1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements the functions that access LEB properties and their
13  * categories. LEBs are categorized based on the needs of UBIFS, and the
14  * categories are stored as either heaps or lists to provide a fast way of
15  * finding a LEB in a particular category. For example, UBIFS may need to find
16  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
17  */
18 
19 #ifdef __UBOOT__
20 #include <linux/err.h>
21 #endif
22 #include "ubifs.h"
23 
24 /**
25  * get_heap_comp_val - get the LEB properties value for heap comparisons.
26  * @lprops: LEB properties
27  * @cat: LEB category
28  */
get_heap_comp_val(struct ubifs_lprops * lprops,int cat)29 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
30 {
31 	switch (cat) {
32 	case LPROPS_FREE:
33 		return lprops->free;
34 	case LPROPS_DIRTY_IDX:
35 		return lprops->free + lprops->dirty;
36 	default:
37 		return lprops->dirty;
38 	}
39 }
40 
41 /**
42  * move_up_lpt_heap - move a new heap entry up as far as possible.
43  * @c: UBIFS file-system description object
44  * @heap: LEB category heap
45  * @lprops: LEB properties to move
46  * @cat: LEB category
47  *
48  * New entries to a heap are added at the bottom and then moved up until the
49  * parent's value is greater.  In the case of LPT's category heaps, the value
50  * is either the amount of free space or the amount of dirty space, depending
51  * on the category.
52  */
move_up_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int cat)53 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
54 			     struct ubifs_lprops *lprops, int cat)
55 {
56 	int val1, val2, hpos;
57 
58 	hpos = lprops->hpos;
59 	if (!hpos)
60 		return; /* Already top of the heap */
61 	val1 = get_heap_comp_val(lprops, cat);
62 	/* Compare to parent and, if greater, move up the heap */
63 	do {
64 		int ppos = (hpos - 1) / 2;
65 
66 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
67 		if (val2 >= val1)
68 			return;
69 		/* Greater than parent so move up */
70 		heap->arr[ppos]->hpos = hpos;
71 		heap->arr[hpos] = heap->arr[ppos];
72 		heap->arr[ppos] = lprops;
73 		lprops->hpos = ppos;
74 		hpos = ppos;
75 	} while (hpos);
76 }
77 
78 /**
79  * adjust_lpt_heap - move a changed heap entry up or down the heap.
80  * @c: UBIFS file-system description object
81  * @heap: LEB category heap
82  * @lprops: LEB properties to move
83  * @hpos: heap position of @lprops
84  * @cat: LEB category
85  *
86  * Changed entries in a heap are moved up or down until the parent's value is
87  * greater.  In the case of LPT's category heaps, the value is either the amount
88  * of free space or the amount of dirty space, depending on the category.
89  */
adjust_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int hpos,int cat)90 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
91 			    struct ubifs_lprops *lprops, int hpos, int cat)
92 {
93 	int val1, val2, val3, cpos;
94 
95 	val1 = get_heap_comp_val(lprops, cat);
96 	/* Compare to parent and, if greater than parent, move up the heap */
97 	if (hpos) {
98 		int ppos = (hpos - 1) / 2;
99 
100 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
101 		if (val1 > val2) {
102 			/* Greater than parent so move up */
103 			while (1) {
104 				heap->arr[ppos]->hpos = hpos;
105 				heap->arr[hpos] = heap->arr[ppos];
106 				heap->arr[ppos] = lprops;
107 				lprops->hpos = ppos;
108 				hpos = ppos;
109 				if (!hpos)
110 					return;
111 				ppos = (hpos - 1) / 2;
112 				val2 = get_heap_comp_val(heap->arr[ppos], cat);
113 				if (val1 <= val2)
114 					return;
115 				/* Still greater than parent so keep going */
116 			}
117 		}
118 	}
119 
120 	/* Not greater than parent, so compare to children */
121 	while (1) {
122 		/* Compare to left child */
123 		cpos = hpos * 2 + 1;
124 		if (cpos >= heap->cnt)
125 			return;
126 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
127 		if (val1 < val2) {
128 			/* Less than left child, so promote biggest child */
129 			if (cpos + 1 < heap->cnt) {
130 				val3 = get_heap_comp_val(heap->arr[cpos + 1],
131 							 cat);
132 				if (val3 > val2)
133 					cpos += 1; /* Right child is bigger */
134 			}
135 			heap->arr[cpos]->hpos = hpos;
136 			heap->arr[hpos] = heap->arr[cpos];
137 			heap->arr[cpos] = lprops;
138 			lprops->hpos = cpos;
139 			hpos = cpos;
140 			continue;
141 		}
142 		/* Compare to right child */
143 		cpos += 1;
144 		if (cpos >= heap->cnt)
145 			return;
146 		val3 = get_heap_comp_val(heap->arr[cpos], cat);
147 		if (val1 < val3) {
148 			/* Less than right child, so promote right child */
149 			heap->arr[cpos]->hpos = hpos;
150 			heap->arr[hpos] = heap->arr[cpos];
151 			heap->arr[cpos] = lprops;
152 			lprops->hpos = cpos;
153 			hpos = cpos;
154 			continue;
155 		}
156 		return;
157 	}
158 }
159 
160 /**
161  * add_to_lpt_heap - add LEB properties to a LEB category heap.
162  * @c: UBIFS file-system description object
163  * @lprops: LEB properties to add
164  * @cat: LEB category
165  *
166  * This function returns %1 if @lprops is added to the heap for LEB category
167  * @cat, otherwise %0 is returned because the heap is full.
