1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_REGISTER_ALLOCATOR_H_
6 #define V8_COMPILER_REGISTER_ALLOCATOR_H_
7 
8 #include "src/base/bits.h"
9 #include "src/base/compiler-specific.h"
10 #include "src/compiler/instruction.h"
11 #include "src/globals.h"
12 #include "src/ostreams.h"
13 #include "src/register-configuration.h"
14 #include "src/zone/zone-containers.h"
15 
16 namespace v8 {
17 namespace internal {
18 namespace compiler {
19 
20 enum RegisterKind { GENERAL_REGISTERS, FP_REGISTERS };
21 
22 // This class represents a single point of a InstructionOperand's lifetime. For
23 // each instruction there are four lifetime positions:
24 //
25 //   [[START, END], [START, END]]
26 //
27 // Where the first half position corresponds to
28 //
29 //  [GapPosition::START, GapPosition::END]
30 //
31 // and the second half position corresponds to
32 //
33 //  [Lifetime::USED_AT_START, Lifetime::USED_AT_END]
34 //
35 class LifetimePosition final {
36  public:
37   // Return the lifetime position that corresponds to the beginning of
38   // the gap with the given index.
GapFromInstructionIndex(int index)39   static LifetimePosition GapFromInstructionIndex(int index) {
40     return LifetimePosition(index * kStep);
41   }
42   // Return the lifetime position that corresponds to the beginning of
43   // the instruction with the given index.
InstructionFromInstructionIndex(int index)44   static LifetimePosition InstructionFromInstructionIndex(int index) {
45     return LifetimePosition(index * kStep + kHalfStep);
46   }
47 
ExistsGapPositionBetween(LifetimePosition pos1,LifetimePosition pos2)48   static bool ExistsGapPositionBetween(LifetimePosition pos1,
49                                        LifetimePosition pos2) {
50     if (pos1 > pos2) std::swap(pos1, pos2);
51     LifetimePosition next(pos1.value_ + 1);
52     if (next.IsGapPosition()) return next < pos2;
53     return next.NextFullStart() < pos2;
54   }
55 
56   // Returns a numeric representation of this lifetime position.
value()57   int value() const { return value_; }
58 
59   // Returns the index of the instruction to which this lifetime position
60   // corresponds.
ToInstructionIndex()61   int ToInstructionIndex() const {
62     DCHECK(IsValid());
63     return value_ / kStep;
64   }
65 
66   // Returns true if this lifetime position corresponds to a START value
IsStart()67   bool IsStart() const { return (value_ & (kHalfStep - 1)) == 0; }
68   // Returns true if this lifetime position corresponds to an END value
IsEnd()69   bool IsEnd() const { return (value_ & (kHalfStep - 1)) == 1; }
70   // Returns true if this lifetime position corresponds to a gap START value
IsFullStart()71   bool IsFullStart() const { return (value_ & (kStep - 1)) == 0; }
72 
IsGapPosition()73   bool IsGapPosition() const { return (value_ & 0x2) == 0; }
IsInstructionPosition()74   bool IsInstructionPosition() const { return !IsGapPosition(); }
75 
76   // Returns the lifetime position for the current START.
Start()77   LifetimePosition Start() const {
78     DCHECK(IsValid());
79     return LifetimePosition(value_ & ~(kHalfStep - 1));
80   }
81 
82   // Returns the lifetime position for the current gap START.
FullStart()83   LifetimePosition FullStart() const {
84     DCHECK(IsValid());
85     return LifetimePosition(value_ & ~(kStep - 1));
86   }
87 
88   // Returns the lifetime position for the current END.
End()89   LifetimePosition End() const {
90     DCHECK(IsValid());
91     return LifetimePosition(Start().value_ + kHalfStep / 2);
92   }
93 
94   // Returns the lifetime position for the beginning of the next START.
NextStart()95   LifetimePosition NextStart() const {
96     DCHECK(IsValid());
97     return LifetimePosition(Start().value_ + kHalfStep);
98   }
99 
100   // Returns the lifetime position for the beginning of the next gap START.
NextFullStart()101   LifetimePosition NextFullStart() const {
102     DCHECK(IsValid());
103     return LifetimePosition(FullStart().value_ + kStep);
104   }
105 
106   // Returns the lifetime position for the beginning of the previous START.
PrevStart()107   LifetimePosition PrevStart() const {
108     DCHECK(IsValid());
109     DCHECK_LE(kHalfStep, value_);
110     return LifetimePosition(Start().value_ - kHalfStep);
111   }
112 
113   // Constructs the lifetime position which does not correspond to any
114   // instruction.
LifetimePosition()115   LifetimePosition() : value_(-1) {}
116 
117   // Returns true if this lifetime positions corrensponds to some
118   // instruction.
IsValid()119   bool IsValid() const { return value_ != -1; }
120 
121   bool operator<(const LifetimePosition& that) const {
122     return this->value_ < that.value_;
123   }
124 
125   bool operator<=(const LifetimePosition& that) const {
126     return this->value_ <= that.value_;
127   }
128 
129   bool operator==(const LifetimePosition& that) const {
130     return this->value_ == that.value_;
131   }
132 
133   bool operator!=(const LifetimePosition& that) const {
134     return this->value_ != that.value_;
135   }
136 
137   bool operator>(const LifetimePosition& that) const {
138     return this->value_ > that.value_;
139   }
140 
141   bool operator>=(const LifetimePosition& that) const {
142     return this->value_ >= that.value_;
143   }
144 
145   void Print() const;
146 
Invalid()147   static inline LifetimePosition Invalid() { return LifetimePosition(); }
148 
MaxPosition()149   static inline LifetimePosition MaxPosition() {
150     // We have to use this kind of getter instead of static member due to
151     // crash bug in GDB.
152     return LifetimePosition(kMaxInt);
153   }
154 
FromInt(int value)155   static inline LifetimePosition FromInt(int value) {
156     return LifetimePosition(value);
157   }
158 
159  private:
160   static const int kHalfStep = 2;
161   static const int kStep = 2 * kHalfStep;
162 
163   static_assert(base::bits::IsPowerOfTwo(kHalfStep),
164                 "Code relies on kStep and kHalfStep being a power of two");
165 
LifetimePosition(int value)166   explicit LifetimePosition(int value) : value_(value) {}
167 
168   int value_;
169 };
170 
171 
172 std::ostream& operator<<(std::ostream& os, const LifetimePosition pos);
173 
174 
175 // Representation of the non-empty interval [start,end[.
