1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd
4  * Author: Eric Gao <eric.gao@rock-chips.com>
5  */
6 
7 #include <common.h>
8 #include <clk.h>
9 #include <display.h>
10 #include <dm.h>
11 #include <fdtdec.h>
12 #include <panel.h>
13 #include <regmap.h>
14 #include "rk_mipi.h"
15 #include <syscon.h>
16 #include <asm/gpio.h>
17 #include <asm/hardware.h>
18 #include <asm/io.h>
19 #include <dm/uclass-internal.h>
20 #include <linux/kernel.h>
21 #include <asm/arch/clock.h>
22 #include <asm/arch/cru_rk3399.h>
23 #include <asm/arch/grf_rk3399.h>
24 #include <asm/arch/rockchip_mipi_dsi.h>
25 
26 DECLARE_GLOBAL_DATA_PTR;
27 
rk_mipi_read_timing(struct udevice * dev,struct display_timing * timing)28 int rk_mipi_read_timing(struct udevice *dev,
29 			struct display_timing *timing)
30 {
31 	int ret;
32 
33 	ret = fdtdec_decode_display_timing(gd->fdt_blob, dev_of_offset(dev),
34 					 0, timing);
35 	if (ret) {
36 		debug("%s: Failed to decode display timing (ret=%d)\n",
37 		      __func__, ret);
38 		return -EINVAL;
39 	}
40 
41 	return 0;
42 }
43 
44 /*
45  * Register write function used only for mipi dsi controller.
46  * Parameter:
47  *  @regs: mipi controller address
48  *  @reg: combination of regaddr(16bit)|bitswidth(8bit)|offset(8bit) you can
49  *        use define in rk_mipi.h directly for this parameter
50  *  @val: value that will be write to specified bits of register
51  */
rk_mipi_dsi_write(uintptr_t regs,u32 reg,u32 val)52 static void rk_mipi_dsi_write(uintptr_t regs, u32 reg, u32 val)
53 {
54 	u32 dat;
55 	u32 mask;
56 	u32 offset = (reg >> OFFSET_SHIFT) & 0xff;
57 	u32 bits = (reg >> BITS_SHIFT) & 0xff;
58 	uintptr_t addr = (reg >> ADDR_SHIFT) + regs;
59 
60 	/* Mask for specifiled bits,the corresponding bits will be clear */
61 	mask = ~((0xffffffff << offset) & (0xffffffff >> (32 - offset - bits)));
62 
63 	/* Make sure val in the available range */
64 	val &= ~(0xffffffff << bits);
65 
66 	/* Get register's original val */
67 	dat = readl(addr);
68 
69 	/* Clear specified bits */
70 	dat &= mask;
71 
72 	/* Fill specified bits */
73 	dat |= val << offset;
74 
75 	writel(dat, addr);
76 }
77 
rk_mipi_dsi_enable(struct udevice * dev,const struct display_timing * timing)78 int rk_mipi_dsi_enable(struct udevice *dev,
79 		       const struct display_timing *timing)
80 {
81 	int node, timing_node;
82 	int val;
83 	struct rk_mipi_priv *priv = dev_get_priv(dev);
84 	uintptr_t regs = priv->regs;
85 	u32 txbyte_clk = priv->txbyte_clk;
86 	u32 txesc_clk = priv->txesc_clk;
87 
88 	txesc_clk = txbyte_clk/(txbyte_clk/txesc_clk + 1);
89 
90 	/* Set Display timing parameter */
91 	rk_mipi_dsi_write(regs, VID_HSA_TIME, timing->hsync_len.typ);
92 	rk_mipi_dsi_write(regs, VID_HBP_TIME, timing->hback_porch.typ);
93 	rk_mipi_dsi_write(regs, VID_HLINE_TIME, (timing->hsync_len.typ
94 			  + timing->hback_porch.typ + timing->hactive.typ
95 			  + timing->hfront_porch.typ));
96 	rk_mipi_dsi_write(regs, VID_VSA_LINES, timing->vsync_len.typ);
97 	rk_mipi_dsi_write(regs, VID_VBP_LINES, timing->vback_porch.typ);
98 	rk_mipi_dsi_write(regs, VID_VFP_LINES, timing->vfront_porch.typ);
99 	rk_mipi_dsi_write(regs, VID_ACTIVE_LINES, timing->vactive.typ);
100 
101 	/* Set Signal Polarity */
102 	val = (timing->flags & DISPLAY_FLAGS_HSYNC_LOW) ? 1 : 0;
103 	rk_mipi_dsi_write(regs, HSYNC_ACTIVE_LOW, val);
104 
105 	val = (timing->flags & DISPLAY_FLAGS_VSYNC_LOW) ? 1 : 0;