168  */
add_to_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)169 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
170 			   int cat)
171 {
172 	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
173 
174 	if (heap->cnt >= heap->max_cnt) {
175 		const int b = LPT_HEAP_SZ / 2 - 1;
176 		int cpos, val1, val2;
177 
178 		/* Compare to some other LEB on the bottom of heap */
179 		/* Pick a position kind of randomly */
180 		cpos = (((size_t)lprops >> 4) & b) + b;
181 		ubifs_assert(cpos >= b);
182 		ubifs_assert(cpos < LPT_HEAP_SZ);
183 		ubifs_assert(cpos < heap->cnt);
184 
185 		val1 = get_heap_comp_val(lprops, cat);
186 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
187 		if (val1 > val2) {
188 			struct ubifs_lprops *lp;
189 
190 			lp = heap->arr[cpos];
191 			lp->flags &= ~LPROPS_CAT_MASK;
192 			lp->flags |= LPROPS_UNCAT;
193 			list_add(&lp->list, &c->uncat_list);
194 			lprops->hpos = cpos;
195 			heap->arr[cpos] = lprops;
196 			move_up_lpt_heap(c, heap, lprops, cat);
197 			dbg_check_heap(c, heap, cat, lprops->hpos);
198 			return 1; /* Added to heap */
199 		}
200 		dbg_check_heap(c, heap, cat, -1);
201 		return 0; /* Not added to heap */
202 	} else {
203 		lprops->hpos = heap->cnt++;
204 		heap->arr[lprops->hpos] = lprops;
205 		move_up_lpt_heap(c, heap, lprops, cat);
206 		dbg_check_heap(c, heap, cat, lprops->hpos);
207 		return 1; /* Added to heap */
208 	}
209 }
210 
211 /**
212  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
213  * @c: UBIFS file-system description object
214  * @lprops: LEB properties to remove
215  * @cat: LEB category
216  */
remove_from_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)217 static void remove_from_lpt_heap(struct ubifs_info *c,
218 				 struct ubifs_lprops *lprops, int cat)
219 {
220 	struct ubifs_lpt_heap *heap;
221 	int hpos = lprops->hpos;
222 
223 	heap = &c->lpt_heap[cat - 1];
224 	ubifs_assert(hpos >= 0 && hpos < heap->cnt);
225 	ubifs_assert(heap->arr[hpos] == lprops);
226 	heap->cnt -= 1;
227 	if (hpos < heap->cnt) {
228 		heap->arr[hpos] = heap->arr[heap->cnt];
229 		heap->arr[hpos]->hpos = hpos;
230 		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
231 	}
232 	dbg_check_heap(c, heap, cat, -1);
233 }
234 
235 /**
236  * lpt_heap_replace - replace lprops in a category heap.
237  * @c: UBIFS file-system description object
238  * @old_lprops: LEB properties to replace
239  * @new_lprops: LEB properties with which to replace
240  * @cat: LEB category
241  *
242  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
243  * and the lprops that the pnode contains.  When that happens, references in
244  * the category heaps to those lprops must be updated to point to the new
245  * lprops.  This function does that.
246  */
lpt_heap_replace(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops,int cat)247 static void lpt_heap_replace(struct ubifs_info *c,
248 			     struct ubifs_lprops *old_lprops,
249 			     struct ubifs_lprops *new_lprops, int cat)
250 {
251 	struct ubifs_lpt_heap *heap;
252 	int hpos = new_lprops->hpos;
253 
254 	heap = &c->lpt_heap[cat - 1];
255 	heap->arr[hpos] = new_lprops;
256 }
257 
258 /**
259  * ubifs_add_to_cat - add LEB properties to a category list or heap.
260  * @c: UBIFS file-system description object
261  * @lprops: LEB properties to add
262  * @cat: LEB category to which to add
263  *
264  * LEB properties are categorized to enable fast find operations.
265  */
ubifs_add_to_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)266 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
267 		      int cat)
268 {
269 	switch (cat) {
270 	case LPROPS_DIRTY:
271 	case LPROPS_DIRTY_IDX:
272 	case LPROPS_FREE:
273 		if (add_to_lpt_heap(c, lprops, cat))
274 			break;
275 		/* No more room on heap so make it un-categorized */
276 		cat = LPROPS_UNCAT;
277 		/* Fall through */
278 	case LPROPS_UNCAT:
279 		list_add(&lprops->list, &c->uncat_list);
280 		break;
281 	case LPROPS_EMPTY:
282 		list_add(&lprops->list, &c->empty_list);
283 		break;
284 	case LPROPS_FREEABLE:
285 		list_add(&lprops->list, &c->freeable_list);
286 		c->freeable_cnt += 1;
287 		break;
288 	case LPROPS_FRDI_IDX:
289 		list_add(&lprops->list, &c->frdi_idx_list);
290 		break;
291 	default:
292 		ubifs_assert(0);
293 	}
294 
295 	lprops->flags &= ~LPROPS_CAT_MASK;
296 	lprops->flags |= cat;
297 	c->in_a_category_cnt += 1;
298 	ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
299 }
300 
301 /**
302  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
303  * @c: UBIFS file-system description object
304  * @lprops: LEB properties to remove
305  * @cat: LEB category from which to remove
306  *
307  * LEB properties are categorized to enable fast find operations.
