1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_CONSTANTS_ARM_H_
6 #define V8_ARM_CONSTANTS_ARM_H_
7 
8 #include <stdint.h>
9 
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/boxed-float.h"
13 #include "src/globals.h"
14 #include "src/utils.h"
15 
16 // ARM EABI is required.
17 #if defined(__arm__) && !defined(__ARM_EABI__)
18 #error ARM EABI support is required.
19 #endif
20 
21 namespace v8 {
22 namespace internal {
23 
24 // Constant pool marker.
25 // Use UDF, the permanently undefined instruction.
26 const int kConstantPoolMarkerMask = 0xfff000f0;
27 const int kConstantPoolMarker = 0xe7f000f0;
28 const int kConstantPoolLengthMaxMask = 0xffff;
EncodeConstantPoolLength(int length)29 inline int EncodeConstantPoolLength(int length) {
30   DCHECK((length & kConstantPoolLengthMaxMask) == length);
31   return ((length & 0xfff0) << 4) | (length & 0xf);
32 }
DecodeConstantPoolLength(int instr)33 inline int DecodeConstantPoolLength(int instr) {
34   DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker);
35   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
36 }
37 
38 // Number of registers in normal ARM mode.
39 const int kNumRegisters = 16;
40 
41 // VFP support.
42 const int kNumVFPSingleRegisters = 32;
43 const int kNumVFPDoubleRegisters = 32;
44 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
45 
46 // PC is register 15.
47 const int kPCRegister = 15;
48 const int kNoRegister = -1;
49 
50 // Used in embedded constant pool builder - max reach in bits for
51 // various load instructions (unsigned)
52 const int kLdrMaxReachBits = 12;
53 const int kVldrMaxReachBits = 10;
54 
55 // Actual value of root register is offset from the root array's start
56 // to take advantage of negative displacement values. Loads allow a uint12
57 // value with a separate sign bit (range [-4095, +4095]), so the first root
58 // is still addressable with a single load instruction.
59 constexpr int kRootRegisterBias = 4095;
60 
61 // -----------------------------------------------------------------------------
62 // Conditions.
63 
64 // Defines constants and accessor classes to assemble, disassemble and
65 // simulate ARM instructions.
66 //
67 // Section references in the code refer to the "ARM Architecture Reference
68 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
69 //
70 // Constants for specific fields are defined in their respective named enums.
71 // General constants are in an anonymous enum in class Instr.
72 
73 // Values for the condition field as defined in section A3.2
74 enum Condition {
75   kNoCondition = -1,
76 
77   eq =  0 << 28,                 // Z set            Equal.
78   ne =  1 << 28,                 // Z clear          Not equal.
79   cs =  2 << 28,                 // C set            Unsigned higher or same.
80   cc =  3 << 28,                 // C clear          Unsigned lower.
81   mi =  4 << 28,                 // N set            Negative.
82   pl =  5 << 28,                 // N clear          Positive or zero.
83   vs =  6 << 28,                 // V set            Overflow.
84   vc =  7 << 28,                 // V clear          No overflow.
85   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
86   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
87   ge = 10 << 28,                 // N == V           Greater or equal.
88   lt = 11 << 28,                 // N != V           Less than.
89   gt = 12 << 28,                 // Z clear, N == V  Greater than.
90   le = 13 << 28,                 // Z set or N != V  Less then or equal
91   al = 14 << 28,                 //                  Always.
92 
93   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
94   kNumberOfConditions = 16,
95 
96   // Aliases.
97   hs = cs,                       // C set            Unsigned higher or same.
98   lo = cc                        // C clear          Unsigned lower.
99 };
100 
101 
NegateCondition(Condition cond)102 inline Condition NegateCondition(Condition cond) {
103   DCHECK(cond != al);
104   return static_cast<Condition>(cond ^ ne);
105 }
106 
107 
108 // -----------------------------------------------------------------------------
109 // Instructions encoding.