176 class UseInterval final : public ZoneObject {
177  public:
UseInterval(LifetimePosition start,LifetimePosition end)178   UseInterval(LifetimePosition start, LifetimePosition end)
179       : start_(start), end_(end), next_(nullptr) {
180     DCHECK(start < end);
181   }
182 
start()183   LifetimePosition start() const { return start_; }
set_start(LifetimePosition start)184   void set_start(LifetimePosition start) { start_ = start; }
end()185   LifetimePosition end() const { return end_; }
set_end(LifetimePosition end)186   void set_end(LifetimePosition end) { end_ = end; }
next()187   UseInterval* next() const { return next_; }
set_next(UseInterval * next)188   void set_next(UseInterval* next) { next_ = next; }
189 
190   // Split this interval at the given position without effecting the
191   // live range that owns it. The interval must contain the position.
192   UseInterval* SplitAt(LifetimePosition pos, Zone* zone);
193 
194   // If this interval intersects with other return smallest position
195   // that belongs to both of them.
Intersect(const UseInterval * other)196   LifetimePosition Intersect(const UseInterval* other) const {
197     if (other->start() < start_) return other->Intersect(this);
198     if (other->start() < end_) return other->start();
199     return LifetimePosition::Invalid();
200   }
201 
Contains(LifetimePosition point)202   bool Contains(LifetimePosition point) const {
203     return start_ <= point && point < end_;
204   }
205 
206   // Returns the index of the first gap covered by this interval.
FirstGapIndex()207   int FirstGapIndex() const {
208     int ret = start_.ToInstructionIndex();
209     if (start_.IsInstructionPosition()) {
210       ++ret;
211     }
212     return ret;
213   }
214 
215   // Returns the index of the last gap covered by this interval.
LastGapIndex()216   int LastGapIndex() const {
217     int ret = end_.ToInstructionIndex();
218     if (end_.IsGapPosition() && end_.IsStart()) {
219       --ret;
220     }
221     return ret;
222   }
223 
224  private:
225   LifetimePosition start_;
226   LifetimePosition end_;
227   UseInterval* next_;
228 
229   DISALLOW_COPY_AND_ASSIGN(UseInterval);
230 };
231 
232 enum class UsePositionType : uint8_t {
233   kRegisterOrSlot,
234   kRegisterOrSlotOrConstant,
235   kRequiresRegister,
236   kRequiresSlot
237 };
238 
239 enum class UsePositionHintType : uint8_t {
240   kNone,
241   kOperand,
242   kUsePos,
243   kPhi,
244   kUnresolved
245 };
246 
247 
248 static const int32_t kUnassignedRegister =
249     RegisterConfiguration::kMaxGeneralRegisters;
250 
251 static_assert(kUnassignedRegister <= RegisterConfiguration::kMaxFPRegisters,
252               "kUnassignedRegister too small");
253 
254 // Representation of a use position.
255 class V8_EXPORT_PRIVATE UsePosition final
NON_EXPORTED_BASE(ZoneObject)256     : public NON_EXPORTED_BASE(ZoneObject) {
257  public:
258   UsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint,
259               UsePositionHintType hint_type);
260 
261   InstructionOperand* operand() const { return operand_; }
262   bool HasOperand() const { return operand_ != nullptr; }
263 
264   bool RegisterIsBeneficial() const {
265     return RegisterBeneficialField::decode(flags_);
266   }
267   UsePositionType type() const { return TypeField::decode(flags_); }
268   void set_type(UsePositionType type, bool register_beneficial);
269 
270   LifetimePosition pos() const { return pos_; }
271 
272   UsePosition* next() const { return next_; }
273   void set_next(UsePosition* next) { next_ = next; }
274 
275   // For hinting only.
276   void set_assigned_register(int register_code) {
277     flags_ = AssignedRegisterField::update(flags_, register_code);
278   }
279 
280   UsePositionHintType hint_type() const {
281     return HintTypeField::decode(flags_);
282   }
283   bool HasHint() const;
284   bool HintRegister(int* register_code) const;
285   void SetHint(UsePosition* use_pos);
286   void ResolveHint(UsePosition* use_pos);
287   bool IsResolved() const {
288     return hint_type() != UsePositionHintType::kUnresolved;
289   }
290   static UsePositionHintType HintTypeForOperand(const InstructionOperand& op);
291 
292  private:
293   typedef BitField<UsePositionType, 0, 2> TypeField;
294   typedef BitField<UsePositionHintType, 2, 3> HintTypeField;
295   typedef BitField<bool, 5, 1> RegisterBeneficialField;
296   typedef BitField<int32_t, 6, 6> AssignedRegisterField;
297 
298   InstructionOperand* const operand_;
299   void* hint_;
300   UsePosition* next_;
301   LifetimePosition const pos_;
302   uint32_t flags_;
303 
304   DISALLOW_COPY_AND_ASSIGN(UsePosition);
305 };
306 
307 
308 class SpillRange;
309 class RegisterAllocationData;
310 class TopLevelLiveRange;
311 
312 // Representation of SSA values' live ranges as a collection of (continuous)
313 // intervals over the instruction ordering.
NON_EXPORTED_BASE(ZoneObject)314 class V8_EXPORT_PRIVATE LiveRange : public NON_EXPORTED_BASE(ZoneObject) {
315  public:
316   UseInterval* first_interval() const { return first_interval_; }
317   UsePosition* first_pos() const { return first_pos_; }
318   TopLevelLiveRange* TopLevel() { return top_level_; }
319   const TopLevelLiveRange* TopLevel() const { return top_level_; }
320 
321   bool IsTopLevel() const;
322 
323   LiveRange* next() const { return next_; }
324 
325   int relative_id() const { return relative_id_; }
326 
327   bool IsEmpty() const { return first_interval() == nullptr; }
328 
329   InstructionOperand GetAssignedOperand() const;
330 
331   MachineRepresentation representation() const {
332     return RepresentationField::decode(bits_);
333   }
334 
335   int assigned_register() const { return AssignedRegisterField::decode(bits_); }
336   bool HasRegisterAssigned() const {
337     return assigned_register() != kUnassignedRegister;
338   }
339   void set_assigned_register(int reg);
340   void UnsetAssignedRegister();
341 
342   bool spilled() const { return SpilledField::decode(bits_); }
343   void Spill();
344 
345   RegisterKind kind() const;
346 
347   // Returns use position in this live range that follows both start
348   // and last processed use position.