308  */
ubifs_remove_from_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)309 static void ubifs_remove_from_cat(struct ubifs_info *c,
310 				  struct ubifs_lprops *lprops, int cat)
311 {
312 	switch (cat) {
313 	case LPROPS_DIRTY:
314 	case LPROPS_DIRTY_IDX:
315 	case LPROPS_FREE:
316 		remove_from_lpt_heap(c, lprops, cat);
317 		break;
318 	case LPROPS_FREEABLE:
319 		c->freeable_cnt -= 1;
320 		ubifs_assert(c->freeable_cnt >= 0);
321 		/* Fall through */
322 	case LPROPS_UNCAT:
323 	case LPROPS_EMPTY:
324 	case LPROPS_FRDI_IDX:
325 		ubifs_assert(!list_empty(&lprops->list));
326 		list_del(&lprops->list);
327 		break;
328 	default:
329 		ubifs_assert(0);
330 	}
331 
332 	c->in_a_category_cnt -= 1;
333 	ubifs_assert(c->in_a_category_cnt >= 0);
334 }
335 
336 /**
337  * ubifs_replace_cat - replace lprops in a category list or heap.
338  * @c: UBIFS file-system description object
339  * @old_lprops: LEB properties to replace
340  * @new_lprops: LEB properties with which to replace
341  *
342  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
343  * and the lprops that the pnode contains. When that happens, references in
344  * category lists and heaps must be replaced. This function does that.
345  */
ubifs_replace_cat(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops)346 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
347 		       struct ubifs_lprops *new_lprops)
348 {
349 	int cat;
350 
351 	cat = new_lprops->flags & LPROPS_CAT_MASK;
352 	switch (cat) {
353 	case LPROPS_DIRTY:
354 	case LPROPS_DIRTY_IDX:
355 	case LPROPS_FREE:
356 		lpt_heap_replace(c, old_lprops, new_lprops, cat);
357 		break;
358 	case LPROPS_UNCAT:
359 	case LPROPS_EMPTY:
360 	case LPROPS_FREEABLE:
361 	case LPROPS_FRDI_IDX:
362 		list_replace(&old_lprops->list, &new_lprops->list);
363 		break;
364 	default:
365 		ubifs_assert(0);
366 	}
367 }
368 
369 /**
370  * ubifs_ensure_cat - ensure LEB properties are categorized.
371  * @c: UBIFS file-system description object
372  * @lprops: LEB properties
373  *
374  * A LEB may have fallen off of the bottom of a heap, and ended up as
375  * un-categorized even though it has enough space for us now. If that is the
376  * case this function will put the LEB back onto a heap.
377  */
ubifs_ensure_cat(struct ubifs_info * c,struct ubifs_lprops * lprops)378 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
379 {
380 	int cat = lprops->flags & LPROPS_CAT_MASK;
381 
382 	if (cat != LPROPS_UNCAT)
383 		return;
384 	cat = ubifs_categorize_lprops(c, lprops);
385 	if (cat == LPROPS_UNCAT)
386 		return;
387 	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
388 	ubifs_add_to_cat(c, lprops, cat);
389 }
390 
391 /**
392  * ubifs_categorize_lprops - categorize LEB properties.
393  * @c: UBIFS file-system description object
394  * @lprops: LEB properties to categorize
395  *
396  * LEB properties are categorized to enable fast find operations. This function
397  * returns the LEB category to which the LEB properties belong. Note however
398  * that if the LEB category is stored as a heap and the heap is full, the
399  * LEB properties may have their category changed to %LPROPS_UNCAT.
400  */
ubifs_categorize_lprops(const struct ubifs_info * c,const struct ubifs_lprops * lprops)401 int ubifs_categorize_lprops(const struct ubifs_info *c,
402 			    const struct ubifs_lprops *lprops)
403 {
404 	if (lprops->flags & LPROPS_TAKEN)
405 		return LPROPS_UNCAT;
406 
407 	if (lprops->free == c->leb_size) {
408 		ubifs_assert(!(lprops->flags & LPROPS_INDEX));
409 		return LPROPS_EMPTY;
410 	}
411 
412 	if (lprops->free + lprops->dirty == c->leb_size) {
413 		if (lprops->flags & LPROPS_INDEX)
414 			return LPROPS_FRDI_IDX;
415 		else
416 			return LPROPS_FREEABLE;
417 	}
418 
419 	if (lprops->flags & LPROPS_INDEX) {
420 		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
421 			return LPROPS_DIRTY_IDX;
422 	} else {
423 		if (lprops->dirty >= c->dead_wm &&
424 		    lprops->dirty > lprops->free)
425 			return LPROPS_DIRTY;
426 		if (lprops->free > 0)
427 			return LPROPS_FREE;
428 	}
429 
430 	return LPROPS_UNCAT;
431 }
432 
433 /**
434  * change_category - change LEB properties category.
435  * @c: UBIFS file-system description object
436  * @lprops: LEB properties to re-categorize
437  *
438  * LEB properties are categorized to enable fast find operations. When the LEB
439  * properties change they must be re-categorized.
440  */
change_category(struct ubifs_info * c,struct ubifs_lprops * lprops)441 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
442 {
443 	int old_cat = lprops->flags & LPROPS_CAT_MASK;
444 	int new_cat = ubifs_categorize_lprops(c, lprops);
445 
446 	if (old_cat == new_cat) {
447 		struct ubifs_lpt_heap *heap;
448 
449 		/* lprops on a heap now must be moved up or down */
450 		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
451 			return; /* Not on a heap */
452 		heap = &c->lpt_heap[new_cat - 1];
453 		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
454 	} else {
455 		ubifs_remove_from_cat(c, lprops, old_cat);
456 		ubifs_add_to_cat(c, lprops, new_cat);
457 	}
458 }
459 
460 /**
461  * ubifs_calc_dark - calculate LEB dark space size.