106 	rk_mipi_dsi_write(regs, VSYNC_ACTIVE_LOW, val);
107 
108 	val = (timing->flags & DISPLAY_FLAGS_DE_LOW) ? 1 : 0;
109 	rk_mipi_dsi_write(regs, DISPLAY_FLAGS_DE_LOW, val);
110 
111 	val = (timing->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) ? 1 : 0;
112 	rk_mipi_dsi_write(regs, COLORM_ACTIVE_LOW, val);
113 
114 	/* Set video mode */
115 	rk_mipi_dsi_write(regs, CMD_VIDEO_MODE, VIDEO_MODE);
116 
117 	/* Set video mode transmission type as burst mode */
118 	rk_mipi_dsi_write(regs, VID_MODE_TYPE, BURST_MODE);
119 
120 	/* Set pix num in a video package */
121 	rk_mipi_dsi_write(regs, VID_PKT_SIZE, 0x4b0);
122 
123 	/* Set dpi color coding depth 24 bit */
124 	timing_node = fdt_subnode_offset(gd->fdt_blob, dev_of_offset(dev),
125 									 "display-timings");
126 	node = fdt_first_subnode(gd->fdt_blob, timing_node);
127 	val = fdtdec_get_int(gd->fdt_blob, node, "bits-per-pixel", -1);
128 	switch (val) {
129 	case 16:
130 		rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_16BIT_CFG_1);
131 		break;
132 	case 24:
133 		rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
134 		break;
135 	case 30:
136 		rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_30BIT);
137 		break;
138 	default:
139 		rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
140 	}
141 	/* Enable low power mode */
142 	rk_mipi_dsi_write(regs, LP_CMD_EN, 1);
143 	rk_mipi_dsi_write(regs, LP_HFP_EN, 1);
144 	rk_mipi_dsi_write(regs, LP_VACT_EN, 1);
145 	rk_mipi_dsi_write(regs, LP_VFP_EN, 1);
146 	rk_mipi_dsi_write(regs, LP_VBP_EN, 1);
147 	rk_mipi_dsi_write(regs, LP_VSA_EN, 1);
148 
149 	/* Division for timeout counter clk */
150 	rk_mipi_dsi_write(regs, TO_CLK_DIVISION, 0x0a);
151 
152 	/* Tx esc clk division from txbyte clk */
153 	rk_mipi_dsi_write(regs, TX_ESC_CLK_DIVISION, txbyte_clk/txesc_clk);
154 
155 	/* Timeout count for hs<->lp transation between Line period */
156 	rk_mipi_dsi_write(regs, HSTX_TO_CNT, 0x3e8);
157 
158 	/* Phy State transfer timing */
159 	rk_mipi_dsi_write(regs, PHY_STOP_WAIT_TIME, 32);
160 	rk_mipi_dsi_write(regs, PHY_TXREQUESTCLKHS, 1);
161 	rk_mipi_dsi_write(regs, PHY_HS2LP_TIME, 0x14);
162 	rk_mipi_dsi_write(regs, PHY_LP2HS_TIME, 0x10);
163 	rk_mipi_dsi_write(regs, MAX_RD_TIME, 0x2710);
164 
165 	/* Power on */
166 	rk_mipi_dsi_write(regs, SHUTDOWNZ, 1);
167 
168 	return 0;
169 }
170 
171 /* rk mipi dphy write function. It is used to write test data to dphy */
rk_mipi_phy_write(uintptr_t regs,unsigned char test_code,unsigned char * test_data,unsigned char size)172 static void rk_mipi_phy_write(uintptr_t regs, unsigned char test_code,
173 			      unsigned char *test_data, unsigned char size)
174 {
175 	int i = 0;
176 
177 	/* Write Test code */
178 	rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
179 	rk_mipi_dsi_write(regs, PHY_TESTDIN, test_code);
180 	rk_mipi_dsi_write(regs, PHY_TESTEN, 1);
181 	rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
182 	rk_mipi_dsi_write(regs, PHY_TESTEN, 0);
183 
184 	/* Write Test data */
185 	for (i = 0; i < size; i++) {
186 		rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
187 		rk_mipi_dsi_write(regs, PHY_TESTDIN, test_data[i]);
188 		rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
189 	}
190 }
191 
192 /*
193  * Mipi dphy config function. Calculate the suitable prediv, feedback div,
194  * fsfreqrang value ,cap ,lpf and so on according to the given pix clk rate,
195  * and then enable phy.