349   UsePosition* NextUsePosition(LifetimePosition start) const;
350 
351   // Returns use position for which register is required in this live
352   // range and which follows both start and last processed use position
353   UsePosition* NextRegisterPosition(LifetimePosition start) const;
354 
355   // Returns the first use position requiring stack slot, or nullptr.
356   UsePosition* NextSlotPosition(LifetimePosition start) const;
357 
358   // Returns use position for which register is beneficial in this live
359   // range and which follows both start and last processed use position
360   UsePosition* NextUsePositionRegisterIsBeneficial(
361       LifetimePosition start) const;
362 
363   // Returns lifetime position for which register is beneficial in this live
364   // range and which follows both start and last processed use position.
365   LifetimePosition NextLifetimePositionRegisterIsBeneficial(
366       const LifetimePosition& start) const;
367 
368   // Returns use position for which register is beneficial in this live
369   // range and which precedes start.
370   UsePosition* PreviousUsePositionRegisterIsBeneficial(
371       LifetimePosition start) const;
372 
373   // Can this live range be spilled at this position.
374   bool CanBeSpilled(LifetimePosition pos) const;
375 
376   // Splitting primitive used by both splitting and splintering members.
377   // Performs the split, but does not link the resulting ranges.
378   // The given position must follow the start of the range.
379   // All uses following the given position will be moved from this
380   // live range to the result live range.
381   // The current range will terminate at position, while result will start from
382   // position.
383   enum HintConnectionOption : bool {
384     DoNotConnectHints = false,
385     ConnectHints = true
386   };
387   UsePosition* DetachAt(LifetimePosition position, LiveRange* result,
388                         Zone* zone, HintConnectionOption connect_hints);
389 
390   // Detaches at position, and then links the resulting ranges. Returns the
391   // child, which starts at position.
392   LiveRange* SplitAt(LifetimePosition position, Zone* zone);
393 
394   // Returns nullptr when no register is hinted, otherwise sets register_index.
395   UsePosition* FirstHintPosition(int* register_index) const;
396   UsePosition* FirstHintPosition() const {
397     int register_index;
398     return FirstHintPosition(&register_index);
399   }
400 
401   UsePosition* current_hint_position() const {
402     DCHECK(current_hint_position_ == FirstHintPosition());
403     return current_hint_position_;
404   }
405 
406   LifetimePosition Start() const {
407     DCHECK(!IsEmpty());
408     return first_interval()->start();
409   }
410 
411   LifetimePosition End() const {
412     DCHECK(!IsEmpty());
413     return last_interval_->end();
414   }
415 
416   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
417   bool CanCover(LifetimePosition position) const;
418   bool Covers(LifetimePosition position) const;
419   LifetimePosition FirstIntersection(LiveRange* other) const;
420 
421   void VerifyChildStructure() const {
422     VerifyIntervals();
423     VerifyPositions();
424   }
425 
426   void ConvertUsesToOperand(const InstructionOperand& op,
427                             const InstructionOperand& spill_op);
428   void SetUseHints(int register_index);
429   void UnsetUseHints() { SetUseHints(kUnassignedRegister); }
430 
431   void Print(const RegisterConfiguration* config, bool with_children) const;
432   void Print(bool with_children) const;
433 
434  private:
435   friend class TopLevelLiveRange;
436   explicit LiveRange(int relative_id, MachineRepresentation rep,
437                      TopLevelLiveRange* top_level);
438 
439   void UpdateParentForAllChildren(TopLevelLiveRange* new_top_level);
440 
441   void set_spilled(bool value) { bits_ = SpilledField::update(bits_, value); }
442 
443   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
444   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
445                                   LifetimePosition but_not_past) const;
446 
447   void VerifyPositions() const;
448   void VerifyIntervals() const;
449 
450   typedef BitField<bool, 0, 1> SpilledField;
451   typedef BitField<int32_t, 6, 6> AssignedRegisterField;
452   typedef BitField<MachineRepresentation, 12, 8> RepresentationField;
453 
454   // Unique among children and splinters of the same virtual register.
455   int relative_id_;
456   uint32_t bits_;
457   UseInterval* last_interval_;
458   UseInterval* first_interval_;
459   UsePosition* first_pos_;
460   TopLevelLiveRange* top_level_;
461   LiveRange* next_;
462   // This is used as a cache, it doesn't affect correctness.
463   mutable UseInterval* current_interval_;
464   // This is used as a cache, it doesn't affect correctness.
465   mutable UsePosition* last_processed_use_;
466   // This is used as a cache, it's invalid outside of BuildLiveRanges.
467   mutable UsePosition* current_hint_position_;
468   // Cache the last position splintering stopped at.
469   mutable UsePosition* splitting_pointer_;
470 
471   DISALLOW_COPY_AND_ASSIGN(LiveRange);
472 };
473 
474 
475 class V8_EXPORT_PRIVATE TopLevelLiveRange final : public LiveRange {
476  public:
477   explicit TopLevelLiveRange(int vreg, MachineRepresentation rep);
spill_start_index()478   int spill_start_index() const { return spill_start_index_; }
479 
IsFixed()480   bool IsFixed() const { return vreg_ < 0; }
481 
is_phi()482   bool is_phi() const { return IsPhiField::decode(bits_); }
set_is_phi(bool value)483   void set_is_phi(bool value) { bits_ = IsPhiField::update(bits_, value); }
484 
is_non_loop_phi()485   bool is_non_loop_phi() const { return IsNonLoopPhiField::decode(bits_); }
set_is_non_loop_phi(bool value)486   void set_is_non_loop_phi(bool value) {
487     bits_ = IsNonLoopPhiField::update(bits_, value);
488   }
489 
has_slot_use()490   bool has_slot_use() const { return HasSlotUseField::decode(bits_); }
set_has_slot_use(bool value)491   void set_has_slot_use(bool value) {
492     bits_ = HasSlotUseField::update(bits_, value);
493   }
494 
495   // Add a new interval or a new use position to this live range.