462  * @c: the UBIFS file-system description object
463  * @spc: amount of free and dirty space in the LEB
464  *
465  * This function calculates and returns amount of dark space in an LEB which
466  * has @spc bytes of free and dirty space.
467  *
468  * UBIFS is trying to account the space which might not be usable, and this
469  * space is called "dark space". For example, if an LEB has only %512 free
470  * bytes, it is dark space, because it cannot fit a large data node.
471  */
ubifs_calc_dark(const struct ubifs_info * c,int spc)472 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
473 {
474 	ubifs_assert(!(spc & 7));
475 
476 	if (spc < c->dark_wm)
477 		return spc;
478 
479 	/*
480 	 * If we have slightly more space then the dark space watermark, we can
481 	 * anyway safely assume it we'll be able to write a node of the
482 	 * smallest size there.
483 	 */
484 	if (spc - c->dark_wm < MIN_WRITE_SZ)
485 		return spc - MIN_WRITE_SZ;
486 
487 	return c->dark_wm;
488 }
489 
490 /**
491  * is_lprops_dirty - determine if LEB properties are dirty.
492  * @c: the UBIFS file-system description object
493  * @lprops: LEB properties to test
494  */
is_lprops_dirty(struct ubifs_info * c,struct ubifs_lprops * lprops)495 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
496 {
497 	struct ubifs_pnode *pnode;
498 	int pos;
499 
500 	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
501 	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
502 						   struct ubifs_pnode,
503 						   lprops[0]);
504 	return !test_bit(COW_CNODE, &pnode->flags) &&
505 	       test_bit(DIRTY_CNODE, &pnode->flags);
506 }
507 
508 /**
509  * ubifs_change_lp - change LEB properties.
510  * @c: the UBIFS file-system description object
511  * @lp: LEB properties to change
512  * @free: new free space amount
513  * @dirty: new dirty space amount
514  * @flags: new flags
515  * @idx_gc_cnt: change to the count of @idx_gc list
516  *
517  * This function changes LEB properties (@free, @dirty or @flag). However, the
518  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
519  * the updated LEB properties on success and a negative error code on failure.
520  *
521  * Note, the LEB properties may have had to be copied (due to COW) and
522  * consequently the pointer returned may not be the same as the pointer
523  * passed.
524  */
ubifs_change_lp(struct ubifs_info * c,const struct ubifs_lprops * lp,int free,int dirty,int flags,int idx_gc_cnt)525 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
526 					   const struct ubifs_lprops *lp,
527 					   int free, int dirty, int flags,
528 					   int idx_gc_cnt)
529 {
530 	/*
531 	 * This is the only function that is allowed to change lprops, so we
532 	 * discard the "const" qualifier.
533 	 */
534 	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
535 
536 	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
537 	       lprops->lnum, free, dirty, flags);
538 
539 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
540 	ubifs_assert(c->lst.empty_lebs >= 0 &&
541 		     c->lst.empty_lebs <= c->main_lebs);
542 	ubifs_assert(c->freeable_cnt >= 0);
543 	ubifs_assert(c->freeable_cnt <= c->main_lebs);
544 	ubifs_assert(c->lst.taken_empty_lebs >= 0);
545 	ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
546 	ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
547 	ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
548 	ubifs_assert(!(c->lst.total_used & 7));
549 	ubifs_assert(free == LPROPS_NC || free >= 0);
550 	ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
551 
552 	if (!is_lprops_dirty(c, lprops)) {
553 		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
554 		if (IS_ERR(lprops))
555 			return lprops;
556 	} else
557 		ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
558 
559 	ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
560 
561 	spin_lock(&c->space_lock);
562 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
563 		c->lst.taken_empty_lebs -= 1;
564 
565 	if (!(lprops->flags & LPROPS_INDEX)) {
566 		int old_spc;
567 
568 		old_spc = lprops->free + lprops->dirty;
569 		if (old_spc < c->dead_wm)
570 			c->lst.total_dead -= old_spc;
571 		else
572 			c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
573 
574 		c->lst.total_used -= c->leb_size - old_spc;
575 	}
576 
577 	if (free != LPROPS_NC) {
578 		free = ALIGN(free, 8);
579 		c->lst.total_free += free - lprops->free;
580 
581 		/* Increase or decrease empty LEBs counter if needed */
582 		if (free == c->leb_size) {
583 			if (lprops->free != c->leb_size)
584 				c->lst.empty_lebs += 1;
585 		} else if (lprops->free == c->leb_size)
586 			c->lst.empty_lebs -= 1;
587 		lprops->free = free;
588 	}
589 
590 	if (dirty != LPROPS_NC) {
591 		dirty = ALIGN(dirty, 8);
592 		c->lst.total_dirty += dirty - lprops->dirty;
593 		lprops->dirty = dirty;
594 	}
595 
596 	if (flags != LPROPS_NC) {
597 		/* Take care about indexing LEBs counter if needed */
598 		if ((lprops->flags & LPROPS_INDEX)) {
599 			if (!(flags & LPROPS_INDEX))
600 				c->lst.idx_lebs -= 1;
601 		} else if (flags & LPROPS_INDEX)
602 			c->lst.idx_lebs += 1;
603 		lprops->flags = flags;
604 	}
605 
606 	if (!(lprops->flags & LPROPS_INDEX)) {
607 		int new_spc;
608 
609 		new_spc = lprops->free + lprops->dirty;
610 		if (new_spc < c->dead_wm)
611 			c->lst.total_dead += new_spc;
612 		else
613 			c->lst.total_dark += ubifs_calc_dark(c, new_spc);
614 
615 		c->lst.total_used += c->leb_size - new_spc;
616 	}
617 
618 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
619 		c->lst.taken_empty_lebs += 1;
620 
621 	change_category(c, lprops);
622 	c->idx_gc_cnt += idx_gc_cnt;
623 	spin_unlock(&c->space_lock);
624 	return lprops;
625 }
626 
627 /**
628  * ubifs_get_lp_stats - get lprops statistics.
