1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/bignum.h"
6 #include "src/utils.h"
7 
8 namespace v8 {
9 namespace internal {
10 
Bignum()11 Bignum::Bignum()
12     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
13   for (int i = 0; i < kBigitCapacity; ++i) {
14     bigits_[i] = 0;
15   }
16 }
17 
18 
19 template<typename S>
BitSize(S value)20 static int BitSize(S value) {
21   return 8 * sizeof(value);
22 }
23 
24 
25 // Guaranteed to lie in one Bigit.
AssignUInt16(uint16_t value)26 void Bignum::AssignUInt16(uint16_t value) {
27   DCHECK_GE(kBigitSize, BitSize(value));
28   Zero();
29   if (value == 0) return;
30 
31   EnsureCapacity(1);
32   bigits_[0] = value;
33   used_digits_ = 1;
34 }
35 
36 
AssignUInt64(uint64_t value)37 void Bignum::AssignUInt64(uint64_t value) {
38   const int kUInt64Size = 64;
39 
40   Zero();
41   if (value == 0) return;
42 
43   int needed_bigits = kUInt64Size / kBigitSize + 1;
44   EnsureCapacity(needed_bigits);
45   for (int i = 0; i < needed_bigits; ++i) {
46     bigits_[i] = static_cast<Chunk>(value & kBigitMask);
47     value = value >> kBigitSize;
48   }
49   used_digits_ = needed_bigits;
50   Clamp();
51 }
52 
53 
AssignBignum(const Bignum & other)54 void Bignum::AssignBignum(const Bignum& other) {
55   exponent_ = other.exponent_;
56   for (int i = 0; i < other.used_digits_; ++i) {
57     bigits_[i] = other.bigits_[i];
58   }
59   // Clear the excess digits (if there were any).
60   for (int i = other.used_digits_; i < used_digits_; ++i) {
61     bigits_[i] = 0;
62   }
63   used_digits_ = other.used_digits_;
64 }
65 
66 
ReadUInt64(Vector<const char> buffer,int from,int digits_to_read)67 static uint64_t ReadUInt64(Vector<const char> buffer,
68                            int from,
69                            int digits_to_read) {
70   uint64_t result = 0;
71   int to = from + digits_to_read;
72 
73   for (int i = from; i < to; ++i) {
74     int digit = buffer[i] - '0';
75     DCHECK(0 <= digit && digit <= 9);
76     result = result * 10 + digit;
77   }
78   return result;
79 }
80 
81 
AssignDecimalString(Vector<const char> value)82 void Bignum::AssignDecimalString(Vector<const char> value) {
83   // 2^64 = 18446744073709551616 > 10^19
84   const int kMaxUint64DecimalDigits = 19;
85   Zero();
86   int length = value.length();
87   int pos = 0;
88   // Let's just say that each digit needs 4 bits.
89   while (length >= kMaxUint64DecimalDigits) {
90     uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
91     pos += kMaxUint64DecimalDigits;
92     length -= kMaxUint64DecimalDigits;
93     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
94     AddUInt64(digits);
95   }
96   uint64_t digits = ReadUInt64(value, pos, length);
97   MultiplyByPowerOfTen(length);
98   AddUInt64(digits);
99   Clamp();
100 }
101 
102 
HexCharValue(char c)103 static int HexCharValue(char c) {
104   if ('0' <= c && c <= '9') return c - '0';
105   if ('a' <= c && c <= 'f') return 10 + c - 'a';
106   if ('A' <= c && c <= 'F') return 10 + c - 'A';
107   UNREACHABLE();
108 }
109 
110 
AssignHexString(Vector<const char> value)111 void Bignum::AssignHexString(Vector<const char> value) {
112   Zero();
113   int length = value.length();
114 
115   int needed_bigits = length * 4 / kBigitSize + 1;
116   EnsureCapacity(needed_bigits);
117   int string_index = length - 1;
118   for (int i = 0; i < needed_bigits - 1; ++i) {
119     // These bigits are guaranteed to be "full".