110 
111 // Instr is merely used by the Assembler to distinguish 32bit integers
112 // representing instructions from usual 32 bit values.
113 // Instruction objects are pointers to 32bit values, and provide methods to
114 // access the various ISA fields.
115 typedef int32_t Instr;
116 
117 
118 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
119 // as defined in section A3.4
120 enum Opcode {
121   AND =  0 << 21,  // Logical AND.
122   EOR =  1 << 21,  // Logical Exclusive OR.
123   SUB =  2 << 21,  // Subtract.
124   RSB =  3 << 21,  // Reverse Subtract.
125   ADD =  4 << 21,  // Add.
126   ADC =  5 << 21,  // Add with Carry.
127   SBC =  6 << 21,  // Subtract with Carry.
128   RSC =  7 << 21,  // Reverse Subtract with Carry.
129   TST =  8 << 21,  // Test.
130   TEQ =  9 << 21,  // Test Equivalence.
131   CMP = 10 << 21,  // Compare.
132   CMN = 11 << 21,  // Compare Negated.
133   ORR = 12 << 21,  // Logical (inclusive) OR.
134   MOV = 13 << 21,  // Move.
135   BIC = 14 << 21,  // Bit Clear.
136   MVN = 15 << 21   // Move Not.
137 };
138 
139 
140 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
141 enum MiscInstructionsBits74 {
142   // With bits 22-21 01.
143   BX   =  1 << 4,
144   BXJ  =  2 << 4,
145   BLX  =  3 << 4,
146   BKPT =  7 << 4,
147 
148   // With bits 22-21 11.
149   CLZ  =  1 << 4
150 };
151 
152 
153 // Instruction encoding bits and masks.
154 enum {
155   H = 1 << 5,   // Halfword (or byte).
156   S6 = 1 << 6,  // Signed (or unsigned).
157   L = 1 << 20,  // Load (or store).
158   S = 1 << 20,  // Set condition code (or leave unchanged).
159   W = 1 << 21,  // Writeback base register (or leave unchanged).
160   A = 1 << 21,  // Accumulate in multiply instruction (or not).
161   B = 1 << 22,  // Unsigned byte (or word).
162   N = 1 << 22,  // Long (or short).
163   U = 1 << 23,  // Positive (or negative) offset/index.
164   P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
165   I = 1 << 25,  // Immediate shifter operand (or not).
166   B0 = 1 << 0,
167   B4 = 1 << 4,
168   B5 = 1 << 5,
169   B6 = 1 << 6,
170   B7 = 1 << 7,
171   B8 = 1 << 8,
172   B9 = 1 << 9,
173   B10 = 1 << 10,
174   B12 = 1 << 12,
175   B16 = 1 << 16,
176   B17 = 1 << 17,
177   B18 = 1 << 18,
178   B19 = 1 << 19,
179   B20 = 1 << 20,
180   B21 = 1 << 21,
181   B22 = 1 << 22,
182   B23 = 1 << 23,
183   B24 = 1 << 24,
184   B25 = 1 << 25,
185   B26 = 1 << 26,
186   B27 = 1 << 27,
187   B28 = 1 << 28,
188 
189   // Instruction bit masks.
190   kCondMask = 15 << 28,
191   kALUMask = 0x6f << 21,
192   kRdMask = 15 << 12,  // In str instruction.
193   kCoprocessorMask = 15 << 8,
194   kOpCodeMask = 15 << 21,  // In data-processing instructions.
195   kImm24Mask = (1 << 24) - 1,
196   kImm16Mask = (1 << 16) - 1,
197   kImm8Mask = (1 << 8) - 1,
198   kOff12Mask = (1 << 12) - 1,
199   kOff8Mask = (1 << 8) - 1
200 };
201 
202 enum BarrierOption {
203   OSHLD = 0x1,
204   OSHST = 0x2,
205   OSH = 0x3,
206   NSHLD = 0x5,
207   NSHST = 0x6,
208   NSH = 0x7,
209   ISHLD = 0x9,
210   ISHST = 0xa,
211   ISH = 0xb,
212   LD = 0xd,
213   ST = 0xe,
214   SY = 0xf,
215 };
216 
217 
218 // -----------------------------------------------------------------------------
219 // Addressing modes and instruction variants.