629  * @c: UBIFS file-system description object
630  * @st: return statistics
631  */
ubifs_get_lp_stats(struct ubifs_info * c,struct ubifs_lp_stats * lst)632 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
633 {
634 	spin_lock(&c->space_lock);
635 	memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
636 	spin_unlock(&c->space_lock);
637 }
638 
639 /**
640  * ubifs_change_one_lp - change LEB properties.
641  * @c: the UBIFS file-system description object
642  * @lnum: LEB to change properties for
643  * @free: amount of free space
644  * @dirty: amount of dirty space
645  * @flags_set: flags to set
646  * @flags_clean: flags to clean
647  * @idx_gc_cnt: change to the count of idx_gc list
648  *
649  * This function changes properties of LEB @lnum. It is a helper wrapper over
650  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
651  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
652  * a negative error code in case of failure.
653  */
ubifs_change_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean,int idx_gc_cnt)654 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
655 			int flags_set, int flags_clean, int idx_gc_cnt)
656 {
657 	int err = 0, flags;
658 	const struct ubifs_lprops *lp;
659 
660 	ubifs_get_lprops(c);
661 
662 	lp = ubifs_lpt_lookup_dirty(c, lnum);
663 	if (IS_ERR(lp)) {
664 		err = PTR_ERR(lp);
665 		goto out;
666 	}
667 
668 	flags = (lp->flags | flags_set) & ~flags_clean;
669 	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
670 	if (IS_ERR(lp))
671 		err = PTR_ERR(lp);
672 
673 out:
674 	ubifs_release_lprops(c);
675 	if (err)
676 		ubifs_err(c, "cannot change properties of LEB %d, error %d",
677 			  lnum, err);
678 	return err;
679 }
680 
681 /**
682  * ubifs_update_one_lp - update LEB properties.
683  * @c: the UBIFS file-system description object
684  * @lnum: LEB to change properties for
685  * @free: amount of free space
686  * @dirty: amount of dirty space to add
687  * @flags_set: flags to set
688  * @flags_clean: flags to clean
689  *
690  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
691  * current dirty space, not substitutes it.
692  */
ubifs_update_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean)693 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
694 			int flags_set, int flags_clean)
695 {
696 	int err = 0, flags;
697 	const struct ubifs_lprops *lp;
698 
699 	ubifs_get_lprops(c);
700 
701 	lp = ubifs_lpt_lookup_dirty(c, lnum);
702 	if (IS_ERR(lp)) {
703 		err = PTR_ERR(lp);
704 		goto out;
705 	}
706 
707 	flags = (lp->flags | flags_set) & ~flags_clean;
708 	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
709 	if (IS_ERR(lp))
710 		err = PTR_ERR(lp);
711 
712 out:
713 	ubifs_release_lprops(c);
714 	if (err)
715 		ubifs_err(c, "cannot update properties of LEB %d, error %d",
716 			  lnum, err);
717 	return err;
718 }
719 
720 /**
721  * ubifs_read_one_lp - read LEB properties.
722  * @c: the UBIFS file-system description object
723  * @lnum: LEB to read properties for
724  * @lp: where to store read properties
725  *
726  * This helper function reads properties of a LEB @lnum and stores them in @lp.
727  * Returns zero in case of success and a negative error code in case of
728  * failure.
729  */
ubifs_read_one_lp(struct ubifs_info * c,int lnum,struct ubifs_lprops * lp)730 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
731 {
732 	int err = 0;
733 	const struct ubifs_lprops *lpp;
734 
735 	ubifs_get_lprops(c);
736 
737 	lpp = ubifs_lpt_lookup(c, lnum);
738 	if (IS_ERR(lpp)) {
739 		err = PTR_ERR(lpp);
740 		ubifs_err(c, "cannot read properties of LEB %d, error %d",
741 			  lnum, err);
742 		goto out;
743 	}
744 
745 	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
746 
747 out:
748 	ubifs_release_lprops(c);
749 	return err;
750 }
751 
752 /**
753  * ubifs_fast_find_free - try to find a LEB with free space quickly.
754  * @c: the UBIFS file-system description object
755  *
756  * This function returns LEB properties for a LEB with free space or %NULL if
757  * the function is unable to find a LEB quickly.
758  */
ubifs_fast_find_free(struct ubifs_info * c)759 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
760 {
761 	struct ubifs_lprops *lprops;
762 	struct ubifs_lpt_heap *heap;
763 
764 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
765 
766 	heap = &c->lpt_heap[LPROPS_FREE - 1];
767 	if (heap->cnt == 0)
768 		return NULL;
769 
770 	lprops = heap->arr[0];
771 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
772 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
773 	return lprops;
774 }
775 
776 /**
777  * ubifs_fast_find_empty - try to find an empty LEB quickly.
778  * @c: the UBIFS file-system description object
779  *
780  * This function returns LEB properties for an empty LEB or %NULL if the
781  * function is unable to find an empty LEB quickly.
782  */
ubifs_fast_find_empty(struct ubifs_info * c)783 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
784 {
785 	struct ubifs_lprops *lprops;
786 
787 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
788 
789 	if (list_empty(&c->empty_list))
790 		return NULL;
791 
792 	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
793 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
794 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
795 	ubifs_assert(lprops->free == c->leb_size);
796 	return lprops;
797 }
798 
799 /**
800  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
801  * @c: the UBIFS file-system description object
802  *
803  * This function returns LEB properties for a freeable LEB or %NULL if the
804  * function is unable to find a freeable LEB quickly.