120     Chunk current_bigit = 0;
121     for (int j = 0; j < kBigitSize / 4; j++) {
122       current_bigit += HexCharValue(value[string_index--]) << (j * 4);
123     }
124     bigits_[i] = current_bigit;
125   }
126   used_digits_ = needed_bigits - 1;
127 
128   Chunk most_significant_bigit = 0;  // Could be = 0;
129   for (int j = 0; j <= string_index; ++j) {
130     most_significant_bigit <<= 4;
131     most_significant_bigit += HexCharValue(value[j]);
132   }
133   if (most_significant_bigit != 0) {
134     bigits_[used_digits_] = most_significant_bigit;
135     used_digits_++;
136   }
137   Clamp();
138 }
139 
140 
AddUInt64(uint64_t operand)141 void Bignum::AddUInt64(uint64_t operand) {
142   if (operand == 0) return;
143   Bignum other;
144   other.AssignUInt64(operand);
145   AddBignum(other);
146 }
147 
148 
AddBignum(const Bignum & other)149 void Bignum::AddBignum(const Bignum& other) {
150   DCHECK(IsClamped());
151   DCHECK(other.IsClamped());
152 
153   // If this has a greater exponent than other append zero-bigits to this.
154   // After this call exponent_ <= other.exponent_.
155   Align(other);
156 
157   // There are two possibilities:
158   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
159   //     bbbbb 00000000
160   //   ----------------
161   //   ccccccccccc 0000
162   // or
163   //    aaaaaaaaaa 0000
164   //  bbbbbbbbb 0000000
165   //  -----------------
166   //  cccccccccccc 0000
167   // In both cases we might need a carry bigit.
168 
169   EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
170   Chunk carry = 0;
171   int bigit_pos = other.exponent_ - exponent_;
172   DCHECK_GE(bigit_pos, 0);
173   for (int i = 0; i < other.used_digits_; ++i) {
174     Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
175     bigits_[bigit_pos] = sum & kBigitMask;
176     carry = sum >> kBigitSize;
177     bigit_pos++;
178   }
179 
180   while (carry != 0) {
181     Chunk sum = bigits_[bigit_pos] + carry;
182     bigits_[bigit_pos] = sum & kBigitMask;
183     carry = sum >> kBigitSize;
184     bigit_pos++;
185   }
186   used_digits_ = Max(bigit_pos, used_digits_);
187   DCHECK(IsClamped());
188 }
189 
190 
SubtractBignum(const Bignum & other)191 void Bignum::SubtractBignum(const Bignum& other) {
192   DCHECK(IsClamped());
193   DCHECK(other.IsClamped());
194   // We require this to be bigger than other.
195   DCHECK(LessEqual(other, *this));
196 
197   Align(other);
198 
199   int offset = other.exponent_ - exponent_;
200   Chunk borrow = 0;
201   int i;
202   for (i = 0; i < other.used_digits_; ++i) {
203     DCHECK((borrow == 0) || (borrow == 1));
204     Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
205     bigits_[i + offset] = difference & kBigitMask;
206     borrow = difference >> (kChunkSize - 1);
207   }
208   while (borrow != 0) {
209     Chunk difference = bigits_[i + offset] - borrow;
210     bigits_[i + offset] = difference & kBigitMask;
211     borrow = difference >> (kChunkSize - 1);
212     ++i;
213   }
214   Clamp();
215 }
216 
217 
ShiftLeft(int shift_amount)218 void Bignum::ShiftLeft(int shift_amount) {
219   if (used_digits_ == 0) return;
220   exponent_ += shift_amount / kBigitSize;
221   int local_shift = shift_amount % kBigitSize;
222   EnsureCapacity(used_digits_ + 1);
223   BigitsShiftLeft(local_shift);
224 }
225 
226 
MultiplyByUInt32(uint32_t factor)227 void Bignum::MultiplyByUInt32(uint32_t factor) {
228   if (factor == 1) return;
229   if (factor == 0) {
230     Zero();
231     return;
232   }
233   if (used_digits_ == 0) return;
234 
235   // The product of a bigit with the factor is of size kBigitSize + 32.
236   // Assert that this number + 1 (for the carry) fits into double chunk.