196  */
rk_mipi_phy_enable(struct udevice * dev)197 int rk_mipi_phy_enable(struct udevice *dev)
198 {
199 	int i;
200 	struct rk_mipi_priv *priv = dev_get_priv(dev);
201 	uintptr_t regs = priv->regs;
202 	u64 fbdiv;
203 	u64 prediv = 1;
204 	u32 max_fbdiv = 512;
205 	u32 max_prediv, min_prediv;
206 	u64 ddr_clk = priv->phy_clk;
207 	u32 refclk = priv->ref_clk;
208 	u32 remain = refclk;
209 	unsigned char test_data[2] = {0};
210 
211 	int freq_rang[][2] = {
212 		{90, 0x01},   {100, 0x10},  {110, 0x20},  {130, 0x01},
213 		{140, 0x11},  {150, 0x21},  {170, 0x02},  {180, 0x12},
214 		{200, 0x22},  {220, 0x03},  {240, 0x13},  {250, 0x23},
215 		{270, 0x04},  {300, 0x14},  {330, 0x05},  {360, 0x15},
216 		{400, 0x25},  {450, 0x06},  {500, 0x16},  {550, 0x07},
217 		{600, 0x17},  {650, 0x08},  {700, 0x18},  {750, 0x09},
218 		{800, 0x19},  {850, 0x29},  {900, 0x39},  {950, 0x0a},
219 		{1000, 0x1a}, {1050, 0x2a}, {1100, 0x3a}, {1150, 0x0b},
220 		{1200, 0x1b}, {1250, 0x2b}, {1300, 0x3b}, {1350, 0x0c},
221 		{1400, 0x1c}, {1450, 0x2c}, {1500, 0x3c}
222 	};
223 
224 	/* Shutdown mode */
225 	rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 0);
226 	rk_mipi_dsi_write(regs, PHY_RSTZ, 0);
227 	rk_mipi_dsi_write(regs, PHY_TESTCLR, 1);
228 
229 	/* Pll locking */
230 	rk_mipi_dsi_write(regs, PHY_TESTCLR, 0);
231 
232 	/* config cp and lfp */
233 	test_data[0] = 0x80 | (ddr_clk / (200 * MHz)) << 3 | 0x3;
234 	rk_mipi_phy_write(regs, CODE_PLL_VCORANGE_VCOCAP, test_data, 1);
235 
236 	test_data[0] = 0x8;
237 	rk_mipi_phy_write(regs, CODE_PLL_CPCTRL, test_data, 1);
238 
239 	test_data[0] = 0x80 | 0x40;
240 	rk_mipi_phy_write(regs, CODE_PLL_LPF_CP, test_data, 1);
241 
242 	/* select the suitable value for fsfreqrang reg */
243 	for (i = 0; i < ARRAY_SIZE(freq_rang); i++) {
244 		if (ddr_clk / (MHz) >= freq_rang[i][0])
245 			break;
246 	}
247 	if (i == ARRAY_SIZE(freq_rang)) {
248 		debug("%s: Dphy freq out of range!\n", __func__);
249 		return -EINVAL;
250 	}
251 	test_data[0] = freq_rang[i][1] << 1;
252 	rk_mipi_phy_write(regs, CODE_HS_RX_LANE0, test_data, 1);
253 
254 	/*
255 	 * Calculate the best ddrclk and it's corresponding div value. If the
256 	 * given pixelclock is great than 250M, ddrclk will be fix 1500M.