220 
221 // Condition code updating mode.
222 enum SBit {
223   SetCC   = 1 << 20,  // Set condition code.
224   LeaveCC = 0 << 20   // Leave condition code unchanged.
225 };
226 
227 
228 // Status register selection.
229 enum SRegister {
230   CPSR = 0 << 22,
231   SPSR = 1 << 22
232 };
233 
234 
235 // Shifter types for Data-processing operands as defined in section A5.1.2.
236 enum ShiftOp {
237   LSL = 0 << 5,   // Logical shift left.
238   LSR = 1 << 5,   // Logical shift right.
239   ASR = 2 << 5,   // Arithmetic shift right.
240   ROR = 3 << 5,   // Rotate right.
241 
242   // RRX is encoded as ROR with shift_imm == 0.
243   // Use a special code to make the distinction. The RRX ShiftOp is only used
244   // as an argument, and will never actually be encoded. The Assembler will
245   // detect it and emit the correct ROR shift operand with shift_imm == 0.
246   RRX = -1,
247   kNumberOfShifts = 4
248 };
249 
250 
251 // Status register fields.
252 enum SRegisterField {
253   CPSR_c = CPSR | 1 << 16,
254   CPSR_x = CPSR | 1 << 17,
255   CPSR_s = CPSR | 1 << 18,
256   CPSR_f = CPSR | 1 << 19,
257   SPSR_c = SPSR | 1 << 16,
258   SPSR_x = SPSR | 1 << 17,
259   SPSR_s = SPSR | 1 << 18,
260   SPSR_f = SPSR | 1 << 19
261 };
262 
263 // Status register field mask (or'ed SRegisterField enum values).
264 typedef uint32_t SRegisterFieldMask;
265 
266 
267 // Memory operand addressing mode.
268 enum AddrMode {
269   // Bit encoding P U W.
270   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
271   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
272   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
273   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
274   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
275   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
276 };
277 
278 
279 // Load/store multiple addressing mode.
280 enum BlockAddrMode {
281   // Bit encoding P U W .
282   da           = (0|0|0) << 21,  // Decrement after.
283   ia           = (0|4|0) << 21,  // Increment after.
284   db           = (8|0|0) << 21,  // Decrement before.
285   ib           = (8|4|0) << 21,  // Increment before.
286   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
287   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
288   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
289   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
290 
291   // Alias modes for comparison when writeback does not matter.
292   da_x         = (0|0|0) << 21,  // Decrement after.
293   ia_x         = (0|4|0) << 21,  // Increment after.
294   db_x         = (8|0|0) << 21,  // Decrement before.
295   ib_x         = (8|4|0) << 21,  // Increment before.
296 
297   kBlockAddrModeMask = (8|4|1) << 21
298 };
299 
300 
301 // Coprocessor load/store operand size.
302 enum LFlag {
303   Long  = 1 << 22,  // Long load/store coprocessor.
304   Short = 0 << 22   // Short load/store coprocessor.
305 };
306 
307 // Neon sizes.
308 enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
309 
310 // NEON data type
311 enum NeonDataType {
312   NeonS8 = 0,
313   NeonS16 = 1,
314   NeonS32 = 2,
315   // Gap to make it easier to extract U and size.
316   NeonU8 = 4,
317   NeonU16 = 5,
318   NeonU32 = 6
319 };
320 
NeonU(NeonDataType dt)321 inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
NeonSz(NeonDataType dt)322 inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
323 
324 // Convert sizes to data types (U bit is clear).