237   DCHECK_GE(kDoubleChunkSize, kBigitSize + 32 + 1);
238   DoubleChunk carry = 0;
239   for (int i = 0; i < used_digits_; ++i) {
240     DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
241     bigits_[i] = static_cast<Chunk>(product & kBigitMask);
242     carry = (product >> kBigitSize);
243   }
244   while (carry != 0) {
245     EnsureCapacity(used_digits_ + 1);
246     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
247     used_digits_++;
248     carry >>= kBigitSize;
249   }
250 }
251 
252 
MultiplyByUInt64(uint64_t factor)253 void Bignum::MultiplyByUInt64(uint64_t factor) {
254   if (factor == 1) return;
255   if (factor == 0) {
256     Zero();
257     return;
258   }
259   DCHECK_LT(kBigitSize, 32);
260   uint64_t carry = 0;
261   uint64_t low = factor & 0xFFFFFFFF;
262   uint64_t high = factor >> 32;
263   for (int i = 0; i < used_digits_; ++i) {
264     uint64_t product_low = low * bigits_[i];
265     uint64_t product_high = high * bigits_[i];
266     uint64_t tmp = (carry & kBigitMask) + product_low;
267     bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
268     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
269         (product_high << (32 - kBigitSize));
270   }
271   while (carry != 0) {
272     EnsureCapacity(used_digits_ + 1);
273     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
274     used_digits_++;
275     carry >>= kBigitSize;
276   }
277 }
278 
279 
MultiplyByPowerOfTen(int exponent)280 void Bignum::MultiplyByPowerOfTen(int exponent) {
281   const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765C793, fa10079d);
282   const uint16_t kFive1 = 5;
283   const uint16_t kFive2 = kFive1 * 5;
284   const uint16_t kFive3 = kFive2 * 5;
285   const uint16_t kFive4 = kFive3 * 5;
286   const uint16_t kFive5 = kFive4 * 5;
287   const uint16_t kFive6 = kFive5 * 5;
288   const uint32_t kFive7 = kFive6 * 5;
289   const uint32_t kFive8 = kFive7 * 5;
290   const uint32_t kFive9 = kFive8 * 5;
291   const uint32_t kFive10 = kFive9 * 5;
292   const uint32_t kFive11 = kFive10 * 5;
293   const uint32_t kFive12 = kFive11 * 5;
294   const uint32_t kFive13 = kFive12 * 5;
295   const uint32_t kFive1_to_12[] =
296       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
297         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
298 
299   DCHECK_GE(exponent, 0);
300   if (exponent == 0) return;
301   if (used_digits_ == 0) return;
302 
303   // We shift by exponent at the end just before returning.
304   int remaining_exponent = exponent;
305   while (remaining_exponent >= 27) {
306     MultiplyByUInt64(kFive27);
307     remaining_exponent -= 27;
308   }
309   while (remaining_exponent >= 13) {
310     MultiplyByUInt32(kFive13);
311     remaining_exponent -= 13;
312   }
313   if (remaining_exponent > 0) {
314     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
315   }
316   ShiftLeft(exponent);
317 }
318 
319 
Square()320 void Bignum::Square() {
321   DCHECK(IsClamped());
322   int product_length = 2 * used_digits_;
323   EnsureCapacity(product_length);
324 
325   // Comba multiplication: compute each column separately.
326   // Example: r = a2a1a0 * b2b1b0.
327   //    r =  1    * a0b0 +
328   //        10    * (a1b0 + a0b1) +
329   //        100   * (a2b0 + a1b1 + a0b2) +
330   //        1000  * (a2b1 + a1b2) +
331   //        10000 * a2b2
332   //
333   // In the worst case we have to accumulate nb-digits products of digit*digit.
334   //
335   // Assert that the additional number of bits in a DoubleChunk are enough to
336   // sum up used_digits of Bigit*Bigit.
337   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
338     UNIMPLEMENTED();
339   }
340   DoubleChunk accumulator = 0;
341   // First shift the digits so we don't overwrite them.
342   int copy_offset = used_digits_;
343   for (int i = 0; i < used_digits_; ++i) {
344     bigits_[copy_offset + i] = bigits_[i];
345   }
346   // We have two loops to avoid some 'if's in the loop.
347   for (int i = 0; i < used_digits_; ++i) {
348     // Process temporary digit i with power i.
349     // The sum of the two indices must be equal to i.
350     int bigit_index1 = i;
351     int bigit_index2 = 0;
352     // Sum all of the sub-products.
353     while (bigit_index1 >= 0) {
354       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
355       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
356       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
357       bigit_index1--;
358       bigit_index2++;
359     }
360     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
361     accumulator >>= kBigitSize;
362   }
363   for (int i = used_digits_; i < product_length; ++i) {
364     int bigit_index1 = used_digits_ - 1;
365     int bigit_index2 = i - bigit_index1;
366     // Invariant: sum of both indices is again equal to i.