496   void EnsureInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
497   void AddUseInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
498   void AddUsePosition(UsePosition* pos);
499 
500   // Shorten the most recently added interval by setting a new start.
501   void ShortenTo(LifetimePosition start);
502 
503   // Detaches between start and end, and attributes the resulting range to
504   // result.
505   // The current range is pointed to as "splintered_from". No parent/child
506   // relationship is established between this and result.
507   void Splinter(LifetimePosition start, LifetimePosition end, Zone* zone);
508 
509   // Assuming other was splintered from this range, embeds other and its
510   // children as part of the children sequence of this range.
511   void Merge(TopLevelLiveRange* other, Zone* zone);
512 
513   // Spill range management.
514   void SetSpillRange(SpillRange* spill_range);
515   enum class SpillType { kNoSpillType, kSpillOperand, kSpillRange };
set_spill_type(SpillType value)516   void set_spill_type(SpillType value) {
517     bits_ = SpillTypeField::update(bits_, value);
518   }
spill_type()519   SpillType spill_type() const { return SpillTypeField::decode(bits_); }
GetSpillOperand()520   InstructionOperand* GetSpillOperand() const {
521     DCHECK_EQ(SpillType::kSpillOperand, spill_type());
522     return spill_operand_;
523   }
524 
GetAllocatedSpillRange()525   SpillRange* GetAllocatedSpillRange() const {
526     DCHECK_NE(SpillType::kSpillOperand, spill_type());
527     return spill_range_;
528   }
529 
GetSpillRange()530   SpillRange* GetSpillRange() const {
531     DCHECK_EQ(SpillType::kSpillRange, spill_type());
532     return spill_range_;
533   }
HasNoSpillType()534   bool HasNoSpillType() const {
535     return spill_type() == SpillType::kNoSpillType;
536   }
HasSpillOperand()537   bool HasSpillOperand() const {
538     return spill_type() == SpillType::kSpillOperand;
539   }
HasSpillRange()540   bool HasSpillRange() const { return spill_type() == SpillType::kSpillRange; }
541 
542   AllocatedOperand GetSpillRangeOperand() const;
543 
544   void RecordSpillLocation(Zone* zone, int gap_index,
545                            InstructionOperand* operand);
546   void SetSpillOperand(InstructionOperand* operand);
SetSpillStartIndex(int start)547   void SetSpillStartIndex(int start) {
548     spill_start_index_ = Min(start, spill_start_index_);
549   }
550 
551   void CommitSpillMoves(InstructionSequence* sequence,
552                         const InstructionOperand& operand,
553                         bool might_be_duplicated);
554 
555   // If all the children of this range are spilled in deferred blocks, and if
556   // for any non-spilled child with a use position requiring a slot, that range
557   // is contained in a deferred block, mark the range as
558   // IsSpilledOnlyInDeferredBlocks, so that we avoid spilling at definition,
559   // and instead let the LiveRangeConnector perform the spills within the
560   // deferred blocks. If so, we insert here spills for non-spilled ranges
561   // with slot use positions.
TreatAsSpilledInDeferredBlock(Zone * zone,int total_block_count)562   void TreatAsSpilledInDeferredBlock(Zone* zone, int total_block_count) {
563     spill_start_index_ = -1;
564     spilled_in_deferred_blocks_ = true;
565     spill_move_insertion_locations_ = nullptr;
566     list_of_blocks_requiring_spill_operands_ =
567         new (zone) BitVector(total_block_count, zone);
568   }
569 
570   void CommitSpillInDeferredBlocks(RegisterAllocationData* data,
571                                    const InstructionOperand& spill_operand,
572                                    BitVector* necessary_spill_points);
573 
splintered_from()574   TopLevelLiveRange* splintered_from() const { return splintered_from_; }
IsSplinter()575   bool IsSplinter() const { return splintered_from_ != nullptr; }
MayRequireSpillRange()576   bool MayRequireSpillRange() const {
577     DCHECK(!IsSplinter());
578     return !HasSpillOperand() && spill_range_ == nullptr;
579   }
580   void UpdateSpillRangePostMerge(TopLevelLiveRange* merged);
vreg()581   int vreg() const { return vreg_; }
582 
583 #if DEBUG
584   int debug_virt_reg() const;
585 #endif
586 
587   void Verify() const;
588   void VerifyChildrenInOrder() const;
589 
GetNextChildId()590   int GetNextChildId() {
591     return IsSplinter() ? splintered_from()->GetNextChildId()
592                         : ++last_child_id_;
593   }
594 
GetChildCount()595   int GetChildCount() const { return last_child_id_ + 1; }
596 
IsSpilledOnlyInDeferredBlocks()597   bool IsSpilledOnlyInDeferredBlocks() const {
598     return spilled_in_deferred_blocks_;
599   }
600 
601   struct SpillMoveInsertionList;
602 
GetSpillMoveInsertionLocations()603   SpillMoveInsertionList* GetSpillMoveInsertionLocations() const {
604     DCHECK(!IsSpilledOnlyInDeferredBlocks());
605     return spill_move_insertion_locations_;
606   }
splinter()607   TopLevelLiveRange* splinter() const { return splinter_; }
SetSplinter(TopLevelLiveRange * splinter)608   void SetSplinter(TopLevelLiveRange* splinter) {
609     DCHECK_NULL(splinter_);
610     DCHECK_NOT_NULL(splinter);
611 
612     splinter_ = splinter;
613     splinter->relative_id_ = GetNextChildId();
614     splinter->set_spill_type(spill_type());
615     splinter->SetSplinteredFrom(this);
616   }
617 
MarkHasPreassignedSlot()618   void MarkHasPreassignedSlot() { has_preassigned_slot_ = true; }
has_preassigned_slot()619   bool has_preassigned_slot() const { return has_preassigned_slot_; }
620 
AddBlockRequiringSpillOperand(RpoNumber block_id)621   void AddBlockRequiringSpillOperand(RpoNumber block_id) {
622     DCHECK(IsSpilledOnlyInDeferredBlocks());
623     GetListOfBlocksRequiringSpillOperands()->Add(block_id.ToInt());
624   }
625 
GetListOfBlocksRequiringSpillOperands()626   BitVector* GetListOfBlocksRequiringSpillOperands() const {
627     DCHECK(IsSpilledOnlyInDeferredBlocks());
628     return list_of_blocks_requiring_spill_operands_;
629   }
630 
631  private:
632   void SetSplinteredFrom(TopLevelLiveRange* splinter_parent);
633 
634   typedef BitField<bool, 1, 1> HasSlotUseField;
635   typedef BitField<bool, 2, 1> IsPhiField;
636   typedef BitField<bool, 3, 1> IsNonLoopPhiField;
637   typedef BitField<SpillType, 4, 2> SpillTypeField;
638 
639   int vreg_;
640   int last_child_id_;
641   TopLevelLiveRange* splintered_from_;
642   union {
643     // Correct value determined by spill_type()
644     InstructionOperand* spill_operand_;
645     SpillRange* spill_range_;
646   };
647 
648   union {
649     SpillMoveInsertionList* spill_move_insertion_locations_;
650     BitVector* list_of_blocks_requiring_spill_operands_;
651   };
652 
653   // TODO(mtrofin): generalize spilling after definition, currently specialized
654   // just for spill in a single deferred block.
