1 /*
2  * (C) Copyright 2008
3  * Texas Instruments, <www.ti.com>
4  * Sukumar Ghorai <s-ghorai@ti.com>
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation's version 2 of
12  * the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22  * MA 02111-1307 USA
23  */
24 
25 #include <config.h>
26 #include <common.h>
27 #include <malloc.h>
28 #include <memalign.h>
29 #include <mmc.h>
30 #include <part.h>
31 #include <i2c.h>
32 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
33 #include <palmas.h>
34 #endif
35 #include <asm/io.h>
36 #include <asm/arch/mmc_host_def.h>
37 #ifdef CONFIG_OMAP54XX
38 #include <asm/arch/mux_dra7xx.h>
39 #include <asm/arch/dra7xx_iodelay.h>
40 #endif
41 #if !defined(CONFIG_SOC_KEYSTONE)
42 #include <asm/gpio.h>
43 #include <asm/arch/sys_proto.h>
44 #endif
45 #ifdef CONFIG_MMC_OMAP36XX_PINS
46 #include <asm/arch/mux.h>
47 #endif
48 #include <dm.h>
49 #include <power/regulator.h>
50 
51 DECLARE_GLOBAL_DATA_PTR;
52 
53 /* simplify defines to OMAP_HSMMC_USE_GPIO */
54 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
55 	(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
56 #define OMAP_HSMMC_USE_GPIO
57 #else
58 #undef OMAP_HSMMC_USE_GPIO
59 #endif
60 
61 /* common definitions for all OMAPs */
62 #define SYSCTL_SRC	(1 << 25)
63 #define SYSCTL_SRD	(1 << 26)
64 
65 #ifdef CONFIG_IODELAY_RECALIBRATION
66 struct omap_hsmmc_pinctrl_state {
67 	struct pad_conf_entry *padconf;
68 	int npads;
69 	struct iodelay_cfg_entry *iodelay;
70 	int niodelays;
71 };
72 #endif
73 
74 struct omap_hsmmc_data {
75 	struct hsmmc *base_addr;
76 #if !CONFIG_IS_ENABLED(DM_MMC)
77 	struct mmc_config cfg;
78 #endif
79 	uint bus_width;
80 	uint clock;
81 	ushort last_cmd;
82 #ifdef OMAP_HSMMC_USE_GPIO
83 #if CONFIG_IS_ENABLED(DM_MMC)
84 	struct gpio_desc cd_gpio;	/* Change Detect GPIO */
85 	struct gpio_desc wp_gpio;	/* Write Protect GPIO */
86 	bool cd_inverted;
87 #else
88 	int cd_gpio;
89 	int wp_gpio;
90 #endif
91 #endif
92 #if CONFIG_IS_ENABLED(DM_MMC)
93 	enum bus_mode mode;
94 #endif
95 	u8 controller_flags;
96 #ifdef CONFIG_MMC_OMAP_HS_ADMA
97 	struct omap_hsmmc_adma_desc *adma_desc_table;
98 	uint desc_slot;
99 #endif
100 	const char *hw_rev;
101 	struct udevice *pbias_supply;
102 	uint signal_voltage;
103 #ifdef CONFIG_IODELAY_RECALIBRATION
104 	struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
105 	struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
106 	struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
107 	struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
108 	struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
109 	struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
110 	struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
111 	struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
112 	struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
113 #endif
114 };
115 
116 struct omap_mmc_of_data {
117 	u8 controller_flags;
118 };
119 
120 #ifdef CONFIG_MMC_OMAP_HS_ADMA
121 struct omap_hsmmc_adma_desc {
122 	u8 attr;
123 	u8 reserved;
124 	u16 len;
125 	u32 addr;
126 };
127 
128 #define ADMA_MAX_LEN	63488
129 
130 /* Decriptor table defines */
131 #define ADMA_DESC_ATTR_VALID		BIT(0)
132 #define ADMA_DESC_ATTR_END		BIT(1)
133 #define ADMA_DESC_ATTR_INT		BIT(2)
134 #define ADMA_DESC_ATTR_ACT1		BIT(4)
135 #define ADMA_DESC_ATTR_ACT2		BIT(5)
136 
137 #define ADMA_DESC_TRANSFER_DATA		ADMA_DESC_ATTR_ACT2
138 #define ADMA_DESC_LINK_DESC	(ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
139 #endif
140 
141 /* If we fail after 1 second wait, something is really bad */
142 #define MAX_RETRY_MS	1000
143 #define MMC_TIMEOUT_MS	20
144 
145 /* DMA transfers can take a long time if a lot a data is transferred.
146  * The timeout must take in account the amount of data. Let's assume
147  * that the time will never exceed 333 ms per MB (in other word we assume
148  * that the bandwidth is always above 3MB/s).
149  */
150 #define DMA_TIMEOUT_PER_MB	333
151 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT		BIT(0)
152 #define OMAP_HSMMC_NO_1_8_V			BIT(1)
153 #define OMAP_HSMMC_USE_ADMA			BIT(2)
154 #define OMAP_HSMMC_REQUIRE_IODELAY		BIT(3)
155 
156 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
157 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
158 			unsigned int siz);
159 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
160 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
161 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
162 
omap_hsmmc_get_data(struct mmc * mmc)163 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
164 {
165 #if CONFIG_IS_ENABLED(DM_MMC)
166 	return dev_get_priv(mmc->dev);
167 #else
168 	return (struct omap_hsmmc_data *)mmc->priv;
169 #endif
170 }
omap_hsmmc_get_cfg(struct mmc * mmc)171 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
172 {
173 #if CONFIG_IS_ENABLED(DM_MMC)
174 	struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
175 	return &plat->cfg;
176 #else
177 	return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
178 #endif
179 }
180 
181 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
omap_mmc_setup_gpio_in(int gpio,const char * label)182 static int omap_mmc_setup_gpio_in(int gpio, const char *label)
183 {
184 	int ret;
185 
186 #ifndef CONFIG_DM_GPIO
187 	if (!gpio_is_valid(gpio))
188 		return -1;
189 #endif
190 	ret = gpio_request(gpio, label);
191 	if (ret)
192 		return ret;
193 
194 	ret = gpio_direction_input(gpio);
195 	if (ret)
196 		return ret;
197 
198 	return gpio;
199 }
200 #endif
201 
mmc_board_init(struct mmc * mmc)202 static unsigned char mmc_board_init(struct mmc *mmc)
203 {
204 #if defined(CONFIG_OMAP34XX)
205 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
206 	t2_t *t2_base = (t2_t *)T2_BASE;
207 	struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
208 	u32 pbias_lite;
209 #ifdef CONFIG_MMC_OMAP36XX_PINS
210 	u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
211 #endif
212 
213 	pbias_lite = readl(&t2_base->pbias_lite);
214 	pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
215 #ifdef CONFIG_TARGET_OMAP3_CAIRO
216 	/* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
217 	pbias_lite &= ~PBIASLITEVMODE0;
218 #endif
219 #ifdef CONFIG_MMC_OMAP36XX_PINS
220 	if (get_cpu_family() == CPU_OMAP36XX) {
221 		/* Disable extended drain IO before changing PBIAS */
222 		wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
223 		writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
224 	}
225 #endif
226 	writel(pbias_lite, &t2_base->pbias_lite);
227 
228 	writel(pbias_lite | PBIASLITEPWRDNZ1 |
229 		PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
230 		&t2_base->pbias_lite);
231 
232 #ifdef CONFIG_MMC_OMAP36XX_PINS
233 	if (get_cpu_family() == CPU_OMAP36XX)
234 		/* Enable extended drain IO after changing PBIAS */
235 		writel(wkup_ctrl |
236 				OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
237 				OMAP34XX_CTRL_WKUP_CTRL);
238 #endif
239 	writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
240 		&t2_base->devconf0);
241 
242 	writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
243 		&t2_base->devconf1);
244 
245 	/* Change from default of 52MHz to 26MHz if necessary */
246 	if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
247 		writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
248 			&t2_base->ctl_prog_io1);