NeonSizeToDataType(NeonSize size)325 inline NeonDataType NeonSizeToDataType(NeonSize size) {
326   DCHECK_NE(Neon64, size);
327   return static_cast<NeonDataType>(size);
328 }
329 
NeonDataTypeToSize(NeonDataType dt)330 inline NeonSize NeonDataTypeToSize(NeonDataType dt) {
331   return static_cast<NeonSize>(NeonSz(dt));
332 }
333 
334 enum NeonListType {
335   nlt_1 = 0x7,
336   nlt_2 = 0xA,
337   nlt_3 = 0x6,
338   nlt_4 = 0x2
339 };
340 
341 // -----------------------------------------------------------------------------
342 // Supervisor Call (svc) specific support.
343 
344 // Special Software Interrupt codes when used in the presence of the ARM
345 // simulator.
346 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
347 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
348 enum SoftwareInterruptCodes {
349   // transition to C code
350   kCallRtRedirected = 0x10,
351   // break point
352   kBreakpoint = 0x20,
353   // stop
354   kStopCode = 1 << 23
355 };
356 const uint32_t kStopCodeMask = kStopCode - 1;
357 const uint32_t kMaxStopCode = kStopCode - 1;
358 const int32_t  kDefaultStopCode = -1;
359 
360 
361 // Type of VFP register. Determines register encoding.
362 enum VFPRegPrecision {
363   kSinglePrecision = 0,
364   kDoublePrecision = 1,
365   kSimd128Precision = 2
366 };
367 
368 // VFP FPSCR constants.
369 enum VFPConversionMode {
370   kFPSCRRounding = 0,
371   kDefaultRoundToZero = 1
372 };
373 
374 // This mask does not include the "inexact" or "input denormal" cumulative
375 // exceptions flags, because we usually don't want to check for it.
376 const uint32_t kVFPExceptionMask = 0xf;
377 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
378 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
379 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
380 const uint32_t kVFPInexactExceptionBit = 1 << 4;
381 const uint32_t kVFPFlushToZeroMask = 1 << 24;
382 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
383 
384 const uint32_t kVFPNConditionFlagBit = 1 << 31;
385 const uint32_t kVFPZConditionFlagBit = 1 << 30;
386 const uint32_t kVFPCConditionFlagBit = 1 << 29;
387 const uint32_t kVFPVConditionFlagBit = 1 << 28;
388 
389 
390 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
391 enum VFPRoundingMode {
392   RN = 0 << 22,   // Round to Nearest.
393   RP = 1 << 22,   // Round towards Plus Infinity.
394   RM = 2 << 22,   // Round towards Minus Infinity.
395   RZ = 3 << 22,   // Round towards zero.
396 
397   // Aliases.
398   kRoundToNearest = RN,
399   kRoundToPlusInf = RP,
400   kRoundToMinusInf = RM,
401   kRoundToZero = RZ
402 };
403 
404 const uint32_t kVFPRoundingModeMask = 3 << 22;
405 
406 enum CheckForInexactConversion {
407   kCheckForInexactConversion,
408   kDontCheckForInexactConversion
409 };
410 
411 // -----------------------------------------------------------------------------
412 // Hints.
413 
414 // Branch hints are not used on the ARM.  They are defined so that they can
415 // appear in shared function signatures, but will be ignored in ARM
416 // implementations.
417 enum Hint { no_hint };
418 
419 // Hints are not used on the arm.  Negating is trivial.
NegateHint(Hint ignored)420 inline Hint NegateHint(Hint ignored) { return no_hint; }
421 
422 
423 // -----------------------------------------------------------------------------
424 // Instruction abstraction.
425 
426 // The class Instruction enables access to individual fields defined in the ARM
427 // architecture instruction set encoding as described in figure A3-1.
428 // Note that the Assembler uses typedef int32_t Instr.
429 //
430 // Example: Test whether the instruction at ptr does set the condition code
431 // bits.
432 //
433 // bool InstructionSetsConditionCodes(byte* ptr) {
434 //   Instruction* instr = Instruction::At(ptr);
435 //   int type = instr->TypeValue();
436 //   return ((type == 0) || (type == 1)) && instr->HasS();
437 // }
438 //
439 
440 constexpr uint8_t kInstrSize = 4;
441 constexpr uint8_t kInstrSizeLog2 = 2;
442 
443 class Instruction {
444  public:
445   // Difference between address of current opcode and value read from pc
446   // register.