655   bool spilled_in_deferred_blocks_;
656   int spill_start_index_;
657   UsePosition* last_pos_;
658   TopLevelLiveRange* splinter_;
659   bool has_preassigned_slot_;
660 
661   DISALLOW_COPY_AND_ASSIGN(TopLevelLiveRange);
662 };
663 
664 
665 struct PrintableLiveRange {
666   const RegisterConfiguration* register_configuration_;
667   const LiveRange* range_;
668 };
669 
670 
671 std::ostream& operator<<(std::ostream& os,
672                          const PrintableLiveRange& printable_range);
673 
674 
675 class SpillRange final : public ZoneObject {
676  public:
677   static const int kUnassignedSlot = -1;
678   SpillRange(TopLevelLiveRange* range, Zone* zone);
679 
interval()680   UseInterval* interval() const { return use_interval_; }
681 
IsEmpty()682   bool IsEmpty() const { return live_ranges_.empty(); }
683   bool TryMerge(SpillRange* other);
HasSlot()684   bool HasSlot() const { return assigned_slot_ != kUnassignedSlot; }
685 
set_assigned_slot(int index)686   void set_assigned_slot(int index) {
687     DCHECK_EQ(kUnassignedSlot, assigned_slot_);
688     assigned_slot_ = index;
689   }
assigned_slot()690   int assigned_slot() {
691     DCHECK_NE(kUnassignedSlot, assigned_slot_);
692     return assigned_slot_;
693   }
live_ranges()694   const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
695     return live_ranges_;
696   }
live_ranges()697   ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
698   // Spill slots can be 4, 8, or 16 bytes wide.
byte_width()699   int byte_width() const { return byte_width_; }
700   void Print() const;
701 
702  private:
End()703   LifetimePosition End() const { return end_position_; }
704   bool IsIntersectingWith(SpillRange* other) const;
705   // Merge intervals, making sure the use intervals are sorted
706   void MergeDisjointIntervals(UseInterval* other);
707 
708   ZoneVector<TopLevelLiveRange*> live_ranges_;
709   UseInterval* use_interval_;
710   LifetimePosition end_position_;
711   int assigned_slot_;
712   int byte_width_;
713 
714   DISALLOW_COPY_AND_ASSIGN(SpillRange);
715 };
716 
717 
718 class RegisterAllocationData final : public ZoneObject {
719  public:
720   class PhiMapValue : public ZoneObject {
721    public:
722     PhiMapValue(PhiInstruction* phi, const InstructionBlock* block, Zone* zone);
723 
phi()724     const PhiInstruction* phi() const { return phi_; }
block()725     const InstructionBlock* block() const { return block_; }
726 
727     // For hinting.
assigned_register()728     int assigned_register() const { return assigned_register_; }
set_assigned_register(int register_code)729     void set_assigned_register(int register_code) {
730       DCHECK_EQ(assigned_register_, kUnassignedRegister);
731       assigned_register_ = register_code;
732     }
UnsetAssignedRegister()733     void UnsetAssignedRegister() { assigned_register_ = kUnassignedRegister; }
734 
735     void AddOperand(InstructionOperand* operand);
736     void CommitAssignment(const InstructionOperand& operand);
737 
738    private:
739     PhiInstruction* const phi_;
740     const InstructionBlock* const block_;
741     ZoneVector<InstructionOperand*> incoming_operands_;
742     int assigned_register_;
743   };
744   typedef ZoneMap<int, PhiMapValue*> PhiMap;
745 
746   struct DelayedReference {
747     ReferenceMap* map;
748     InstructionOperand* operand;
749   };
750   typedef ZoneVector<DelayedReference> DelayedReferences;
751   typedef ZoneVector<std::pair<TopLevelLiveRange*, int>>
752       RangesWithPreassignedSlots;
753 
754   RegisterAllocationData(const RegisterConfiguration* config,
755                          Zone* allocation_zone, Frame* frame,
756                          InstructionSequence* code,
757                          const char* debug_name = nullptr);
758 
live_ranges()759   const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
760     return live_ranges_;
761   }
live_ranges()762   ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
fixed_live_ranges()763   const ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() const {
764     return fixed_live_ranges_;
765   }
fixed_live_ranges()766   ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() {
767     return fixed_live_ranges_;
768   }
fixed_float_live_ranges()769   ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() {
770     return fixed_float_live_ranges_;
771   }
fixed_float_live_ranges()772   const ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() const {
773     return fixed_float_live_ranges_;
774   }
fixed_double_live_ranges()775   ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() {
776     return fixed_double_live_ranges_;
777   }
fixed_double_live_ranges()778   const ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() const {
779     return fixed_double_live_ranges_;
780   }
fixed_simd128_live_ranges()781   ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() {
782     return fixed_simd128_live_ranges_;
783   }
fixed_simd128_live_ranges()784   const ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() const {
785     return fixed_simd128_live_ranges_;
786   }
live_in_sets()787   ZoneVector<BitVector*>& live_in_sets() { return live_in_sets_; }
live_out_sets()788   ZoneVector<BitVector*>& live_out_sets() { return live_out_sets_; }
spill_ranges()789   ZoneVector<SpillRange*>& spill_ranges() { return spill_ranges_; }
delayed_references()790   DelayedReferences& delayed_references() { return delayed_references_; }
code()791   InstructionSequence* code() const { return code_; }
792   // This zone is for data structures only needed during register allocation
793   // phases.