367     // Inner loop runs 0 times on last iteration, emptying accumulator.
368     while (bigit_index2 < used_digits_) {
369       Chunk chunk1 = bigits_[copy_offset + bigit_index1];
370       Chunk chunk2 = bigits_[copy_offset + bigit_index2];
371       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
372       bigit_index1--;
373       bigit_index2++;
374     }
375     // The overwritten bigits_[i] will never be read in further loop iterations,
376     // because bigit_index1 and bigit_index2 are always greater
377     // than i - used_digits_.
378     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
379     accumulator >>= kBigitSize;
380   }
381   // Since the result was guaranteed to lie inside the number the
382   // accumulator must be 0 now.
383   DCHECK_EQ(accumulator, 0);
384 
385   // Don't forget to update the used_digits and the exponent.
386   used_digits_ = product_length;
387   exponent_ *= 2;
388   Clamp();
389 }
390 
391 
AssignPowerUInt16(uint16_t base,int power_exponent)392 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
393   DCHECK_NE(base, 0);
394   DCHECK_GE(power_exponent, 0);
395   if (power_exponent == 0) {
396     AssignUInt16(1);
397     return;
398   }
399   Zero();
400   int shifts = 0;
401   // We expect base to be in range 2-32, and most often to be 10.
402   // It does not make much sense to implement different algorithms for counting
403   // the bits.
404   while ((base & 1) == 0) {
405     base >>= 1;
406     shifts++;
407   }
408   int bit_size = 0;
409   int tmp_base = base;
410   while (tmp_base != 0) {
411     tmp_base >>= 1;
412     bit_size++;
413   }
414   int final_size = bit_size * power_exponent;
415   // 1 extra bigit for the shifting, and one for rounded final_size.
416   EnsureCapacity(final_size / kBigitSize + 2);
417 
418   // Left to Right exponentiation.
419   int mask = 1;
420   while (power_exponent >= mask) mask <<= 1;
421 
422   // The mask is now pointing to the bit above the most significant 1-bit of
423   // power_exponent.
424   // Get rid of first 1-bit;
425   mask >>= 2;
426   uint64_t this_value = base;
427 
428   bool delayed_multipliciation = false;
429   const uint64_t max_32bits = 0xFFFFFFFF;
430   while (mask != 0 && this_value <= max_32bits) {
431     this_value = this_value * this_value;
432     // Verify that there is enough space in this_value to perform the
433     // multiplication.  The first bit_size bits must be 0.
434     if ((power_exponent & mask) != 0) {
435       uint64_t base_bits_mask =
436           ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
437       bool high_bits_zero = (this_value & base_bits_mask) == 0;
438       if (high_bits_zero) {
439         this_value *= base;
440       } else {
441         delayed_multipliciation = true;
442       }
443     }
444     mask >>= 1;
445   }
446   AssignUInt64(this_value);
447   if (delayed_multipliciation) {
448     MultiplyByUInt32(base);
449   }
450 
451   // Now do the same thing as a bignum.
452   while (mask != 0) {
453     Square();
454     if ((power_exponent & mask) != 0) {
455       MultiplyByUInt32(base);
456     }
457     mask >>= 1;
458   }
459 
460   // And finally add the saved shifts.
461   ShiftLeft(shifts * power_exponent);
462 }
463 
464 
465 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)466 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
467   DCHECK(IsClamped());
468   DCHECK(other.IsClamped());
469   DCHECK_GT(other.used_digits_, 0);
470 
471   // Easy case: if we have less digits than the divisor than the result is 0.
472   // Note: this handles the case where this == 0, too.
473   if (BigitLength() < other.BigitLength()) {
474     return 0;
475   }
476 
477   Align(other);
478 
479   uint16_t result = 0;
480 
481   // Start by removing multiples of 'other' until both numbers have the same
482   // number of digits.
483   while (BigitLength() > other.BigitLength()) {
484     // This naive approach is extremely inefficient if the this divided other
485     // might be big. This function is implemented for doubleToString where
486     // the result should be small (less than 10).
487     DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
488     // Remove the multiples of the first digit.
489     // Example this = 23 and other equals 9. -> Remove 2 multiples.