249 
250 	writel(readl(&prcm_base->fclken1_core) |
251 		EN_MMC1 | EN_MMC2 | EN_MMC3,
252 		&prcm_base->fclken1_core);
253 
254 	writel(readl(&prcm_base->iclken1_core) |
255 		EN_MMC1 | EN_MMC2 | EN_MMC3,
256 		&prcm_base->iclken1_core);
257 #endif
258 
259 #if (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) &&\
260 	!CONFIG_IS_ENABLED(DM_REGULATOR)
261 	/* PBIAS config needed for MMC1 only */
262 	if (mmc_get_blk_desc(mmc)->devnum == 0)
263 		vmmc_pbias_config(LDO_VOLT_3V0);
264 #endif
265 
266 	return 0;
267 }
268 
mmc_init_stream(struct hsmmc * mmc_base)269 void mmc_init_stream(struct hsmmc *mmc_base)
270 {
271 	ulong start;
272 
273 	writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
274 
275 	writel(MMC_CMD0, &mmc_base->cmd);
276 	start = get_timer(0);
277 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
278 		if (get_timer(0) - start > MAX_RETRY_MS) {
279 			printf("%s: timedout waiting for cc!\n", __func__);
280 			return;
281 		}
282 	}
283 	writel(CC_MASK, &mmc_base->stat)
284 		;
285 	writel(MMC_CMD0, &mmc_base->cmd)
286 		;
287 	start = get_timer(0);
288 	while (!(readl(&mmc_base->stat) & CC_MASK)) {
289 		if (get_timer(0) - start > MAX_RETRY_MS) {
290 			printf("%s: timedout waiting for cc2!\n", __func__);
291 			return;
292 		}
293 	}
294 	writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
295 }
296 
297 #if CONFIG_IS_ENABLED(DM_MMC)
298 #ifdef CONFIG_IODELAY_RECALIBRATION
omap_hsmmc_io_recalibrate(struct mmc * mmc)299 static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
300 {
301 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
302 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
303 
304 	switch (priv->mode) {
305 	case MMC_HS_200:
306 		pinctrl_state = priv->hs200_1_8v_pinctrl_state;
307 		break;
308 	case UHS_SDR104:
309 		pinctrl_state = priv->sdr104_pinctrl_state;
310 		break;
311 	case UHS_SDR50:
312 		pinctrl_state = priv->sdr50_pinctrl_state;
313 		break;
314 	case UHS_DDR50:
315 		pinctrl_state = priv->ddr50_pinctrl_state;
316 		break;
317 	case UHS_SDR25:
318 		pinctrl_state = priv->sdr25_pinctrl_state;
319 		break;
320 	case UHS_SDR12:
321 		pinctrl_state = priv->sdr12_pinctrl_state;
322 		break;
323 	case SD_HS:
324 	case MMC_HS:
325 	case MMC_HS_52:
326 		pinctrl_state = priv->hs_pinctrl_state;
327 		break;
328 	case MMC_DDR_52:
329 		pinctrl_state = priv->ddr_1_8v_pinctrl_state;
330 	default:
331 		pinctrl_state = priv->default_pinctrl_state;
332 		break;
333 	}
334 
335 	if (!pinctrl_state)
336 		pinctrl_state = priv->default_pinctrl_state;
337 
338 	if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
339 		if (pinctrl_state->iodelay)
340 			late_recalibrate_iodelay(pinctrl_state->padconf,
341 						 pinctrl_state->npads,
342 						 pinctrl_state->iodelay,
343 						 pinctrl_state->niodelays);
344 		else
345 			do_set_mux32((*ctrl)->control_padconf_core_base,
346 				     pinctrl_state->padconf,
347 				     pinctrl_state->npads);
348 	}
349 }
350 #endif
omap_hsmmc_set_timing(struct mmc * mmc)351 static void omap_hsmmc_set_timing(struct mmc *mmc)
352 {
353 	u32 val;
354 	struct hsmmc *mmc_base;
355 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
356 
357 	mmc_base = priv->base_addr;
358 
359 	omap_hsmmc_stop_clock(mmc_base);
360 	val = readl(&mmc_base->ac12);
361 	val &= ~AC12_UHSMC_MASK;
362 	priv->mode = mmc->selected_mode;
363 
364 	if (mmc_is_mode_ddr(priv->mode))
365 		writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
366 	else
367 		writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
368 
369 	switch (priv->mode) {
370 	case MMC_HS_200:
371 	case UHS_SDR104:
372 		val |= AC12_UHSMC_SDR104;
373 		break;
374 	case UHS_SDR50:
375 		val |= AC12_UHSMC_SDR50;
376 		break;
377 	case MMC_DDR_52:
378 	case UHS_DDR50:
379 		val |= AC12_UHSMC_DDR50;
380 		break;
381 	case SD_HS:
382 	case MMC_HS_52:
383 	case UHS_SDR25:
384 		val |= AC12_UHSMC_SDR25;
385 		break;
386 	case MMC_LEGACY:
387 	case MMC_HS:
388 	case SD_LEGACY:
389 	case UHS_SDR12:
390 		val |= AC12_UHSMC_SDR12;
391 		break;
392 	default:
393 		val |= AC12_UHSMC_RES;
394 		break;
395 	}
396 	writel(val, &mmc_base->ac12);
397 
398 #ifdef CONFIG_IODELAY_RECALIBRATION
399 	omap_hsmmc_io_recalibrate(mmc);
400 #endif
401 	omap_hsmmc_start_clock(mmc_base);
402 }
403 
omap_hsmmc_conf_bus_power(struct mmc * mmc,uint signal_voltage)404 static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
405 {
406 	struct hsmmc *mmc_base;
407 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
408 	u32 hctl, ac12;
409 
410 	mmc_base = priv->base_addr;
411 
412 	hctl = readl(&mmc_base->hctl) & ~SDVS_MASK;
413 	ac12 = readl(&mmc_base->ac12) & ~AC12_V1V8_SIGEN;
414 
415 	switch (signal_voltage) {
416 	case MMC_SIGNAL_VOLTAGE_330:
417 		hctl |= SDVS_3V0;
418 		break;
419 	case MMC_SIGNAL_VOLTAGE_180:
420 		hctl |= SDVS_1V8;
421 		ac12 |= AC12_V1V8_SIGEN;
422 		break;
423 	}
424 
425 	writel(hctl, &mmc_base->hctl);
426 	writel(ac12, &mmc_base->ac12);
427 }
428 
429 #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
omap_hsmmc_wait_dat0(struct udevice * dev,int state,int timeout)430 static int omap_hsmmc_wait_dat0(struct udevice *dev, int state, int timeout)
431 {
432 	int ret = -ETIMEDOUT;
433 	u32 con;
434 	bool dat0_high;
435 	bool target_dat0_high = !!state;
436 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
437 	struct hsmmc *mmc_base = priv->base_addr;
438 
439 	con = readl(&mmc_base->con);
440 	writel(con | CON_CLKEXTFREE | CON_PADEN, &mmc_base->con);
441 
442 	timeout = DIV_ROUND_UP(timeout, 10); /* check every 10 us. */
443 	while (timeout--)	{
444 		dat0_high = !!(readl(&mmc_base->pstate) & PSTATE_DLEV_DAT0);
445 		if (dat0_high == target_dat0_high) {
446 			ret = 0;
447 			break;
448 		}
449 		udelay(10);
450 	}
451 	writel(con, &mmc_base->con);
452 
453 	return ret;
454 }
455 #endif
456 
457 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
458 #if CONFIG_IS_ENABLED(DM_REGULATOR)
omap_hsmmc_set_io_regulator(struct mmc * mmc,int mV)459 static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int mV)
460 {
461 	int ret = 0;
462 	int uV = mV * 1000;
463 
464 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
465 
466 	if (!mmc->vqmmc_supply)
467 		return 0;
468 
469 	/* Disable PBIAS */
470 	ret = regulator_set_enable(priv->pbias_supply, false);
471 	if (ret && ret != -ENOSYS)
472 		return ret;
473 
474 	/* Turn off IO voltage */
475 	ret = regulator_set_enable(mmc->vqmmc_supply, false);
476 	if (ret && ret != -ENOSYS)
477 		return ret;
478 	/* Program a new IO voltage value */
479 	ret = regulator_set_value(mmc->vqmmc_supply, uV);
480 	if (ret)
481 		return ret;
482 	/* Turn on IO voltage */
483 	ret = regulator_set_enable(mmc->vqmmc_supply, true);
484 	if (ret && ret != -ENOSYS)
485 		return ret;
486 
487 	/* Program PBIAS voltage*/
488 	ret = regulator_set_value(priv->pbias_supply, uV);
489 	if (ret && ret != -ENOSYS)
490 		return ret;
491 	/* Enable PBIAS */
492 	ret = regulator_set_enable(priv->pbias_supply, true);
493 	if (ret && ret != -ENOSYS)
494 		return ret;
495 
496 	return 0;
497 }
498 #endif
499 
omap_hsmmc_set_signal_voltage(struct mmc * mmc)500 static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
501 {
502 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
503 	struct hsmmc *mmc_base = priv->base_addr;
504 	int mv = mmc_voltage_to_mv(mmc->signal_voltage);