allocation_zone()794   Zone* allocation_zone() const { return allocation_zone_; }
795   // This zone is for InstructionOperands and moves that live beyond register
796   // allocation.
code_zone()797   Zone* code_zone() const { return code()->zone(); }
frame()798   Frame* frame() const { return frame_; }
debug_name()799   const char* debug_name() const { return debug_name_; }
config()800   const RegisterConfiguration* config() const { return config_; }
801 
802   MachineRepresentation RepresentationFor(int virtual_register);
803 
804   TopLevelLiveRange* GetOrCreateLiveRangeFor(int index);
805   // Creates a new live range.
806   TopLevelLiveRange* NewLiveRange(int index, MachineRepresentation rep);
807   TopLevelLiveRange* NextLiveRange(MachineRepresentation rep);
808 
809   SpillRange* AssignSpillRangeToLiveRange(TopLevelLiveRange* range);
810   SpillRange* CreateSpillRangeForLiveRange(TopLevelLiveRange* range);
811 
812   MoveOperands* AddGapMove(int index, Instruction::GapPosition position,
813                            const InstructionOperand& from,
814                            const InstructionOperand& to);
815 
IsReference(TopLevelLiveRange * top_range)816   bool IsReference(TopLevelLiveRange* top_range) const {
817     return code()->IsReference(top_range->vreg());
818   }
819 
820   bool ExistsUseWithoutDefinition();
821   bool RangesDefinedInDeferredStayInDeferred();
822 
823   void MarkAllocated(MachineRepresentation rep, int index);
824 
825   PhiMapValue* InitializePhiMap(const InstructionBlock* block,
826                                 PhiInstruction* phi);
827   PhiMapValue* GetPhiMapValueFor(TopLevelLiveRange* top_range);
828   PhiMapValue* GetPhiMapValueFor(int virtual_register);
829   bool IsBlockBoundary(LifetimePosition pos) const;
830 
preassigned_slot_ranges()831   RangesWithPreassignedSlots& preassigned_slot_ranges() {
832     return preassigned_slot_ranges_;
833   }
834 
835  private:
836   int GetNextLiveRangeId();
837 
838   Zone* const allocation_zone_;
839   Frame* const frame_;
840   InstructionSequence* const code_;
841   const char* const debug_name_;
842   const RegisterConfiguration* const config_;
843   PhiMap phi_map_;
844   ZoneVector<BitVector*> live_in_sets_;
845   ZoneVector<BitVector*> live_out_sets_;
846   ZoneVector<TopLevelLiveRange*> live_ranges_;
847   ZoneVector<TopLevelLiveRange*> fixed_live_ranges_;
848   ZoneVector<TopLevelLiveRange*> fixed_float_live_ranges_;
849   ZoneVector<TopLevelLiveRange*> fixed_double_live_ranges_;
850   ZoneVector<TopLevelLiveRange*> fixed_simd128_live_ranges_;
851   ZoneVector<SpillRange*> spill_ranges_;
852   DelayedReferences delayed_references_;
853   BitVector* assigned_registers_;
854   BitVector* assigned_double_registers_;
855   int virtual_register_count_;
856   RangesWithPreassignedSlots preassigned_slot_ranges_;
857 
858   DISALLOW_COPY_AND_ASSIGN(RegisterAllocationData);
859 };
860 
861 
862 class ConstraintBuilder final : public ZoneObject {
863  public:
864   explicit ConstraintBuilder(RegisterAllocationData* data);
865 
866   // Phase 1 : insert moves to account for fixed register operands.
867   void MeetRegisterConstraints();
868 
869   // Phase 2: deconstruct SSA by inserting moves in successors and the headers
870   // of blocks containing phis.
871   void ResolvePhis();
872 
873  private:
data()874   RegisterAllocationData* data() const { return data_; }
code()875   InstructionSequence* code() const { return data()->code(); }
allocation_zone()876   Zone* allocation_zone() const { return data()->allocation_zone(); }
877 
878   InstructionOperand* AllocateFixed(UnallocatedOperand* operand, int pos,
879                                     bool is_tagged);
880   void MeetRegisterConstraints(const InstructionBlock* block);
881   void MeetConstraintsBefore(int index);
882   void MeetConstraintsAfter(int index);
883   void MeetRegisterConstraintsForLastInstructionInBlock(
884       const InstructionBlock* block);
885   void ResolvePhis(const InstructionBlock* block);
886 
887   RegisterAllocationData* const data_;
888 
889   DISALLOW_COPY_AND_ASSIGN(ConstraintBuilder);
890 };
891 
892 
893 class LiveRangeBuilder final : public ZoneObject {
894  public:
895   explicit LiveRangeBuilder(RegisterAllocationData* data, Zone* local_zone);
896 
897   // Phase 3: compute liveness of all virtual register.
898   void BuildLiveRanges();
899   static BitVector* ComputeLiveOut(const InstructionBlock* block,
900                                    RegisterAllocationData* data);
901 
902  private:
data()903   RegisterAllocationData* data() const { return data_; }
code()904   InstructionSequence* code() const { return data()->code(); }
allocation_zone()905   Zone* allocation_zone() const { return data()->allocation_zone(); }
code_zone()906   Zone* code_zone() const { return code()->zone(); }
config()907   const RegisterConfiguration* config() const { return data()->config(); }
live_in_sets()908   ZoneVector<BitVector*>& live_in_sets() const {
909     return data()->live_in_sets();
910   }
911 
912   // Verification.