805  */
ubifs_fast_find_freeable(struct ubifs_info * c)806 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
807 {
808 	struct ubifs_lprops *lprops;
809 
810 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
811 
812 	if (list_empty(&c->freeable_list))
813 		return NULL;
814 
815 	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
816 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
817 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
818 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
819 	ubifs_assert(c->freeable_cnt > 0);
820 	return lprops;
821 }
822 
823 /**
824  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
825  * @c: the UBIFS file-system description object
826  *
827  * This function returns LEB properties for a freeable index LEB or %NULL if the
828  * function is unable to find a freeable index LEB quickly.
829  */
ubifs_fast_find_frdi_idx(struct ubifs_info * c)830 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
831 {
832 	struct ubifs_lprops *lprops;
833 
834 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
835 
836 	if (list_empty(&c->frdi_idx_list))
837 		return NULL;
838 
839 	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
840 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
841 	ubifs_assert((lprops->flags & LPROPS_INDEX));
842 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
843 	return lprops;
844 }
845 
846 /*
847  * Everything below is related to debugging.
848  */
849 
850 /**
851  * dbg_check_cats - check category heaps and lists.
852  * @c: UBIFS file-system description object
853  *
854  * This function returns %0 on success and a negative error code on failure.
855  */
dbg_check_cats(struct ubifs_info * c)856 int dbg_check_cats(struct ubifs_info *c)
857 {
858 	struct ubifs_lprops *lprops;
859 	struct list_head *pos;
860 	int i, cat;
861 
862 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
863 		return 0;
864 
865 	list_for_each_entry(lprops, &c->empty_list, list) {
866 		if (lprops->free != c->leb_size) {
867 			ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
868 				  lprops->lnum, lprops->free, lprops->dirty,
869 				  lprops->flags);
870 			return -EINVAL;
871 		}
872 		if (lprops->flags & LPROPS_TAKEN) {
873 			ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
874 				  lprops->lnum, lprops->free, lprops->dirty,
875 				  lprops->flags);
876 			return -EINVAL;
877 		}
878 	}
879 
880 	i = 0;
881 	list_for_each_entry(lprops, &c->freeable_list, list) {
882 		if (lprops->free + lprops->dirty != c->leb_size) {
883 			ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
884 				  lprops->lnum, lprops->free, lprops->dirty,
885 				  lprops->flags);
886 			return -EINVAL;
887 		}
888 		if (lprops->flags & LPROPS_TAKEN) {
889 			ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
890 				  lprops->lnum, lprops->free, lprops->dirty,
891 				  lprops->flags);
892 			return -EINVAL;
893 		}
894 		i += 1;
895 	}
896 	if (i != c->freeable_cnt) {
897 		ubifs_err(c, "freeable list count %d expected %d", i,
898 			  c->freeable_cnt);
899 		return -EINVAL;
900 	}
901 
902 	i = 0;
903 	list_for_each(pos, &c->idx_gc)
904 		i += 1;
905 	if (i != c->idx_gc_cnt) {
906 		ubifs_err(c, "idx_gc list count %d expected %d", i,
907 			  c->idx_gc_cnt);
908 		return -EINVAL;
909 	}
910 
911 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
912 		if (lprops->free + lprops->dirty != c->leb_size) {
913 			ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
914 				  lprops->lnum, lprops->free, lprops->dirty,
915 				  lprops->flags);
916 			return -EINVAL;
917 		}
918 		if (lprops->flags & LPROPS_TAKEN) {
919 			ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
920 				  lprops->lnum, lprops->free, lprops->dirty,
921 				  lprops->flags);
922 			return -EINVAL;
923 		}
924 		if (!(lprops->flags & LPROPS_INDEX)) {
925 			ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
926 				  lprops->lnum, lprops->free, lprops->dirty,
927 				  lprops->flags);
928 			return -EINVAL;
929 		}
930 	}
931 
932 	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
933 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
934 
935 		for (i = 0; i < heap->cnt; i++) {
936 			lprops = heap->arr[i];
937 			if (!lprops) {
938 				ubifs_err(c, "null ptr in LPT heap cat %d", cat);
939 				return -EINVAL;
940 			}
941 			if (lprops->hpos != i) {
942 				ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
943 				return -EINVAL;
944 			}
945 			if (lprops->flags & LPROPS_TAKEN) {
946 				ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
947 				return -EINVAL;
948 			}
949 		}
950 	}
951 
952 	return 0;
953 }
954 
dbg_check_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat,int add_pos)955 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
956 		    int add_pos)
957 {
958 	int i = 0, j, err = 0;
959 
960 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
961 		return;
962 
963 	for (i = 0; i < heap->cnt; i++) {
964 		struct ubifs_lprops *lprops = heap->arr[i];
965 		struct ubifs_lprops *lp;
966 
967 		if (i != add_pos)
968 			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
969 				err = 1;
970 				goto out;
971 			}
972 		if (lprops->hpos != i) {
973 			err = 2;
974 			goto out;
975 		}
976 		lp = ubifs_lpt_lookup(c, lprops->lnum);
977 		if (IS_ERR(lp)) {
978 			err = 3;
979 			goto out;
980 		}
981 		if (lprops != lp) {
982 			ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
983 				  (size_t)lprops, (size_t)lp, lprops->lnum,
984 				  lp->lnum);
985 			err = 4;
986 			goto out;
987 		}
988 		for (j = 0; j < i; j++) {
989 			lp = heap->arr[j];
990 			if (lp == lprops) {
991 				err = 5;
992 				goto out;
993 			}
994 			if (lp->lnum == lprops->lnum) {
995 				err = 6;
996 				goto out;
997 			}
998 		}
999 	}
1000 out:
1001 	if (err) {
1002 		ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
1003 		dump_stack();
1004 		ubifs_dump_heap(c, heap, cat);
1005 	}
1006 }
1007 
1008 /**
1009  * scan_check_cb - scan callback.