505 	u32 capa_mask;
506 	__maybe_unused u8 palmas_ldo_volt;
507 	u32 val;
508 
509 	if (mv < 0)
510 		return -EINVAL;
511 
512 	if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
513 		/* Use 3.0V rather than 3.3V */
514 		mv = 3000;
515 		capa_mask = VS30_3V0SUP;
516 		palmas_ldo_volt = LDO_VOLT_3V0;
517 	} else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
518 		capa_mask = VS18_1V8SUP;
519 		palmas_ldo_volt = LDO_VOLT_1V8;
520 	} else {
521 		return -EOPNOTSUPP;
522 	}
523 
524 	val = readl(&mmc_base->capa);
525 	if (!(val & capa_mask))
526 		return -EOPNOTSUPP;
527 
528 	priv->signal_voltage = mmc->signal_voltage;
529 
530 	omap_hsmmc_conf_bus_power(mmc, mmc->signal_voltage);
531 
532 #if CONFIG_IS_ENABLED(DM_REGULATOR)
533 	return omap_hsmmc_set_io_regulator(mmc, mv);
534 #elif (defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)) && \
535 	defined(CONFIG_PALMAS_POWER)
536 	if (mmc_get_blk_desc(mmc)->devnum == 0)
537 		vmmc_pbias_config(palmas_ldo_volt);
538 	return 0;
539 #else
540 	return 0;
541 #endif
542 }
543 #endif
544 
omap_hsmmc_set_capabilities(struct mmc * mmc)545 static uint32_t omap_hsmmc_set_capabilities(struct mmc *mmc)
546 {
547 	struct hsmmc *mmc_base;
548 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
549 	u32 val;
550 
551 	mmc_base = priv->base_addr;
552 	val = readl(&mmc_base->capa);
553 
554 	if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
555 		val |= (VS30_3V0SUP | VS18_1V8SUP);
556 	} else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
557 		val |= VS30_3V0SUP;
558 		val &= ~VS18_1V8SUP;
559 	} else {
560 		val |= VS18_1V8SUP;
561 		val &= ~VS30_3V0SUP;
562 	}
563 
564 	writel(val, &mmc_base->capa);
565 
566 	return val;
567 }
568 
569 #ifdef MMC_SUPPORTS_TUNING
omap_hsmmc_disable_tuning(struct mmc * mmc)570 static void omap_hsmmc_disable_tuning(struct mmc *mmc)
571 {
572 	struct hsmmc *mmc_base;
573 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
574 	u32 val;
575 
576 	mmc_base = priv->base_addr;
577 	val = readl(&mmc_base->ac12);
578 	val &= ~(AC12_SCLK_SEL);
579 	writel(val, &mmc_base->ac12);
580 
581 	val = readl(&mmc_base->dll);
582 	val &= ~(DLL_FORCE_VALUE | DLL_SWT);
583 	writel(val, &mmc_base->dll);
584 }
585 
omap_hsmmc_set_dll(struct mmc * mmc,int count)586 static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
587 {
588 	int i;
589 	struct hsmmc *mmc_base;
590 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
591 	u32 val;
592 
593 	mmc_base = priv->base_addr;
594 	val = readl(&mmc_base->dll);
595 	val |= DLL_FORCE_VALUE;
596 	val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
597 	val |= (count << DLL_FORCE_SR_C_SHIFT);
598 	writel(val, &mmc_base->dll);
599 
600 	val |= DLL_CALIB;
601 	writel(val, &mmc_base->dll);
602 	for (i = 0; i < 1000; i++) {
603 		if (readl(&mmc_base->dll) & DLL_CALIB)
604 			break;
605 	}
606 	val &= ~DLL_CALIB;
607 	writel(val, &mmc_base->dll);
608 }
609 
omap_hsmmc_execute_tuning(struct udevice * dev,uint opcode)610 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
611 {
612 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
613 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
614 	struct mmc *mmc = upriv->mmc;
615 	struct hsmmc *mmc_base;
616 	u32 val;
617 	u8 cur_match, prev_match = 0;
618 	int ret;
619 	u32 phase_delay = 0;
620 	u32 start_window = 0, max_window = 0;
621 	u32 length = 0, max_len = 0;
622 
623 	mmc_base = priv->base_addr;
624 	val = readl(&mmc_base->capa2);
625 
626 	/* clock tuning is not needed for upto 52MHz */
627 	if (!((mmc->selected_mode == MMC_HS_200) ||
628 	      (mmc->selected_mode == UHS_SDR104) ||
629 	      ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
630 		return 0;
631 
632 	val = readl(&mmc_base->dll);
633 	val |= DLL_SWT;
634 	writel(val, &mmc_base->dll);
635 	while (phase_delay <= MAX_PHASE_DELAY) {
636 		omap_hsmmc_set_dll(mmc, phase_delay);
637 
638 		cur_match = !mmc_send_tuning(mmc, opcode, NULL);
639 
640 		if (cur_match) {
641 			if (prev_match) {
642 				length++;
643 			} else {
644 				start_window = phase_delay;
645 				length = 1;
646 			}
647 		}
648 
649 		if (length > max_len) {
650 			max_window = start_window;
651 			max_len = length;
652 		}
653 
654 		prev_match = cur_match;
655 		phase_delay += 4;
656 	}
657 
658 	if (!max_len) {
659 		ret = -EIO;
660 		goto tuning_error;
661 	}
662 
663 	val = readl(&mmc_base->ac12);
664 	if (!(val & AC12_SCLK_SEL)) {
665 		ret = -EIO;
666 		goto tuning_error;
667 	}
668 
669 	phase_delay = max_window + 4 * ((3 * max_len) >> 2);
670 	omap_hsmmc_set_dll(mmc, phase_delay);
671 
672 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
673 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
674 
675 	return 0;
676 
677 tuning_error:
678 
679 	omap_hsmmc_disable_tuning(mmc);
680 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
681 	mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
682 
683 	return ret;
684 }
685 #endif
686 
omap_hsmmc_send_init_stream(struct udevice * dev)687 static void omap_hsmmc_send_init_stream(struct udevice *dev)
688 {
689 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
690 	struct hsmmc *mmc_base = priv->base_addr;
691 
692 	mmc_init_stream(mmc_base);
693 }
694 #endif
695 
mmc_enable_irq(struct mmc * mmc,struct mmc_cmd * cmd)696 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
697 {
698 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
699 	struct hsmmc *mmc_base = priv->base_addr;
700 	u32 irq_mask = INT_EN_MASK;
701 
702 	/*
703 	 * TODO: Errata i802 indicates only DCRC interrupts can occur during
704 	 * tuning procedure and DCRC should be disabled. But see occurences
705 	 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
706 	 * interrupts occur along with BRR, so the data is actually in the
707 	 * buffer. It has to be debugged why these interrutps occur
708 	 */
709 	if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
710 		irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
711 
712 	writel(irq_mask, &mmc_base->ie);
713 }
714 
omap_hsmmc_init_setup(struct mmc * mmc)715 static int omap_hsmmc_init_setup(struct mmc *mmc)
716 {
717 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
718 	struct hsmmc *mmc_base;
719 	unsigned int reg_val;
720 	unsigned int dsor;
721 	ulong start;
722 
723 	mmc_base = priv->base_addr;
724 	mmc_board_init(mmc);
725 
726 	writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
727 		&mmc_base->sysconfig);
728 	start = get_timer(0);
729 	while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
730 		if (get_timer(0) - start > MAX_RETRY_MS) {
731 			printf("%s: timedout waiting for cc2!\n", __func__);
732 			return -ETIMEDOUT;
733 		}
734 	}
735 	writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
736 	start = get_timer(0);
737 	while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
738 		if (get_timer(0) - start > MAX_RETRY_MS) {
739 			printf("%s: timedout waiting for softresetall!\n",
740 				__func__);
741 			return -ETIMEDOUT;
742 		}
743 	}
744 #ifdef CONFIG_MMC_OMAP_HS_ADMA
745 	reg_val = readl(&mmc_base->hl_hwinfo);
746 	if (reg_val & MADMA_EN)
747 		priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
748 #endif
749 
750 #if CONFIG_IS_ENABLED(DM_MMC)
751 	reg_val = omap_hsmmc_set_capabilities(mmc);
752 	omap_hsmmc_conf_bus_power(mmc, (reg_val & VS30_3V0SUP) ?