447   static constexpr int kPcLoadDelta = 8;
448 
449 // Helper macro to define static accessors.
450 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
451 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
452   static inline return_type Name(Instr instr) {          \
453     char* temp = reinterpret_cast<char*>(&instr);        \
454     return reinterpret_cast<Instruction*>(temp)->Name(); \
455   }
456 
457 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
458 
459   // Get the raw instruction bits.
InstructionBits()460   inline Instr InstructionBits() const {
461     return *reinterpret_cast<const Instr*>(this);
462   }
463 
464   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)465   inline void SetInstructionBits(Instr value) {
466     *reinterpret_cast<Instr*>(this) = value;
467   }
468 
469   // Extract a single bit from the instruction bits and return it as bit 0 in
470   // the result.
Bit(int nr)471   inline int Bit(int nr) const {
472     return (InstructionBits() >> nr) & 1;
473   }
474 
475   // Extract a bit field <hi:lo> from the instruction bits and return it in the
476   // least-significant bits of the result.
Bits(int hi,int lo)477   inline int Bits(int hi, int lo) const {
478     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
479   }
480 
481   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(int hi,int lo)482   inline int BitField(int hi, int lo) const {
483     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
484   }
485 
486   // Static support.
487 
488   // Extract a single bit from the instruction bits and return it as bit 0 in
489   // the result.
Bit(Instr instr,int nr)490   static inline int Bit(Instr instr, int nr) {
491     return (instr >> nr) & 1;
492   }
493 
494   // Extract a bit field <hi:lo> from the instruction bits and return it in the
495   // least-significant bits of the result.
Bits(Instr instr,int hi,int lo)496   static inline int Bits(Instr instr, int hi, int lo) {
497     return (instr >> lo) & ((2 << (hi - lo)) - 1);
498   }
499 
500   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(Instr instr,int hi,int lo)501   static inline int BitField(Instr instr, int hi, int lo) {
502     return instr & (((2 << (hi - lo)) - 1) << lo);
503   }
504 
505   // Accessors for the different named fields used in the ARM encoding.
506   // The naming of these accessor corresponds to figure A3-1.
507   //
508   // Two kind of accessors are declared:
509   // - <Name>Field() will return the raw field, i.e. the field's bits at their
510   //   original place in the instruction encoding.
511   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
512   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
513   // - <Name>Value() will return the field value, shifted back to bit 0.
514   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
515   //   0xC0810002 ConditionField(instr) will return 0xC.
516 
517 
518   // Generally applicable fields
ConditionValue()519   inline int ConditionValue() const { return Bits(31, 28); }
ConditionField()520   inline Condition ConditionField() const {
521     return static_cast<Condition>(BitField(31, 28));
522   }
523   DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
524   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
525 
TypeValue()526   inline int TypeValue() const { return Bits(27, 25); }
SpecialValue()527   inline int SpecialValue() const { return Bits(27, 23); }
528 
RnValue()529   inline int RnValue() const { return Bits(19, 16); }
530   DECLARE_STATIC_ACCESSOR(RnValue);
RdValue()531   inline int RdValue() const { return Bits(15, 12); }
532   DECLARE_STATIC_ACCESSOR(RdValue);
533 
CoprocessorValue()534   inline int CoprocessorValue() const { return Bits(11, 8); }
535   // Support for VFP.