1010  * @c: the UBIFS file-system description object
1011  * @lp: LEB properties to scan
1012  * @in_tree: whether the LEB properties are in main memory
1013  * @lst: lprops statistics to update
1014  *
1015  * This function returns a code that indicates whether the scan should continue
1016  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1017  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1018  * (%LPT_SCAN_STOP).
1019  */
scan_check_cb(struct ubifs_info * c,const struct ubifs_lprops * lp,int in_tree,struct ubifs_lp_stats * lst)1020 static int scan_check_cb(struct ubifs_info *c,
1021 			 const struct ubifs_lprops *lp, int in_tree,
1022 			 struct ubifs_lp_stats *lst)
1023 {
1024 	struct ubifs_scan_leb *sleb;
1025 	struct ubifs_scan_node *snod;
1026 	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1027 	void *buf = NULL;
1028 
1029 	cat = lp->flags & LPROPS_CAT_MASK;
1030 	if (cat != LPROPS_UNCAT) {
1031 		cat = ubifs_categorize_lprops(c, lp);
1032 		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1033 			ubifs_err(c, "bad LEB category %d expected %d",
1034 				  (lp->flags & LPROPS_CAT_MASK), cat);
1035 			return -EINVAL;
1036 		}
1037 	}
1038 
1039 	/* Check lp is on its category list (if it has one) */
1040 	if (in_tree) {
1041 		struct list_head *list = NULL;
1042 
1043 		switch (cat) {
1044 		case LPROPS_EMPTY:
1045 			list = &c->empty_list;
1046 			break;
1047 		case LPROPS_FREEABLE:
1048 			list = &c->freeable_list;
1049 			break;
1050 		case LPROPS_FRDI_IDX:
1051 			list = &c->frdi_idx_list;
1052 			break;
1053 		case LPROPS_UNCAT:
1054 			list = &c->uncat_list;
1055 			break;
1056 		}
1057 		if (list) {
1058 			struct ubifs_lprops *lprops;
1059 			int found = 0;
1060 
1061 			list_for_each_entry(lprops, list, list) {
1062 				if (lprops == lp) {
1063 					found = 1;
1064 					break;
1065 				}
1066 			}
1067 			if (!found) {
1068 				ubifs_err(c, "bad LPT list (category %d)", cat);
1069 				return -EINVAL;
1070 			}
1071 		}
1072 	}
1073 
1074 	/* Check lp is on its category heap (if it has one) */
1075 	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1076 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1077 
1078 		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1079 		    lp != heap->arr[lp->hpos]) {
1080 			ubifs_err(c, "bad LPT heap (category %d)", cat);
1081 			return -EINVAL;
1082 		}
1083 	}
1084 
1085 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1086 	if (!buf)
1087 		return -ENOMEM;
1088 
1089 	/*
1090 	 * After an unclean unmount, empty and freeable LEBs
1091 	 * may contain garbage - do not scan them.
1092 	 */
1093 	if (lp->free == c->leb_size) {
1094 		lst->empty_lebs += 1;
1095 		lst->total_free += c->leb_size;
1096 		lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1097 		return LPT_SCAN_CONTINUE;
1098 	}
1099 	if (lp->free + lp->dirty == c->leb_size &&
1100 	    !(lp->flags & LPROPS_INDEX)) {
1101 		lst->total_free  += lp->free;
1102 		lst->total_dirty += lp->dirty;
1103 		lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1104 		return LPT_SCAN_CONTINUE;
1105 	}
1106 
1107 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
1108 	if (IS_ERR(sleb)) {
1109 		ret = PTR_ERR(sleb);
1110 		if (ret == -EUCLEAN) {
1111 			ubifs_dump_lprops(c);
1112 			ubifs_dump_budg(c, &c->bi);
1113 		}
1114 		goto out;
1115 	}
1116 
1117 	is_idx = -1;
1118 	list_for_each_entry(snod, &sleb->nodes, list) {
1119 		int found, level = 0;
1120 
1121 		cond_resched();
1122 
1123 		if (is_idx == -1)
1124 			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1125 
1126 		if (is_idx && snod->type != UBIFS_IDX_NODE) {
1127 			ubifs_err(c, "indexing node in data LEB %d:%d",
1128 				  lnum, snod->offs);
1129 			goto out_destroy;
1130 		}
1131 
1132 		if (snod->type == UBIFS_IDX_NODE) {
1133 			struct ubifs_idx_node *idx = snod->node;
1134 
1135 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
1136 			level = le16_to_cpu(idx->level);
1137 		}
1138 
1139 		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1140 					   snod->offs, is_idx);
1141 		if (found) {
1142 			if (found < 0)
1143 				goto out_destroy;
1144 			used += ALIGN(snod->len, 8);
1145 		}
1146 	}
1147 
1148 	free = c->leb_size - sleb->endpt;
1149 	dirty = sleb->endpt - used;
1150 
1151 	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1152 	    dirty < 0) {
1153 		ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1154 			  lnum, free, dirty);
1155 		goto out_destroy;
1156 	}
1157 
1158 	if (lp->free + lp->dirty == c->leb_size &&
1159 	    free + dirty == c->leb_size)
1160 		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1161 		    (!is_idx && free == c->leb_size) ||
1162 		    lp->free == c->leb_size) {
1163 			/*
1164 			 * Empty or freeable LEBs could contain index
1165 			 * nodes from an uncompleted commit due to an
1166 			 * unclean unmount. Or they could be empty for
1167 			 * the same reason. Or it may simply not have been
1168 			 * unmapped.