753 			  MMC_SIGNAL_VOLTAGE_330 : MMC_SIGNAL_VOLTAGE_180);
754 #else
755 	writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
756 	writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
757 		&mmc_base->capa);
758 #endif
759 
760 	reg_val = readl(&mmc_base->con) & RESERVED_MASK;
761 
762 	writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
763 		MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
764 		HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
765 
766 	dsor = 240;
767 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
768 		(ICE_STOP | DTO_15THDTO));
769 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
770 		(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
771 	start = get_timer(0);
772 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
773 		if (get_timer(0) - start > MAX_RETRY_MS) {
774 			printf("%s: timedout waiting for ics!\n", __func__);
775 			return -ETIMEDOUT;
776 		}
777 	}
778 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
779 
780 	writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
781 
782 	mmc_enable_irq(mmc, NULL);
783 
784 #if !CONFIG_IS_ENABLED(DM_MMC)
785 	mmc_init_stream(mmc_base);
786 #endif
787 
788 	return 0;
789 }
790 
791 /*
792  * MMC controller internal finite state machine reset
793  *
794  * Used to reset command or data internal state machines, using respectively
795  * SRC or SRD bit of SYSCTL register
796  */
mmc_reset_controller_fsm(struct hsmmc * mmc_base,u32 bit)797 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
798 {
799 	ulong start;
800 
801 	mmc_reg_out(&mmc_base->sysctl, bit, bit);
802 
803 	/*
804 	 * CMD(DAT) lines reset procedures are slightly different
805 	 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
806 	 * According to OMAP3 TRM:
807 	 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
808 	 * returns to 0x0.
809 	 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
810 	 * procedure steps must be as follows:
811 	 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
812 	 *    MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
813 	 * 2. Poll the SRC(SRD) bit until it is set to 0x1.
814 	 * 3. Wait until the SRC (SRD) bit returns to 0x0
815 	 *    (reset procedure is completed).
816 	 */
817 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
818 	defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
819 	if (!(readl(&mmc_base->sysctl) & bit)) {
820 		start = get_timer(0);
821 		while (!(readl(&mmc_base->sysctl) & bit)) {
822 			if (get_timer(0) - start > MMC_TIMEOUT_MS)
823 				return;
824 		}
825 	}
826 #endif
827 	start = get_timer(0);
828 	while ((readl(&mmc_base->sysctl) & bit) != 0) {
829 		if (get_timer(0) - start > MAX_RETRY_MS) {
830 			printf("%s: timedout waiting for sysctl %x to clear\n",
831 				__func__, bit);
832 			return;
833 		}
834 	}
835 }
836 
837 #ifdef CONFIG_MMC_OMAP_HS_ADMA
omap_hsmmc_adma_desc(struct mmc * mmc,char * buf,u16 len,bool end)838 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
839 {
840 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
841 	struct omap_hsmmc_adma_desc *desc;
842 	u8 attr;
843 
844 	desc = &priv->adma_desc_table[priv->desc_slot];
845 
846 	attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
847 	if (!end)
848 		priv->desc_slot++;
849 	else
850 		attr |= ADMA_DESC_ATTR_END;
851 
852 	desc->len = len;
853 	desc->addr = (u32)buf;
854 	desc->reserved = 0;
855 	desc->attr = attr;
856 }
857 
omap_hsmmc_prepare_adma_table(struct mmc * mmc,struct mmc_data * data)858 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
859 					  struct mmc_data *data)
860 {
861 	uint total_len = data->blocksize * data->blocks;
862 	uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
863 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
864 	int i = desc_count;
865 	char *buf;
866 
867 	priv->desc_slot = 0;
868 	priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
869 				memalign(ARCH_DMA_MINALIGN, desc_count *
870 				sizeof(struct omap_hsmmc_adma_desc));
871 
872 	if (data->flags & MMC_DATA_READ)
873 		buf = data->dest;
874 	else
875 		buf = (char *)data->src;
876 
877 	while (--i) {
878 		omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
879 		buf += ADMA_MAX_LEN;
880 		total_len -= ADMA_MAX_LEN;
881 	}
882 
883 	omap_hsmmc_adma_desc(mmc, buf, total_len, true);
884 
885 	flush_dcache_range((long)priv->adma_desc_table,
886 			   (long)priv->adma_desc_table +
887 			   ROUND(desc_count *
888 			   sizeof(struct omap_hsmmc_adma_desc),
889 			   ARCH_DMA_MINALIGN));
890 }
891 
omap_hsmmc_prepare_data(struct mmc * mmc,struct mmc_data * data)892 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
893 {
894 	struct hsmmc *mmc_base;
895 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
896 	u32 val;
897 	char *buf;
898 
899 	mmc_base = priv->base_addr;
900 	omap_hsmmc_prepare_adma_table(mmc, data);
901 
902 	if (data->flags & MMC_DATA_READ)
903 		buf = data->dest;
904 	else
905 		buf = (char *)data->src;
906 
907 	val = readl(&mmc_base->hctl);
908 	val |= DMA_SELECT;
909 	writel(val, &mmc_base->hctl);
910 
911 	val = readl(&mmc_base->con);
912 	val |= DMA_MASTER;
913 	writel(val, &mmc_base->con);
914 
915 	writel((u32)priv->adma_desc_table, &mmc_base->admasal);
916 
917 	flush_dcache_range((u32)buf,
918 			   (u32)buf +
919 			   ROUND(data->blocksize * data->blocks,
920 				 ARCH_DMA_MINALIGN));
921 }
922 
omap_hsmmc_dma_cleanup(struct mmc * mmc)923 static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
924 {
925 	struct hsmmc *mmc_base;
926 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
927 	u32 val;
928 
929 	mmc_base = priv->base_addr;
930 
931 	val = readl(&mmc_base->con);
932 	val &= ~DMA_MASTER;
933 	writel(val, &mmc_base->con);
934 
935 	val = readl(&mmc_base->hctl);
936 	val &= ~DMA_SELECT;
937 	writel(val, &mmc_base->hctl);
938 
939 	kfree(priv->adma_desc_table);
940 }
941 #else
942 #define omap_hsmmc_adma_desc
943 #define omap_hsmmc_prepare_adma_table
944 #define omap_hsmmc_prepare_data
945 #define omap_hsmmc_dma_cleanup
946 #endif
947 
948 #if !CONFIG_IS_ENABLED(DM_MMC)
omap_hsmmc_send_cmd(struct mmc * mmc,struct mmc_cmd * cmd,struct mmc_data * data)949 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
950 			struct mmc_data *data)
951 {
952 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
953 #else
954 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
955 			struct mmc_data *data)
956 {
957 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
958 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
959 	struct mmc *mmc = upriv->mmc;
960 #endif
961 	struct hsmmc *mmc_base;
962 	unsigned int flags, mmc_stat;
963 	ulong start;
964 	priv->last_cmd = cmd->cmdidx;
965 
966 	mmc_base = priv->base_addr;
967 
968 	if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
969 		return 0;
970 
971 	start = get_timer(0);
972 	while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
973 		if (get_timer(0) - start > MAX_RETRY_MS) {
974 			printf("%s: timedout waiting on cmd inhibit to clear\n",
975 					__func__);
976 			return -ETIMEDOUT;
977 		}
978 	}
979 	writel(0xFFFFFFFF, &mmc_base->stat);