913   void Verify() const;
914   bool IntervalStartsAtBlockBoundary(const UseInterval* interval) const;
915   bool IntervalPredecessorsCoveredByRange(const UseInterval* interval,
916                                           const TopLevelLiveRange* range) const;
917   bool NextIntervalStartsInDifferentBlocks(const UseInterval* interval) const;
918 
919   // Liveness analysis support.
920   void AddInitialIntervals(const InstructionBlock* block, BitVector* live_out);
921   void ProcessInstructions(const InstructionBlock* block, BitVector* live);
922   void ProcessPhis(const InstructionBlock* block, BitVector* live);
923   void ProcessLoopHeader(const InstructionBlock* block, BitVector* live);
924 
FixedLiveRangeID(int index)925   static int FixedLiveRangeID(int index) { return -index - 1; }
926   int FixedFPLiveRangeID(int index, MachineRepresentation rep);
927   TopLevelLiveRange* FixedLiveRangeFor(int index);
928   TopLevelLiveRange* FixedFPLiveRangeFor(int index, MachineRepresentation rep);
929 
930   void MapPhiHint(InstructionOperand* operand, UsePosition* use_pos);
931   void ResolvePhiHint(InstructionOperand* operand, UsePosition* use_pos);
932 
933   UsePosition* NewUsePosition(LifetimePosition pos, InstructionOperand* operand,
934                               void* hint, UsePositionHintType hint_type);
NewUsePosition(LifetimePosition pos)935   UsePosition* NewUsePosition(LifetimePosition pos) {
936     return NewUsePosition(pos, nullptr, nullptr, UsePositionHintType::kNone);
937   }
938   TopLevelLiveRange* LiveRangeFor(InstructionOperand* operand);
939   // Helper methods for building intervals.
940   UsePosition* Define(LifetimePosition position, InstructionOperand* operand,
941                       void* hint, UsePositionHintType hint_type);
Define(LifetimePosition position,InstructionOperand * operand)942   void Define(LifetimePosition position, InstructionOperand* operand) {
943     Define(position, operand, nullptr, UsePositionHintType::kNone);
944   }
945   UsePosition* Use(LifetimePosition block_start, LifetimePosition position,
946                    InstructionOperand* operand, void* hint,
947                    UsePositionHintType hint_type);
Use(LifetimePosition block_start,LifetimePosition position,InstructionOperand * operand)948   void Use(LifetimePosition block_start, LifetimePosition position,
949            InstructionOperand* operand) {
950     Use(block_start, position, operand, nullptr, UsePositionHintType::kNone);
951   }
952 
953   RegisterAllocationData* const data_;
954   ZoneMap<InstructionOperand*, UsePosition*> phi_hints_;
955 
956   DISALLOW_COPY_AND_ASSIGN(LiveRangeBuilder);
957 };
958 
959 
960 class RegisterAllocator : public ZoneObject {
961  public:
962   RegisterAllocator(RegisterAllocationData* data, RegisterKind kind);
963 
964  protected:
data()965   RegisterAllocationData* data() const { return data_; }
code()966   InstructionSequence* code() const { return data()->code(); }
mode()967   RegisterKind mode() const { return mode_; }
num_registers()968   int num_registers() const { return num_registers_; }
num_allocatable_registers()969   int num_allocatable_registers() const { return num_allocatable_registers_; }
allocatable_register_codes()970   const int* allocatable_register_codes() const {
971     return allocatable_register_codes_;
972   }
973   // Returns true iff. we must check float register aliasing.
check_fp_aliasing()974   bool check_fp_aliasing() const { return check_fp_aliasing_; }
975 
976   // TODO(mtrofin): explain why splitting in gap START is always OK.
977   LifetimePosition GetSplitPositionForInstruction(const LiveRange* range,
978                                                   int instruction_index);
979 
allocation_zone()980   Zone* allocation_zone() const { return data()->allocation_zone(); }
981 
982   // Find the optimal split for ranges defined by a memory operand, e.g.
983   // constants or function parameters passed on the stack.
984   void SplitAndSpillRangesDefinedByMemoryOperand();
985 
986   // Split the given range at the given position.
987   // If range starts at or after the given position then the
988   // original range is returned.
989   // Otherwise returns the live range that starts at pos and contains
990   // all uses from the original range that follow pos. Uses at pos will
991   // still be owned by the original range after splitting.
992   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
993 
CanProcessRange(LiveRange * range)994   bool CanProcessRange(LiveRange* range) const {
995     return range != nullptr && !range->IsEmpty() && range->kind() == mode();
996   }
997 
998 
999   // Split the given range in a position from the interval [start, end].
1000   LiveRange* SplitBetween(LiveRange* range, LifetimePosition start,
1001                           LifetimePosition end);
1002 
1003   // Find a lifetime position in the interval [start, end] which
1004   // is optimal for splitting: it is either header of the outermost
1005   // loop covered by this interval or the latest possible position.
1006   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
1007                                        LifetimePosition end);
1008 
1009   void Spill(LiveRange* range);
1010 
1011   // If we are trying to spill a range inside the loop try to
1012   // hoist spill position out to the point just before the loop.
1013   LifetimePosition FindOptimalSpillingPos(LiveRange* range,
1014                                           LifetimePosition pos);
1015 
1016   const ZoneVector<TopLevelLiveRange*>& GetFixedRegisters() const;
1017   const char* RegisterName(int allocation_index) const;
1018 
1019  private:
1020   RegisterAllocationData* const data_;
1021   const RegisterKind mode_;
1022   const int num_registers_;
1023   int num_allocatable_registers_;
1024   const int* allocatable_register_codes_;
1025   bool check_fp_aliasing_;
1026 
1027  private:
1028   bool no_combining_;
1029 
1030   DISALLOW_COPY_AND_ASSIGN(RegisterAllocator);
1031 };
1032 
1033 
1034 class LinearScanAllocator final : public RegisterAllocator {
1035  public:
1036   LinearScanAllocator(RegisterAllocationData* data, RegisterKind kind,
1037                       Zone* local_zone);
1038 
1039   // Phase 4: compute register assignments.