490     result += bigits_[used_digits_ - 1];
491     SubtractTimes(other, bigits_[used_digits_ - 1]);
492   }
493 
494   DCHECK(BigitLength() == other.BigitLength());
495 
496   // Both bignums are at the same length now.
497   // Since other has more than 0 digits we know that the access to
498   // bigits_[used_digits_ - 1] is safe.
499   Chunk this_bigit = bigits_[used_digits_ - 1];
500   Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
501 
502   if (other.used_digits_ == 1) {
503     // Shortcut for easy (and common) case.
504     int quotient = this_bigit / other_bigit;
505     bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
506     result += quotient;
507     Clamp();
508     return result;
509   }
510 
511   int division_estimate = this_bigit / (other_bigit + 1);
512   result += division_estimate;
513   SubtractTimes(other, division_estimate);
514 
515   if (other_bigit * (division_estimate + 1) > this_bigit) {
516     // No need to even try to subtract. Even if other's remaining digits were 0
517     // another subtraction would be too much.
518     return result;
519   }
520 
521   while (LessEqual(other, *this)) {
522     SubtractBignum(other);
523     result++;
524   }
525   return result;
526 }
527 
528 
529 template<typename S>
SizeInHexChars(S number)530 static int SizeInHexChars(S number) {
531   DCHECK_GT(number, 0);
532   int result = 0;
533   while (number != 0) {
534     number >>= 4;
535     result++;
536   }
537   return result;
538 }
539 
540 
ToHexString(char * buffer,int buffer_size) const541 bool Bignum::ToHexString(char* buffer, int buffer_size) const {
542   DCHECK(IsClamped());
543   // Each bigit must be printable as separate hex-character.
544   DCHECK_EQ(kBigitSize % 4, 0);
545   const int kHexCharsPerBigit = kBigitSize / 4;
546 
547   if (used_digits_ == 0) {
548     if (buffer_size < 2) return false;
549     buffer[0] = '0';
550     buffer[1] = '\0';
551     return true;
552   }
553   // We add 1 for the terminating '\0' character.
554   int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
555       SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
556   if (needed_chars > buffer_size) return false;
557   int string_index = needed_chars - 1;
558   buffer[string_index--] = '\0';
559   for (int i = 0; i < exponent_; ++i) {
560     for (int j = 0; j < kHexCharsPerBigit; ++j) {
561       buffer[string_index--] = '0';
562     }
563   }
564   for (int i = 0; i < used_digits_ - 1; ++i) {
565     Chunk current_bigit = bigits_[i];
566     for (int j = 0; j < kHexCharsPerBigit; ++j) {
567       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
568       current_bigit >>= 4;
569     }
570   }
571   // And finally the last bigit.
572   Chunk most_significant_bigit = bigits_[used_digits_ - 1];
573   while (most_significant_bigit != 0) {
574     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
575     most_significant_bigit >>= 4;
576   }
577   return true;
578 }
579 
580 
BigitAt(int index) const581 Bignum::Chunk Bignum::BigitAt(int index) const {
582   if (index >= BigitLength()) return 0;
583   if (index < exponent_) return 0;
584   return bigits_[index - exponent_];
585 }
586 
587 
Compare(const Bignum & a,const Bignum & b)588 int Bignum::Compare(const Bignum& a, const Bignum& b) {
589   DCHECK(a.IsClamped());
590   DCHECK(b.IsClamped());
591   int bigit_length_a = a.BigitLength();
592   int bigit_length_b = b.BigitLength();
593   if (bigit_length_a < bigit_length_b) return -1;
594   if (bigit_length_a > bigit_length_b) return +1;
595   for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
596     Chunk bigit_a = a.BigitAt(i);
597     Chunk bigit_b = b.BigitAt(i);
598     if (bigit_a < bigit_b) return -1;
599     if (bigit_a > bigit_b) return +1;
600     // Otherwise they are equal up to this digit. Try the next digit.
601   }
602   return 0;
603 }
604 
605 
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)606 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
607   DCHECK(a.IsClamped());
608   DCHECK(b.IsClamped());
609   DCHECK(c.IsClamped());
610   if (a.BigitLength() < b.BigitLength()) {
611     return PlusCompare(b, a, c);
612   }
613   if (a.BigitLength() + 1 < c.BigitLength()) return -1;
614   if (a.BigitLength() > c.BigitLength()) return +1;
615   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
616   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
617   // of 'a'.