980 	start = get_timer(0);
981 	while (readl(&mmc_base->stat)) {
982 		if (get_timer(0) - start > MAX_RETRY_MS) {
983 			printf("%s: timedout waiting for STAT (%x) to clear\n",
984 				__func__, readl(&mmc_base->stat));
985 			return -ETIMEDOUT;
986 		}
987 	}
988 	/*
989 	 * CMDREG
990 	 * CMDIDX[13:8]	: Command index
991 	 * DATAPRNT[5]	: Data Present Select
992 	 * ENCMDIDX[4]	: Command Index Check Enable
993 	 * ENCMDCRC[3]	: Command CRC Check Enable
994 	 * RSPTYP[1:0]
995 	 *	00 = No Response
996 	 *	01 = Length 136
997 	 *	10 = Length 48
998 	 *	11 = Length 48 Check busy after response
999 	 */
1000 	/* Delay added before checking the status of frq change
1001 	 * retry not supported by mmc.c(core file)
1002 	 */
1003 	if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
1004 		udelay(50000); /* wait 50 ms */
1005 
1006 	if (!(cmd->resp_type & MMC_RSP_PRESENT))
1007 		flags = 0;
1008 	else if (cmd->resp_type & MMC_RSP_136)
1009 		flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
1010 	else if (cmd->resp_type & MMC_RSP_BUSY)
1011 		flags = RSP_TYPE_LGHT48B;
1012 	else
1013 		flags = RSP_TYPE_LGHT48;
1014 
1015 	/* enable default flags */
1016 	flags =	flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
1017 			MSBS_SGLEBLK);
1018 	flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
1019 
1020 	if (cmd->resp_type & MMC_RSP_CRC)
1021 		flags |= CCCE_CHECK;
1022 	if (cmd->resp_type & MMC_RSP_OPCODE)
1023 		flags |= CICE_CHECK;
1024 
1025 	if (data) {
1026 		if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
1027 			 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
1028 			flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
1029 			data->blocksize = 512;
1030 			writel(data->blocksize | (data->blocks << 16),
1031 							&mmc_base->blk);
1032 		} else
1033 			writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
1034 
1035 		if (data->flags & MMC_DATA_READ)
1036 			flags |= (DP_DATA | DDIR_READ);
1037 		else
1038 			flags |= (DP_DATA | DDIR_WRITE);
1039 
1040 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1041 		if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
1042 		    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1043 			omap_hsmmc_prepare_data(mmc, data);
1044 			flags |= DE_ENABLE;
1045 		}
1046 #endif
1047 	}
1048 
1049 	mmc_enable_irq(mmc, cmd);
1050 
1051 	writel(cmd->cmdarg, &mmc_base->arg);
1052 	udelay(20);		/* To fix "No status update" error on eMMC */
1053 	writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
1054 
1055 	start = get_timer(0);
1056 	do {
1057 		mmc_stat = readl(&mmc_base->stat);
1058 		if (get_timer(start) > MAX_RETRY_MS) {
1059 			printf("%s : timeout: No status update\n", __func__);
1060 			return -ETIMEDOUT;
1061 		}
1062 	} while (!mmc_stat);
1063 
1064 	if ((mmc_stat & IE_CTO) != 0) {
1065 		mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
1066 		return -ETIMEDOUT;
1067 	} else if ((mmc_stat & ERRI_MASK) != 0)
1068 		return -1;
1069 
1070 	if (mmc_stat & CC_MASK) {
1071 		writel(CC_MASK, &mmc_base->stat);
1072 		if (cmd->resp_type & MMC_RSP_PRESENT) {
1073 			if (cmd->resp_type & MMC_RSP_136) {
1074 				/* response type 2 */
1075 				cmd->response[3] = readl(&mmc_base->rsp10);
1076 				cmd->response[2] = readl(&mmc_base->rsp32);
1077 				cmd->response[1] = readl(&mmc_base->rsp54);
1078 				cmd->response[0] = readl(&mmc_base->rsp76);
1079 			} else
1080 				/* response types 1, 1b, 3, 4, 5, 6 */
1081 				cmd->response[0] = readl(&mmc_base->rsp10);
1082 		}
1083 	}
1084 
1085 #ifdef CONFIG_MMC_OMAP_HS_ADMA
1086 	if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
1087 	    !mmc_is_tuning_cmd(cmd->cmdidx)) {
1088 		u32 sz_mb, timeout;
1089 
1090 		if (mmc_stat & IE_ADMAE) {
1091 			omap_hsmmc_dma_cleanup(mmc);
1092 			return -EIO;
1093 		}
1094 
1095 		sz_mb = DIV_ROUND_UP(data->blocksize *  data->blocks, 1 << 20);
1096 		timeout = sz_mb * DMA_TIMEOUT_PER_MB;
1097 		if (timeout < MAX_RETRY_MS)
1098 			timeout = MAX_RETRY_MS;
1099 
1100 		start = get_timer(0);
1101 		do {
1102 			mmc_stat = readl(&mmc_base->stat);
1103 			if (mmc_stat & TC_MASK) {
1104 				writel(readl(&mmc_base->stat) | TC_MASK,
1105 				       &mmc_base->stat);
1106 				break;
1107 			}
1108 			if (get_timer(start) > timeout) {
1109 				printf("%s : DMA timeout: No status update\n",
1110 				       __func__);
1111 				return -ETIMEDOUT;
1112 			}
1113 		} while (1);
1114 
1115 		omap_hsmmc_dma_cleanup(mmc);
1116 		return 0;
1117 	}
1118 #endif
1119 
1120 	if (data && (data->flags & MMC_DATA_READ)) {
1121 		mmc_read_data(mmc_base,	data->dest,
1122 				data->blocksize * data->blocks);
1123 	} else if (data && (data->flags & MMC_DATA_WRITE)) {
1124 		mmc_write_data(mmc_base, data->src,
1125 				data->blocksize * data->blocks);
1126 	}
1127 	return 0;
1128 }
1129 
1130 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1131 {
1132 	unsigned int *output_buf = (unsigned int *)buf;
1133 	unsigned int mmc_stat;
1134 	unsigned int count;
1135 
1136 	/*
1137 	 * Start Polled Read
1138 	 */
1139 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1140 	count /= 4;
1141 
1142 	while (size) {
1143 		ulong start = get_timer(0);
1144 		do {
1145 			mmc_stat = readl(&mmc_base->stat);
1146 			if (get_timer(0) - start > MAX_RETRY_MS) {
1147 				printf("%s: timedout waiting for status!\n",
1148 						__func__);
1149 				return -ETIMEDOUT;
1150 			}
1151 		} while (mmc_stat == 0);
1152 
1153 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1154 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1155 
1156 		if ((mmc_stat & ERRI_MASK) != 0)
1157 			return 1;
1158 
1159 		if (mmc_stat & BRR_MASK) {
1160 			unsigned int k;
1161 
1162 			writel(readl(&mmc_base->stat) | BRR_MASK,
1163 				&mmc_base->stat);
1164 			for (k = 0; k < count; k++) {
1165 				*output_buf = readl(&mmc_base->data);
1166 				output_buf++;
1167 			}
1168 			size -= (count*4);
1169 		}
1170 
1171 		if (mmc_stat & BWR_MASK)
1172 			writel(readl(&mmc_base->stat) | BWR_MASK,
1173 				&mmc_base->stat);
1174 
1175 		if (mmc_stat & TC_MASK) {
1176 			writel(readl(&mmc_base->stat) | TC_MASK,
1177 				&mmc_base->stat);
1178 			break;
1179 		}
1180 	}
1181 	return 0;
1182 }
1183 
1184 #if CONFIG_IS_ENABLED(MMC_WRITE)
1185 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1186 			  unsigned int size)
1187 {
1188 	unsigned int *input_buf = (unsigned int *)buf;
1189 	unsigned int mmc_stat;
1190 	unsigned int count;
1191 
1192 	/*
1193 	 * Start Polled Write
1194 	 */
1195 	count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1196 	count /= 4;
1197 
1198 	while (size) {
1199 		ulong start = get_timer(0);
1200 		do {
1201 			mmc_stat = readl(&mmc_base->stat);
1202 			if (get_timer(0) - start > MAX_RETRY_MS) {
1203 				printf("%s: timedout waiting for status!\n",
1204 						__func__);
1205 				return -ETIMEDOUT;
1206 			}
1207 		} while (mmc_stat == 0);
1208 
1209 		if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1210 			mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1211 
1212 		if ((mmc_stat & ERRI_MASK) != 0)
1213 			return 1;
1214 
1215 		if (mmc_stat & BWR_MASK) {
1216 			unsigned int k;
1217 
