */
131 		31300000,	/* 3 Extended  2.00x */
132 		62500000,	/* 4 Extended  4.00x */
133 		125000000,	/* 5 Extended  8.00x */
134 		15625000,	/* 6 Normal    1.00x  filler */
135 		15625000,	/* 7 Normal    1.00x  filler */
136 	};
137 
138 	return refresh_time_ps[spd_refresh & 0x7];
139 }
140 
141 /*
142  * The purpose of this function is to compute a suitable
143  * CAS latency given the DRAM clock period.  The SPD only
144  * defines at most 3 CAS latencies.  Typically the slower in
145  * frequency the DIMM runs at, the shorter its CAS latency can.
146  * be.  If the DIMM is operating at a sufficiently low frequency,
147  * it may be able to run at a CAS latency shorter than the
148  * shortest SPD-defined CAS latency.
149  *
150  * If a CAS latency is not found, 0 is returned.
151  *
152  * Do this by finding in the standard speed bin table the longest
153  * tCKmin that doesn't exceed the value of mclk_ps (tCK).
154  *
155  * An assumption made is that the SDRAM device allows the
156  * CL to be programmed for a value that is lower than those
157  * advertised by the SPD.  This is not always the case,
158  * as those modes not defined in the SPD are optional.
159  *
160  * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
161  * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
162  * and tRC for corresponding bin"
163  *
164  * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
165  * Not certain if any good value exists for CL=2
166  */
167 				 /* CL2   CL3   CL4   CL5   CL6  CL7*/
168 unsigned short ddr2_speed_bins[] = {   0, 5000, 3750, 3000, 2500, 1875 };
169 
170 unsigned int
compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)171 compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
172 {
173 	const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
174 	unsigned int lowest_tCKmin_found = 0;
175 	unsigned int lowest_tCKmin_CL = 0;
176 	unsigned int i;
177 
178 	debug("mclk_ps = %u\n", mclk_ps);
179 
180 	for (i = 0; i < num_speed_bins; i++) {
181 		unsigned int x = ddr2_speed_bins[i];
182 		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
183 		      i, x, lowest_tCKmin_found);
184 		if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
185 			lowest_tCKmin_found = x;
186 			lowest_tCKmin_CL = i + 2;
187 		}
188 	}
189 
190 	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
191 
192 	return lowest_tCKmin_CL;
193 }
194 
195 /*
196  * ddr_compute_dimm_parameters for DDR2 SPD
197  *
198  * Compute DIMM parameters based upon the SPD information in spd.
199  * Writes the results to the dimm_params_t structure pointed by pdimm.
200  *
201  * FIXME: use #define for the retvals
202  */
ddr_compute_dimm_parameters(const unsigned int ctrl_num,const ddr2_spd_eeprom_t * spd,dimm_params_t * pdimm,unsigned int dimm_number)203 unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
204 					 const ddr2_spd_eeprom_t *spd,
205 					 dimm_params_t *pdimm,
206 					 unsigned int dimm_number)
207 {
208 	unsigned int retval;
209 
210 	if (spd->mem_type) {
211 		if (spd->mem_type != SPD_MEMTYPE_DDR2) {
212 			printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
213 			return 1;
214 		}
215 	} else {
216 		memset(pdimm, 0, sizeof(dimm_params_t));
217 		return 1;
218 	}
219 
220 	retval = ddr2_spd_check(spd);
221 	if (retval) {
222 		printf("DIMM %u: failed checksum\n", dimm_number);
223 		return 2;
224 	}
225 
226 	/*
227 	 * The part name in ASCII in the SPD EEPROM is not null terminated.
228 	 * Guarantee null termination here by presetting all bytes to 0
229 	 * and copying the part name in ASCII from the SPD onto it
230 	 */
231 	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
232 	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
233 
234 	/* DIMM organization parameters */
235 	pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
236 	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
237 	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
238 	pdimm->data_width = spd->dataw;
239 	pdimm->primary_sdram_width = spd->primw;
240 	pdimm->ec_sdram_width = spd->ecw;
241 
242 	/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
243 	switch (spd->dimm_type) {
244 	case DDR2_SPD_DIMMTYPE_RDIMM:
245 	case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
246 	case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
247 		/* Registered/buffered DIMMs */
248 		pdimm->registered_dimm = 1;
249 		break;
250 
251 	case DDR2_SPD_DIMMTYPE_UDIMM:
252 	case DDR2_SPD_DIMMTYPE_SO_DIMM:
253 	case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
254 	case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
255 		/* Unbuffered DIMMs */
256 		pdimm->registered_dimm = 0;
257 		break;
258 
259 	case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
260 	default:
261 		printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
262 		return 1;
263 	}
264 
265 	/* SDRAM device parameters */
266 	pdimm->n_row_addr = spd->nrow_addr;
267 	pdimm->n_col_addr = spd->ncol_addr;
268 	pdimm->n_banks_per_sdram_device = spd->nbanks;
269 	pdimm->edc_config = spd->config;
270 	pdimm->burst_lengths_bitmask = spd->burstl;
271 
272 	/*
273 	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
274 	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
275 	 * nanoseconds and represented as BCD.
276 	 */
277 	pdimm->tckmin_x_ps
278 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
279 	pdimm->tckmin_x_minus_1_ps
280 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
281 	pdimm->tckmin_x_minus_2_ps
282 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
283 
284 	pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
285 
286 	/*
287 	 * Compute CAS latencies defined by SPD
288 	 * The SPD caslat_x should have at least 1 and at most 3 bits set.
289 	 *
290 	 * If cas_lat after masking is 0, the __ilog2 function returns
291 	 * 255 into the variable.   This behavior is abused once.
292 	 */
293 	pdimm->caslat_x  = __ilog2(spd->cas_lat);
294 	pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
295 					  & ~(1 << pdimm->caslat_x));
296 	pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
297 					  & ~(1 << pdimm->caslat_x)
298 					  & ~(1 << pdimm->caslat_x_minus_1));
299 
300 	/* Compute CAS latencies below that defined by SPD */
301 	pdimm->caslat_lowest_derated = compute_derated_DDR2_CAS_latency(
302 					get_memory_clk_period_ps(ctrl_num));
303 
304 	/* Compute timing parameters */
305 	pdimm->trcd_ps = spd->trcd * 250;
306 	pdimm->trp_ps = spd->trp * 250;
307 	pdimm->tras_ps = spd->tras * 1000;
308 
309 	pdimm->twr_ps = spd->twr * 250;
310 	pdimm->twtr_ps = spd->twtr * 250;
311 	pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
312 
313 	pdimm->trrd_ps = spd->trrd * 250;
314 	pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
315 
316 	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
317 
318 	pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
319 	pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
320 	pdimm->tds_ps
321 		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
322 	pdimm->tdh_ps
323 		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
324 
325 	pdimm->trtp_ps = spd->trtp * 250;
326 	pdimm->tdqsq_max_ps = spd->tdqsq * 10;
327 	pdimm->tqhs_ps = spd->tqhs * 10;
328 
329 	return 0;
330 }
331