618   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
619     return -1;
620   }
621 
622   Chunk borrow = 0;
623   // Starting at min_exponent all digits are == 0. So no need to compare them.
624   int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
625   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
626     Chunk chunk_a = a.BigitAt(i);
627     Chunk chunk_b = b.BigitAt(i);
628     Chunk chunk_c = c.BigitAt(i);
629     Chunk sum = chunk_a + chunk_b;
630     if (sum > chunk_c + borrow) {
631       return +1;
632     } else {
633       borrow = chunk_c + borrow - sum;
634       if (borrow > 1) return -1;
635       borrow <<= kBigitSize;
636     }
637   }
638   if (borrow == 0) return 0;
639   return -1;
640 }
641 
642 
Clamp()643 void Bignum::Clamp() {
644   while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
645     used_digits_--;
646   }
647   if (used_digits_ == 0) {
648     // Zero.
649     exponent_ = 0;
650   }
651 }
652 
653 
IsClamped() const654 bool Bignum::IsClamped() const {
655   return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
656 }
657 
658 
Zero()659 void Bignum::Zero() {
660   for (int i = 0; i < used_digits_; ++i) {
661     bigits_[i] = 0;
662   }
663   used_digits_ = 0;
664   exponent_ = 0;
665 }
666 
667 
Align(const Bignum & other)668 void Bignum::Align(const Bignum& other) {
669   if (exponent_ > other.exponent_) {
670     // If "X" represents a "hidden" digit (by the exponent) then we are in the
671     // following case (a == this, b == other):
672     // a:  aaaaaaXXXX   or a:   aaaaaXXX
673     // b:     bbbbbbX      b: bbbbbbbbXX
674     // We replace some of the hidden digits (X) of a with 0 digits.
675     // a:  aaaaaa000X   or a:   aaaaa0XX
676     int zero_digits = exponent_ - other.exponent_;
677     EnsureCapacity(used_digits_ + zero_digits);
678     for (int i = used_digits_ - 1; i >= 0; --i) {
679       bigits_[i + zero_digits] = bigits_[i];
680     }
681     for (int i = 0; i < zero_digits; ++i) {
682       bigits_[i] = 0;
683     }
684     used_digits_ += zero_digits;
685     exponent_ -= zero_digits;
686     DCHECK_GE(used_digits_, 0);
687     DCHECK_GE(exponent_, 0);
688   }
689 }
690 
691 
BigitsShiftLeft(int shift_amount)692 void Bignum::BigitsShiftLeft(int shift_amount) {
693   DCHECK_LT(shift_amount, kBigitSize);
694   DCHECK_GE(shift_amount, 0);
695   Chunk carry = 0;
696   for (int i = 0; i < used_digits_; ++i) {
697     Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
698     bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
699     carry = new_carry;
700   }
701   if (carry != 0) {
702     bigits_[used_digits_] = carry;
703     used_digits_++;
704   }
705 }
706 
707 
SubtractTimes(const Bignum & other,int factor)708 void Bignum::SubtractTimes(const Bignum& other, int factor) {
709 #ifdef DEBUG
710   Bignum a, b;
711   a.AssignBignum(*this);
712   b.AssignBignum(other);
713   b.MultiplyByUInt32(factor);
714   a.SubtractBignum(b);
715 #endif
716   DCHECK(exponent_ <= other.exponent_);
717   if (factor < 3) {
718     for (int i = 0; i < factor; ++i) {
719       SubtractBignum(other);
720     }
721     return;
722   }
723   Chunk borrow = 0;
724   int exponent_diff = other.exponent_ - exponent_;
725   for (int i = 0; i < other.used_digits_; ++i) {
726     DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
727     DoubleChunk remove = borrow + product;
728     Chunk difference =
729         bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
730     bigits_[i + exponent_diff] = difference & kBigitMask;
731     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
732                                 (remove >> kBigitSize));
733   }
734   for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
735     if (borrow == 0) return;
736     Chunk difference = bigits_[i] - borrow;
737     bigits_[i] = difference & kBigitMask;
738     borrow = difference >> (kChunkSize - 1);
739   }
740   Clamp();
741   DCHECK(Bignum::Equal(a, *this));
742 }
743 
744 
745 }  // namespace internal
746 }  // namespace v8
747