1218 			writel(readl(&mmc_base->stat) | BWR_MASK,
1219 					&mmc_base->stat);
1220 			for (k = 0; k < count; k++) {
1221 				writel(*input_buf, &mmc_base->data);
1222 				input_buf++;
1223 			}
1224 			size -= (count*4);
1225 		}
1226 
1227 		if (mmc_stat & BRR_MASK)
1228 			writel(readl(&mmc_base->stat) | BRR_MASK,
1229 				&mmc_base->stat);
1230 
1231 		if (mmc_stat & TC_MASK) {
1232 			writel(readl(&mmc_base->stat) | TC_MASK,
1233 				&mmc_base->stat);
1234 			break;
1235 		}
1236 	}
1237 	return 0;
1238 }
1239 #else
1240 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1241 			  unsigned int size)
1242 {
1243 	return -ENOTSUPP;
1244 }
1245 #endif
1246 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
1247 {
1248 	writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
1249 }
1250 
1251 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
1252 {
1253 	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
1254 }
1255 
1256 static void omap_hsmmc_set_clock(struct mmc *mmc)
1257 {
1258 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1259 	struct hsmmc *mmc_base;
1260 	unsigned int dsor = 0;
1261 	ulong start;
1262 
1263 	mmc_base = priv->base_addr;
1264 	omap_hsmmc_stop_clock(mmc_base);
1265 
1266 	/* TODO: Is setting DTO required here? */
1267 	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
1268 		    (ICE_STOP | DTO_15THDTO));
1269 
1270 	if (mmc->clock != 0) {
1271 		dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
1272 		if (dsor > CLKD_MAX)
1273 			dsor = CLKD_MAX;
1274 	} else {
1275 		dsor = CLKD_MAX;
1276 	}
1277 
1278 	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
1279 		    (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
1280 
1281 	start = get_timer(0);
1282 	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
1283 		if (get_timer(0) - start > MAX_RETRY_MS) {
1284 			printf("%s: timedout waiting for ics!\n", __func__);
1285 			return;
1286 		}
1287 	}
1288 
1289 	priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
1290 	mmc->clock = priv->clock;
1291 	omap_hsmmc_start_clock(mmc_base);
1292 }
1293 
1294 static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1295 {
1296 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1297 	struct hsmmc *mmc_base;
1298 
1299 	mmc_base = priv->base_addr;
1300 	/* configue bus width */
1301 	switch (mmc->bus_width) {
1302 	case 8:
1303 		writel(readl(&mmc_base->con) | DTW_8_BITMODE,
1304 			&mmc_base->con);
1305 		break;
1306 
1307 	case 4:
1308 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1309 			&mmc_base->con);
1310 		writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
1311 			&mmc_base->hctl);
1312 		break;
1313 
1314 	case 1:
1315 	default:
1316 		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1317 			&mmc_base->con);
1318 		writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
1319 			&mmc_base->hctl);
1320 		break;
1321 	}
1322 
1323 	priv->bus_width = mmc->bus_width;
1324 }
1325 
1326 #if !CONFIG_IS_ENABLED(DM_MMC)
1327 static int omap_hsmmc_set_ios(struct mmc *mmc)
1328 {
1329 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1330 #else
1331 static int omap_hsmmc_set_ios(struct udevice *dev)
1332 {
1333 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1334 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1335 	struct mmc *mmc = upriv->mmc;
1336 #endif
1337 	struct hsmmc *mmc_base = priv->base_addr;
1338 	int ret = 0;
1339 
1340 	if (priv->bus_width != mmc->bus_width)
1341 		omap_hsmmc_set_bus_width(mmc);
1342 
1343 	if (priv->clock != mmc->clock)
1344 		omap_hsmmc_set_clock(mmc);
1345 
1346 	if (mmc->clk_disable)
1347 		omap_hsmmc_stop_clock(mmc_base);
1348 	else
1349 		omap_hsmmc_start_clock(mmc_base);
1350 
1351 #if CONFIG_IS_ENABLED(DM_MMC)
1352 	if (priv->mode != mmc->selected_mode)
1353 		omap_hsmmc_set_timing(mmc);
1354 
1355 #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE)
1356 	if (priv->signal_voltage != mmc->signal_voltage)
1357 		ret = omap_hsmmc_set_signal_voltage(mmc);
1358 #endif
1359 #endif
1360 	return ret;
1361 }
1362 
1363 #ifdef OMAP_HSMMC_USE_GPIO
1364 #if CONFIG_IS_ENABLED(DM_MMC)
1365 static int omap_hsmmc_getcd(struct udevice *dev)
1366 {
1367 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1368 	int value;
1369 
1370 	value = dm_gpio_get_value(&priv->cd_gpio);
1371 	/* if no CD return as 1 */
1372 	if (value < 0)
1373 		return 1;
1374 
1375 	if (priv->cd_inverted)
1376 		return !value;
1377 	return value;
1378 }
1379 
1380 static int omap_hsmmc_getwp(struct udevice *dev)
1381 {
1382 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1383 	int value;
1384 
1385 	value = dm_gpio_get_value(&priv->wp_gpio);
1386 	/* if no WP return as 0 */
1387 	if (value < 0)
1388 		return 0;
1389 	return value;
1390 }
1391 #else
1392 static int omap_hsmmc_getcd(struct mmc *mmc)
1393 {
1394 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1395 	int cd_gpio;
1396 
1397 	/* if no CD return as 1 */
1398 	cd_gpio = priv->cd_gpio;
1399 	if (cd_gpio < 0)
1400 		return 1;
1401 
1402 	/* NOTE: assumes card detect signal is active-low */
1403 	return !gpio_get_value(cd_gpio);
1404 }
1405 
1406 static int omap_hsmmc_getwp(struct mmc *mmc)
1407 {
1408 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1409 	int wp_gpio;
1410 
1411 	/* if no WP return as 0 */
1412 	wp_gpio = priv->wp_gpio;
1413 	if (wp_gpio < 0)
1414 		return 0;
1415 
1416 	/* NOTE: assumes write protect signal is active-high */
1417 	return gpio_get_value(wp_gpio);
1418 }
1419 #endif
1420 #endif
1421 
1422 #if CONFIG_IS_ENABLED(DM_MMC)
1423 static const struct dm_mmc_ops omap_hsmmc_ops = {
1424 	.send_cmd	= omap_hsmmc_send_cmd,
1425 	.set_ios	= omap_hsmmc_set_ios,
1426 #ifdef OMAP_HSMMC_USE_GPIO
1427 	.get_cd		= omap_hsmmc_getcd,
1428 	.get_wp		= omap_hsmmc_getwp,
1429 #endif
1430 #ifdef MMC_SUPPORTS_TUNING
1431 	.execute_tuning = omap_hsmmc_execute_tuning,
1432 #endif
1433 	.send_init_stream	= omap_hsmmc_send_init_stream,
1434 #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT)
1435 	.wait_dat0	= omap_hsmmc_wait_dat0,
1436 #endif
1437 };
1438 #else
1439 static const struct mmc_ops omap_hsmmc_ops = {
1440 	.send_cmd	= omap_hsmmc_send_cmd,
1441 	.set_ios	= omap_hsmmc_set_ios,
1442 	.init		= omap_hsmmc_init_setup,
1443 #ifdef OMAP_HSMMC_USE_GPIO
1444 	.getcd		= omap_hsmmc_getcd,
1445 	.getwp		= omap_hsmmc_getwp,
1446 #endif
1447 };
1448 #endif
1449 
1450 #if !CONFIG_IS_ENABLED(DM_MMC)
1451 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
1452 		int wp_gpio)
1453 {
1454 	struct mmc *mmc;
1455 	struct omap_hsmmc_data *priv;
1456 	struct mmc_config *cfg;
1457 	uint host_caps_val;
1458 
1459 	priv = calloc(1, sizeof(*priv));
1460 	if (priv == NULL)
1461 		return -1;
1462 
1463 	host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1464 
1465 	switch (dev_index) {
1466 	case 0:
1467 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1468 		break;
1469 #ifdef OMAP_HSMMC2_BASE
1470 	case 1:
1471 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1472 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1473 	defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1474 	defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