536   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
VnValue()537   inline int VnValue() const { return Bits(19, 16); }
VmValue()538   inline int VmValue() const { return Bits(3, 0); }
VdValue()539   inline int VdValue() const { return Bits(15, 12); }
NValue()540   inline int NValue() const { return Bit(7); }
MValue()541   inline int MValue() const { return Bit(5); }
DValue()542   inline int DValue() const { return Bit(22); }
RtValue()543   inline int RtValue() const { return Bits(15, 12); }
PValue()544   inline int PValue() const { return Bit(24); }
UValue()545   inline int UValue() const { return Bit(23); }
Opc1Value()546   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()547   inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()548   inline int Opc3Value() const { return Bits(7, 6); }
SzValue()549   inline int SzValue() const { return Bit(8); }
VLValue()550   inline int VLValue() const { return Bit(20); }
VCValue()551   inline int VCValue() const { return Bit(8); }
VAValue()552   inline int VAValue() const { return Bits(23, 21); }
VBValue()553   inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)554   inline int VFPNRegValue(VFPRegPrecision pre) {
555     return VFPGlueRegValue(pre, 16, 7);
556   }
VFPMRegValue(VFPRegPrecision pre)557   inline int VFPMRegValue(VFPRegPrecision pre) {
558     return VFPGlueRegValue(pre, 0, 5);
559   }
VFPDRegValue(VFPRegPrecision pre)560   inline int VFPDRegValue(VFPRegPrecision pre) {
561     return VFPGlueRegValue(pre, 12, 22);
562   }
563 
564   // Fields used in Data processing instructions
OpcodeValue()565   inline int OpcodeValue() const {
566     return static_cast<Opcode>(Bits(24, 21));
567   }
OpcodeField()568   inline Opcode OpcodeField() const {
569     return static_cast<Opcode>(BitField(24, 21));
570   }
SValue()571   inline int SValue() const { return Bit(20); }
572     // with register
RmValue()573   inline int RmValue() const { return Bits(3, 0); }
574   DECLARE_STATIC_ACCESSOR(RmValue);
ShiftValue()575   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()576   inline ShiftOp ShiftField() const {
577     return static_cast<ShiftOp>(BitField(6, 5));
578   }
RegShiftValue()579   inline int RegShiftValue() const { return Bit(4); }
RsValue()580   inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()581   inline int ShiftAmountValue() const { return Bits(11, 7); }
582     // with immediate
RotateValue()583   inline int RotateValue() const { return Bits(11, 8); }
584   DECLARE_STATIC_ACCESSOR(RotateValue);
Immed8Value()585   inline int Immed8Value() const { return Bits(7, 0); }
586   DECLARE_STATIC_ACCESSOR(Immed8Value);
Immed4Value()587   inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()588   inline int ImmedMovwMovtValue() const {
589       return Immed4Value() << 12 | Offset12Value(); }
590   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
591 
592   // Fields used in Load/Store instructions
PUValue()593   inline int PUValue() const { return Bits(24, 23); }
PUField()594   inline int PUField() const { return BitField(24, 23); }
BValue()595   inline int  BValue() const { return Bit(22); }
WValue()596   inline int  WValue() const { return Bit(21); }
LValue()597   inline int  LValue() const { return Bit(20); }
598     // with register uses same fields as Data processing instructions above
599     // with immediate
Offset12Value()600   inline int Offset12Value() const { return Bits(11, 0); }
601     // multiple
RlistValue()602   inline int RlistValue() const { return Bits(15, 0); }
603     // extra loads and stores
SignValue()604   inline int SignValue() const { return Bit(6); }
HValue()605   inline int HValue() const { return Bit(5); }
ImmedHValue()606   inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()607   inline int ImmedLValue() const { return Bits(3, 0); }
608 
609   // Fields used in Branch instructions
LinkValue()610   inline int LinkValue() const { return Bit(24); }
SImmed24Value()611   inline int SImmed24Value() const {
612     return signed_bitextract_32(23, 0, InstructionBits());
613   }
614 
IsBranch()615   bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; }
616 
GetBranchOffset()617   int GetBranchOffset() {
618     DCHECK(IsBranch());
619     return SImmed24Value() * kInstrSize;
620   }
621 
SetBranchOffset(int32_t branch_offset)622   void SetBranchOffset(int32_t branch_offset) {
623     DCHECK(IsBranch());
624     DCHECK_EQ(branch_offset % kInstrSize, 0);
625     int32_t new_imm24 = branch_offset / kInstrSize;
626     CHECK(is_int24(new_imm24));
627     SetInstructionBits((InstructionBits() & ~(kImm24Mask)) |
628                        (new_imm24 & kImm24Mask));
629   }
630 
631   // Fields used in Software interrupt instructions
SvcValue()632   inline SoftwareInterruptCodes SvcValue() const {
633     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
634   }
635 
636   // Test for special encodings of type 0 instructions (extra loads and stores,
637   // as well as multiplications).