257 	 * Otherwise,
258 	 * it's equal to ddr_clk= pixclk * 6. 40MHz >= refclk / prediv >= 5MHz
259 	 * according to spec.
260 	 */
261 	max_prediv = (refclk / (5 * MHz));
262 	min_prediv = ((refclk / (40 * MHz)) ? (refclk / (40 * MHz) + 1) : 1);
263 
264 	debug("%s: DEBUG: max_prediv=%u, min_prediv=%u\n", __func__, max_prediv,
265 	      min_prediv);
266 
267 	if (max_prediv < min_prediv) {
268 		debug("%s: Invalid refclk value\n", __func__);
269 		return -EINVAL;
270 	}
271 
272 	/* Calculate the best refclk and feedback division value for dphy pll */
273 	for (i = min_prediv; i < max_prediv; i++) {
274 		if ((ddr_clk * i % refclk < remain) &&
275 		    (ddr_clk * i / refclk) < max_fbdiv) {
276 			prediv = i;
277 			remain = ddr_clk * i % refclk;
278 		}
279 	}
280 	fbdiv = ddr_clk * prediv / refclk;
281 	ddr_clk = refclk * fbdiv / prediv;
282 	priv->phy_clk = ddr_clk;
283 
284 	debug("%s: DEBUG: refclk=%u, refclk=%llu, fbdiv=%llu, phyclk=%llu\n",
285 	      __func__, refclk, prediv, fbdiv, ddr_clk);
286 
287 	/* config prediv and feedback reg */
288 	test_data[0] = prediv - 1;
289 	rk_mipi_phy_write(regs, CODE_PLL_INPUT_DIV_RAT, test_data, 1);
290 	test_data[0] = (fbdiv - 1) & 0x1f;
291 	rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
292 	test_data[0] = (fbdiv - 1) >> 5 | 0x80;
293 	rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
294 	test_data[0] = 0x30;
295 	rk_mipi_phy_write(regs, CODE_PLL_INPUT_LOOP_DIV_RAT, test_data, 1);
296 
297 	/* rest config */
298 	test_data[0] = 0x4d;
299 	rk_mipi_phy_write(regs, CODE_BANDGAP_BIAS_CTRL, test_data, 1);
300 
301 	test_data[0] = 0x3d;
302 	rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
303 
304 	test_data[0] = 0xdf;
305 	rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
306 
307 	test_data[0] =  0x7;
308 	rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
309 
310 	test_data[0] = 0x80 | 0x7;
311 	rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
312 
313 	test_data[0] = 0x80 | 15;
314 	rk_mipi_phy_write(regs, CODE_HSTXDATALANEREQUSETSTATETIME,
315 			  test_data, 1);
316 	test_data[0] = 0x80 | 85;
317 	rk_mipi_phy_write(regs, CODE_HSTXDATALANEPREPARESTATETIME,
318 			  test_data, 1);
319 	test_data[0] = 0x40 | 10;
320 	rk_mipi_phy_write(regs, CODE_HSTXDATALANEHSZEROSTATETIME,
321 			  test_data, 1);
322 
323 	/* enter into stop mode */
324 	rk_mipi_dsi_write(regs, N_LANES, 0x03);
325 	rk_mipi_dsi_write(regs, PHY_ENABLECLK, 1);
326 	rk_mipi_dsi_write(regs, PHY_FORCEPLL, 1);
327 	rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 1);
328 	rk_mipi_dsi_write(regs, PHY_RSTZ, 1);
329 
330 	return 0;
331 }
332 
333