1475 		defined(CONFIG_HSMMC2_8BIT)
1476 		/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
1477 		host_caps_val |= MMC_MODE_8BIT;
1478 #endif
1479 		break;
1480 #endif
1481 #ifdef OMAP_HSMMC3_BASE
1482 	case 2:
1483 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1484 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1485 		/* Enable 8-bit interface for eMMC on DRA7XX */
1486 		host_caps_val |= MMC_MODE_8BIT;
1487 #endif
1488 		break;
1489 #endif
1490 	default:
1491 		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1492 		return 1;
1493 	}
1494 #ifdef OMAP_HSMMC_USE_GPIO
1495 	/* on error gpio values are set to -1, which is what we want */
1496 	priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
1497 	priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1498 #endif
1499 
1500 	cfg = &priv->cfg;
1501 
1502 	cfg->name = "OMAP SD/MMC";
1503 	cfg->ops = &omap_hsmmc_ops;
1504 
1505 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1506 	cfg->host_caps = host_caps_val & ~host_caps_mask;
1507 
1508 	cfg->f_min = 400000;
1509 
1510 	if (f_max != 0)
1511 		cfg->f_max = f_max;
1512 	else {
1513 		if (cfg->host_caps & MMC_MODE_HS) {
1514 			if (cfg->host_caps & MMC_MODE_HS_52MHz)
1515 				cfg->f_max = 52000000;
1516 			else
1517 				cfg->f_max = 26000000;
1518 		} else
1519 			cfg->f_max = 20000000;
1520 	}
1521 
1522 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1523 
1524 #if defined(CONFIG_OMAP34XX)
1525 	/*
1526 	 * Silicon revs 2.1 and older do not support multiblock transfers.
1527 	 */
1528 	if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1529 		cfg->b_max = 1;
1530 #endif
1531 
1532 	mmc = mmc_create(cfg, priv);
1533 	if (mmc == NULL)
1534 		return -1;
1535 
1536 	return 0;
1537 }
1538 #else
1539 
1540 #ifdef CONFIG_IODELAY_RECALIBRATION
1541 static struct pad_conf_entry *
1542 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
1543 {
1544 	int index = 0;
1545 	struct pad_conf_entry *padconf;
1546 
1547 	padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
1548 	if (!padconf) {
1549 		debug("failed to allocate memory\n");
1550 		return 0;
1551 	}
1552 
1553 	while (index < count) {
1554 		padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
1555 		padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
1556 		index++;
1557 	}
1558 
1559 	return padconf;
1560 }
1561 
1562 static struct iodelay_cfg_entry *
1563 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
1564 {
1565 	int index = 0;
1566 	struct iodelay_cfg_entry *iodelay;
1567 
1568 	iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
1569 	if (!iodelay) {
1570 		debug("failed to allocate memory\n");
1571 		return 0;
1572 	}
1573 
1574 	while (index < count) {
1575 		iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
1576 		iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
1577 		iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
1578 		index++;
1579 	}
1580 
1581 	return iodelay;
1582 }
1583 
1584 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32  phandle,
1585 						   const char *name, int *len)
1586 {
1587 	const void *fdt = gd->fdt_blob;
1588 	int offset;
1589 	const fdt32_t *pinctrl;
1590 
1591 	offset = fdt_node_offset_by_phandle(fdt, phandle);
1592 	if (offset < 0) {
1593 		debug("failed to get pinctrl node %s.\n",
1594 		      fdt_strerror(offset));
1595 		return 0;
1596 	}
1597 
1598 	pinctrl = fdt_getprop(fdt, offset, name, len);
1599 	if (!pinctrl) {
1600 		debug("failed to get property %s\n", name);
1601 		return 0;
1602 	}
1603 
1604 	return pinctrl;
1605 }
1606 
1607 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
1608 						char *prop_name)
1609 {
1610 	const void *fdt = gd->fdt_blob;
1611 	const __be32 *phandle;
1612 	int node = dev_of_offset(mmc->dev);
1613 
1614 	phandle = fdt_getprop(fdt, node, prop_name, NULL);
1615 	if (!phandle) {
1616 		debug("failed to get property %s\n", prop_name);
1617 		return 0;
1618 	}
1619 
1620 	return fdt32_to_cpu(*phandle);
1621 }
1622 
1623 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
1624 					       char *prop_name)
1625 {
1626 	const void *fdt = gd->fdt_blob;
1627 	const __be32 *phandle;
1628 	int len;
1629 	int count;
1630 	int node = dev_of_offset(mmc->dev);
1631 
1632 	phandle = fdt_getprop(fdt, node, prop_name, &len);
1633 	if (!phandle) {
1634 		debug("failed to get property %s\n", prop_name);
1635 		return 0;
1636 	}
1637 
1638 	/* No manual mode iodelay values if count < 2 */
1639 	count = len / sizeof(*phandle);
1640 	if (count < 2)
1641 		return 0;
1642 
1643 	return fdt32_to_cpu(*(phandle + 1));
1644 }
1645 
1646 static struct pad_conf_entry *
1647 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
1648 {
1649 	int len;
1650 	int count;
1651 	struct pad_conf_entry *padconf;
1652 	u32 phandle;
1653 	const fdt32_t *pinctrl;
1654 
1655 	phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
1656 	if (!phandle)
1657 		return ERR_PTR(-EINVAL);
1658 
1659 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
1660 					       &len);
1661 	if (!pinctrl)
1662 		return ERR_PTR(-EINVAL);
1663 
1664 	count = (len / sizeof(*pinctrl)) / 2;
1665 	padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
1666 	if (!padconf)
1667 		return ERR_PTR(-EINVAL);
1668 
1669 	*npads = count;
1670 
1671 	return padconf;
1672 }
1673 
1674 static struct iodelay_cfg_entry *
1675 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
1676 {
1677 	int len;
1678 	int count;
1679 	struct iodelay_cfg_entry *iodelay;
1680 	u32 phandle;
1681 	const fdt32_t *pinctrl;
1682 
1683 	phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
1684 	/* Not all modes have manual mode iodelay values. So its not fatal */
1685 	if (!phandle)
1686 		return 0;
1687 
1688 	pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
1689 					       &len);
1690 	if (!pinctrl)
1691 		return ERR_PTR(-EINVAL);
1692 
1693 	count = (len / sizeof(*pinctrl)) / 3;
1694 	iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
1695 	if (!iodelay)
1696 		return ERR_PTR(-EINVAL);
1697 
1698 	*niodelay = count;
1699 
1700 	return iodelay;
1701 }
1702 
1703 static struct omap_hsmmc_pinctrl_state *
1704 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
1705 {
1706 	int index;
1707 	int npads = 0;
1708 	int niodelays = 0;
1709 	const void *fdt = gd->fdt_blob;
1710 	int node = dev_of_offset(mmc->dev);
1711 	char prop_name[11];
1712 	struct omap_hsmmc_pinctrl_state *pinctrl_state;
1713 
1714 	pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
1715 			 malloc(sizeof(*pinctrl_state));
1716 	if (!pinctrl_state) {
1717 		debug("failed to allocate memory\n");
1718 		return 0;
1719 	}
1720 
1721 	index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
1722 	if (index < 0) {
1723 		debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
1724 		goto err_pinctrl_state;
1725 	}
1726 
1727 	sprintf(prop_name, "pinctrl-%d", index);
1728 
1729 	pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
1730 							 &npads);
1731 	if (IS_ERR(pinctrl_state->padconf))
1732 		goto err_pinctrl_state;
1733 	pinctrl_state->npads = npads;
1734 
1735 	pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