1169 			 */
1170 			free = lp->free;
1171 			dirty = lp->dirty;
1172 			is_idx = 0;
1173 		    }
1174 
1175 	if (is_idx && lp->free + lp->dirty == free + dirty &&
1176 	    lnum != c->ihead_lnum) {
1177 		/*
1178 		 * After an unclean unmount, an index LEB could have a different
1179 		 * amount of free space than the value recorded by lprops. That
1180 		 * is because the in-the-gaps method may use free space or
1181 		 * create free space (as a side-effect of using ubi_leb_change
1182 		 * and not writing the whole LEB). The incorrect free space
1183 		 * value is not a problem because the index is only ever
1184 		 * allocated empty LEBs, so there will never be an attempt to
1185 		 * write to the free space at the end of an index LEB - except
1186 		 * by the in-the-gaps method for which it is not a problem.
1187 		 */
1188 		free = lp->free;
1189 		dirty = lp->dirty;
1190 	}
1191 
1192 	if (lp->free != free || lp->dirty != dirty)
1193 		goto out_print;
1194 
1195 	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1196 		if (free == c->leb_size)
1197 			/* Free but not unmapped LEB, it's fine */
1198 			is_idx = 0;
1199 		else {
1200 			ubifs_err(c, "indexing node without indexing flag");
1201 			goto out_print;
1202 		}
1203 	}
1204 
1205 	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1206 		ubifs_err(c, "data node with indexing flag");
1207 		goto out_print;
1208 	}
1209 
1210 	if (free == c->leb_size)
1211 		lst->empty_lebs += 1;
1212 
1213 	if (is_idx)
1214 		lst->idx_lebs += 1;
1215 
1216 	if (!(lp->flags & LPROPS_INDEX))
1217 		lst->total_used += c->leb_size - free - dirty;
1218 	lst->total_free += free;
1219 	lst->total_dirty += dirty;
1220 
1221 	if (!(lp->flags & LPROPS_INDEX)) {
1222 		int spc = free + dirty;
1223 
1224 		if (spc < c->dead_wm)
1225 			lst->total_dead += spc;
1226 		else
1227 			lst->total_dark += ubifs_calc_dark(c, spc);
1228 	}
1229 
1230 	ubifs_scan_destroy(sleb);
1231 	vfree(buf);
1232 	return LPT_SCAN_CONTINUE;
1233 
1234 out_print:
1235 	ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1236 		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1237 	ubifs_dump_leb(c, lnum);
1238 out_destroy:
1239 	ubifs_scan_destroy(sleb);
1240 	ret = -EINVAL;
1241 out:
1242 	vfree(buf);
1243 	return ret;
1244 }
1245 
1246 /**
1247  * dbg_check_lprops - check all LEB properties.
1248  * @c: UBIFS file-system description object
1249  *
1250  * This function checks all LEB properties and makes sure they are all correct.
1251  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1252  * and other negative error codes in case of other errors. This function is
1253  * called while the file system is locked (because of commit start), so no
1254  * additional locking is required. Note that locking the LPT mutex would cause
1255  * a circular lock dependency with the TNC mutex.
1256  */
dbg_check_lprops(struct ubifs_info * c)1257 int dbg_check_lprops(struct ubifs_info *c)
1258 {
1259 	int i, err;
1260 	struct ubifs_lp_stats lst;
1261 
1262 	if (!dbg_is_chk_lprops(c))
1263 		return 0;
1264 
1265 	/*
1266 	 * As we are going to scan the media, the write buffers have to be
1267 	 * synchronized.
1268 	 */
1269 	for (i = 0; i < c->jhead_cnt; i++) {
1270 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1271 		if (err)
1272 			return err;
1273 	}
1274 
1275 	memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1276 	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1277 				    (ubifs_lpt_scan_callback)scan_check_cb,
1278 				    &lst);
1279 	if (err && err != -ENOSPC)
1280 		goto out;
1281 
1282 	if (lst.empty_lebs != c->lst.empty_lebs ||
1283 	    lst.idx_lebs != c->lst.idx_lebs ||
1284 	    lst.total_free != c->lst.total_free ||
1285 	    lst.total_dirty != c->lst.total_dirty ||
1286 	    lst.total_used != c->lst.total_used) {
1287 		ubifs_err(c, "bad overall accounting");
1288 		ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1289 			  lst.empty_lebs, lst.idx_lebs, lst.total_free,
1290 			  lst.total_dirty, lst.total_used);
1291 		ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1292 			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1293 			  c->lst.total_dirty, c->lst.total_used);
1294 		err = -EINVAL;
1295 		goto out;
1296 	}
1297 
1298 	if (lst.total_dead != c->lst.total_dead ||
1299 	    lst.total_dark != c->lst.total_dark) {
1300 		ubifs_err(c, "bad dead/dark space accounting");
1301 		ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1302 			  lst.total_dead, lst.total_dark);
1303 		ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1304 			  c->lst.total_dead, c->lst.total_dark);
1305 		err = -EINVAL;
1306 		goto out;
1307 	}
1308 
1309 	err = dbg_check_cats(c);
1310 out:
1311 	return err;
1312 }
1313