IsSpecialType0()638   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
639 
640   // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()641   inline bool IsMiscType0() const { return (Bit(24) == 1)
642                                            && (Bit(23) == 0)
643                                            && (Bit(20) == 0)
644                                            && ((Bit(7) == 0)); }
645 
646   // Test for nop-like instructions which fall under type 1.
IsNopLikeType1()647   inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; }
648 
649   // Test for a stop instruction.
IsStop()650   inline bool IsStop() const {
651     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
652   }
653 
654   // Special accessors that test for existence of a value.
HasS()655   inline bool HasS()    const { return SValue() == 1; }
HasB()656   inline bool HasB()    const { return BValue() == 1; }
HasW()657   inline bool HasW()    const { return WValue() == 1; }
HasL()658   inline bool HasL()    const { return LValue() == 1; }
HasU()659   inline bool HasU()    const { return UValue() == 1; }
HasSign()660   inline bool HasSign() const { return SignValue() == 1; }
HasH()661   inline bool HasH()    const { return HValue() == 1; }
HasLink()662   inline bool HasLink() const { return LinkValue() == 1; }
663 
664   // Decode the double immediate from a vmov instruction.
665   Float64 DoubleImmedVmov() const;
666 
667   // Instructions are read of out a code stream. The only way to get a
668   // reference to an instruction is to convert a pointer. There is no way
669   // to allocate or create instances of class Instruction.
670   // Use the At(pc) function to create references to Instruction.
At(Address pc)671   static Instruction* At(Address pc) {
672     return reinterpret_cast<Instruction*>(pc);
673   }
674 
675 
676  private:
677   // Join split register codes, depending on register precision.
678   // four_bit is the position of the least-significant bit of the four
679   // bit specifier. one_bit is the position of the additional single bit
680   // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)681   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
682     if (pre == kSinglePrecision) {
683       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
684     } else {
685       int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
686       if (pre == kDoublePrecision) {
687         return reg_num;
688       }
689       DCHECK_EQ(kSimd128Precision, pre);
690       DCHECK_EQ(reg_num & 1, 0);
691       return reg_num / 2;
692     }
693   }
694 
695   // We need to prevent the creation of instances of class Instruction.
696   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
697 };
698 
699 
700 // Helper functions for converting between register numbers and names.
701 class Registers {
702  public:
703   // Return the name of the register.
704   static const char* Name(int reg);
705 
706   // Lookup the register number for the name provided.
707   static int Number(const char* name);
708 
709   struct RegisterAlias {
710     int reg;
711     const char* name;
712   };
713 
714  private:
715   static const char* names_[kNumRegisters];
716   static const RegisterAlias aliases_[];
717 };
718 
719 // Helper functions for converting between VFP register numbers and names.
720 class VFPRegisters {
721  public:
722   // Return the name of the register.
723   static const char* Name(int reg, bool is_double);
724 
725   // Lookup the register number for the name provided.
726   // Set flag pointed by is_double to true if register
727   // is double-precision.
728   static int Number(const char* name, bool* is_double);
729 
730  private:
731   static const char* names_[kNumVFPRegisters];
732 };
733 
734 // Relative jumps on ARM can address ±32 MB.
735 constexpr size_t kMaxPCRelativeCodeRangeInMB = 32;
736 
737 }  // namespace internal
738 }  // namespace v8
739 
740 #endif  // V8_ARM_CONSTANTS_ARM_H_
741