1736 							&niodelays);
1737 	if (IS_ERR(pinctrl_state->iodelay))
1738 		goto err_padconf;
1739 	pinctrl_state->niodelays = niodelays;
1740 
1741 	return pinctrl_state;
1742 
1743 err_padconf:
1744 	kfree(pinctrl_state->padconf);
1745 
1746 err_pinctrl_state:
1747 	kfree(pinctrl_state);
1748 	return 0;
1749 }
1750 
1751 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional)		\
1752 	do {								\
1753 		struct omap_hsmmc_pinctrl_state *s = NULL;		\
1754 		char str[20];						\
1755 		if (!(cfg->host_caps & capmask))			\
1756 			break;						\
1757 									\
1758 		if (priv->hw_rev) {					\
1759 			sprintf(str, "%s-%s", #mode, priv->hw_rev);	\
1760 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, str);	\
1761 		}							\
1762 									\
1763 		if (!s)							\
1764 			s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode);	\
1765 									\
1766 		if (!s && !optional) {					\
1767 			debug("%s: no pinctrl for %s\n",		\
1768 			      mmc->dev->name, #mode);			\
1769 			cfg->host_caps &= ~(capmask);			\
1770 		} else {						\
1771 			priv->mode##_pinctrl_state = s;			\
1772 		}							\
1773 	} while (0)
1774 
1775 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
1776 {
1777 	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1778 	struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
1779 	struct omap_hsmmc_pinctrl_state *default_pinctrl;
1780 
1781 	if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
1782 		return 0;
1783 
1784 	default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
1785 	if (!default_pinctrl) {
1786 		printf("no pinctrl state for default mode\n");
1787 		return -EINVAL;
1788 	}
1789 
1790 	priv->default_pinctrl_state = default_pinctrl;
1791 
1792 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
1793 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
1794 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
1795 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
1796 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1797 
1798 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
1799 	OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
1800 	OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1801 
1802 	return 0;
1803 }
1804 #endif
1805 
1806 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1807 #ifdef CONFIG_OMAP54XX
1808 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
1809 {
1810 	return NULL;
1811 }
1812 #endif
1813 
1814 static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
1815 {
1816 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1817 	struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
1818 
1819 	struct mmc_config *cfg = &plat->cfg;
1820 #ifdef CONFIG_OMAP54XX
1821 	const struct mmc_platform_fixups *fixups;
1822 #endif
1823 	const void *fdt = gd->fdt_blob;
1824 	int node = dev_of_offset(dev);
1825 	int ret;
1826 
1827 	plat->base_addr = map_physmem(devfdt_get_addr(dev),
1828 				      sizeof(struct hsmmc *),
1829 				      MAP_NOCACHE);
1830 
1831 	ret = mmc_of_parse(dev, cfg);
1832 	if (ret < 0)
1833 		return ret;
1834 
1835 	if (!cfg->f_max)
1836 		cfg->f_max = 52000000;
1837 	cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1838 	cfg->f_min = 400000;
1839 	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1840 	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1841 	if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
1842 		plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1843 	if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
1844 		plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1845 	if (of_data)
1846 		plat->controller_flags |= of_data->controller_flags;
1847 
1848 #ifdef CONFIG_OMAP54XX
1849 	fixups = platform_fixups_mmc(devfdt_get_addr(dev));
1850 	if (fixups) {
1851 		plat->hw_rev = fixups->hw_rev;
1852 		cfg->host_caps &= ~fixups->unsupported_caps;
1853 		cfg->f_max = fixups->max_freq;
1854 	}
1855 #endif
1856 
1857 #ifdef OMAP_HSMMC_USE_GPIO
1858 	plat->cd_inverted = fdtdec_get_bool(fdt, node, "cd-inverted");
1859 #endif
1860 
1861 	return 0;
1862 }
1863 #endif
1864 
1865 #ifdef CONFIG_BLK
1866 
1867 static int omap_hsmmc_bind(struct udevice *dev)
1868 {
1869 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1870 	plat->mmc = calloc(1, sizeof(struct mmc));
1871 	return mmc_bind(dev, plat->mmc, &plat->cfg);
1872 }
1873 #endif
1874 static int omap_hsmmc_probe(struct udevice *dev)
1875 {
1876 	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1877 	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1878 	struct omap_hsmmc_data *priv = dev_get_priv(dev);
1879 	struct mmc_config *cfg = &plat->cfg;
1880 	struct mmc *mmc;
1881 #ifdef CONFIG_IODELAY_RECALIBRATION
1882 	int ret;
1883 #endif
1884 
1885 	cfg->name = "OMAP SD/MMC";
1886 	priv->base_addr = plat->base_addr;
1887 	priv->controller_flags = plat->controller_flags;
1888 	priv->hw_rev = plat->hw_rev;
1889 #ifdef OMAP_HSMMC_USE_GPIO
1890 	priv->cd_inverted = plat->cd_inverted;
1891 #endif
1892 
1893 #ifdef CONFIG_BLK
1894 	mmc = plat->mmc;
1895 #else
1896 	mmc = mmc_create(cfg, priv);
1897 	if (mmc == NULL)
1898 		return -1;
1899 #endif
1900 #if CONFIG_IS_ENABLED(DM_REGULATOR)
1901 	device_get_supply_regulator(dev, "pbias-supply",
1902 				    &priv->pbias_supply);
1903 #endif
1904 #if defined(OMAP_HSMMC_USE_GPIO) && CONFIG_IS_ENABLED(OF_CONTROL)
1905 	gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
1906 	gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1907 #endif
1908 
1909 	mmc->dev = dev;
1910 	upriv->mmc = mmc;
1911 
1912 #ifdef CONFIG_IODELAY_RECALIBRATION
1913 	ret = omap_hsmmc_get_pinctrl_state(mmc);
1914 	/*
1915 	 * disable high speed modes for the platforms that require IO delay
1916 	 * and for which we don't have this information
1917 	 */
1918 	if ((ret < 0) &&
1919 	    (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
1920 		priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
1921 		cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
1922 				    UHS_CAPS);
1923 	}
1924 #endif
1925 
1926 	return omap_hsmmc_init_setup(mmc);
1927 }
1928 
1929 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1930 
1931 static const struct omap_mmc_of_data dra7_mmc_of_data = {
1932 	.controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
1933 };
1934 
1935 static const struct udevice_id omap_hsmmc_ids[] = {
1936 	{ .compatible = "ti,omap3-hsmmc" },
1937 	{ .compatible = "ti,omap4-hsmmc" },
1938 	{ .compatible = "ti,am33xx-hsmmc" },
1939 	{ .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
1940 	{ }
1941 };
1942 #endif
1943 
1944 U_BOOT_DRIVER(omap_hsmmc) = {
1945 	.name	= "omap_hsmmc",
1946 	.id	= UCLASS_MMC,
1947 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1948 	.of_match = omap_hsmmc_ids,
1949 	.ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
1950 	.platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
1951 #endif
1952 #ifdef CONFIG_BLK
1953 	.bind = omap_hsmmc_bind,
1954 #endif
1955 	.ops = &omap_hsmmc_ops,
1956 	.probe	= omap_hsmmc_probe,
1957 	.priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
1958 	.flags	= DM_FLAG_PRE_RELOC,
1959 };
1960 #endif
1961