1040   void AllocateRegisters();
1041 
1042  private:
1043   struct LiveRangeOrdering {
operatorLiveRangeOrdering1044     bool operator()(LiveRange* a, LiveRange* b) {
1045       return a->ShouldBeAllocatedBefore(b);
1046     }
1047   };
1048   using LiveRangeQueue = ZoneMultiset<LiveRange*, LiveRangeOrdering>;
unhandled_live_ranges()1049   LiveRangeQueue& unhandled_live_ranges() { return unhandled_live_ranges_; }
active_live_ranges()1050   ZoneVector<LiveRange*>& active_live_ranges() { return active_live_ranges_; }
inactive_live_ranges()1051   ZoneVector<LiveRange*>& inactive_live_ranges() {
1052     return inactive_live_ranges_;
1053   }
1054 
1055   void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
1056 
1057   // Helper methods for updating the life range lists.
1058   void AddToActive(LiveRange* range);
1059   void AddToInactive(LiveRange* range);
1060   void AddToUnhandled(LiveRange* range);
1061   void ActiveToHandled(LiveRange* range);
1062   void ActiveToInactive(LiveRange* range);
1063   void InactiveToHandled(LiveRange* range);
1064   void InactiveToActive(LiveRange* range);
1065 
1066   // Helper methods for allocating registers.
1067   bool TryReuseSpillForPhi(TopLevelLiveRange* range);
1068   bool TryAllocateFreeReg(LiveRange* range,
1069                           const Vector<LifetimePosition>& free_until_pos);
1070   bool TryAllocatePreferredReg(LiveRange* range,
1071                                const Vector<LifetimePosition>& free_until_pos);
1072   void GetFPRegisterSet(MachineRepresentation rep, int* num_regs,
1073                         int* num_codes, const int** codes) const;
1074   void FindFreeRegistersForRange(LiveRange* range,
1075                                  Vector<LifetimePosition> free_until_pos);
1076   void ProcessCurrentRange(LiveRange* current);
1077   void AllocateBlockedReg(LiveRange* range);
1078   bool TrySplitAndSpillSplinter(LiveRange* range);
1079 
1080   // Spill the given life range after position pos.
1081   void SpillAfter(LiveRange* range, LifetimePosition pos);
1082 
1083   // Spill the given life range after position [start] and up to position [end].
1084   void SpillBetween(LiveRange* range, LifetimePosition start,
1085                     LifetimePosition end);
1086 
1087   // Spill the given life range after position [start] and up to position [end].
1088   // Range is guaranteed to be spilled at least until position [until].
1089   void SpillBetweenUntil(LiveRange* range, LifetimePosition start,
1090                          LifetimePosition until, LifetimePosition end);
1091 
1092   void SplitAndSpillIntersecting(LiveRange* range);
1093 
1094   LiveRangeQueue unhandled_live_ranges_;
1095   ZoneVector<LiveRange*> active_live_ranges_;
1096   ZoneVector<LiveRange*> inactive_live_ranges_;
1097 
1098 #ifdef DEBUG
1099   LifetimePosition allocation_finger_;
1100 #endif
1101 
1102   DISALLOW_COPY_AND_ASSIGN(LinearScanAllocator);
1103 };
1104 
1105 
1106 class SpillSlotLocator final : public ZoneObject {
1107  public:
1108   explicit SpillSlotLocator(RegisterAllocationData* data);
1109 
1110   void LocateSpillSlots();
1111 
1112  private:
data()1113   RegisterAllocationData* data() const { return data_; }
1114 
1115   RegisterAllocationData* const data_;
1116 
1117   DISALLOW_COPY_AND_ASSIGN(SpillSlotLocator);
1118 };
1119 
1120 
1121 class OperandAssigner final : public ZoneObject {
1122  public:
1123   explicit OperandAssigner(RegisterAllocationData* data);
1124 
1125   // Phase 5: assign spill splots.
1126   void AssignSpillSlots();
1127 
1128   // Phase 6: commit assignment.
1129   void CommitAssignment();
1130 
1131  private:
data()1132   RegisterAllocationData* data() const { return data_; }
1133 
1134   RegisterAllocationData* const data_;
1135 
1136   DISALLOW_COPY_AND_ASSIGN(OperandAssigner);
1137 };
1138 
1139 
1140 class ReferenceMapPopulator final : public ZoneObject {
1141  public:
1142   explicit ReferenceMapPopulator(RegisterAllocationData* data);
1143 
1144   // Phase 7: compute values for pointer maps.
1145   void PopulateReferenceMaps();
1146 
1147  private:
data()1148   RegisterAllocationData* data() const { return data_; }
1149 
1150   bool SafePointsAreInOrder() const;
1151 
1152   RegisterAllocationData* const data_;
1153 
1154   DISALLOW_COPY_AND_ASSIGN(ReferenceMapPopulator);
1155 };
1156 
1157 
1158 class LiveRangeBoundArray;
1159 // Insert moves of the form
1160 //
1161 //          Operand(child_(k+1)) = Operand(child_k)
1162 //
1163 // where child_k and child_(k+1) are consecutive children of a range (so
1164 // child_k->next() == child_(k+1)), and Operand(...) refers to the
1165 // assigned operand, be it a register or a slot.
1166 class LiveRangeConnector final : public ZoneObject {
1167  public:
1168   explicit LiveRangeConnector(RegisterAllocationData* data);
1169 
1170   // Phase 8: reconnect split ranges with moves, when the control flow
1171   // between the ranges is trivial (no branches).
1172   void ConnectRanges(Zone* local_zone);
1173 
1174   // Phase 9: insert moves to connect ranges across basic blocks, when the
1175   // control flow between them cannot be trivially resolved, such as joining
1176   // branches.
1177   void ResolveControlFlow(Zone* local_zone);
1178 
1179  private:
data()1180   RegisterAllocationData* data() const { return data_; }
code()1181   InstructionSequence* code() const { return data()->code(); }
code_zone()1182   Zone* code_zone() const { return code()->zone(); }
1183 
1184   bool CanEagerlyResolveControlFlow(const InstructionBlock* block) const;
1185 
1186   int ResolveControlFlow(const InstructionBlock* block,
1187                          const InstructionOperand& cur_op,
1188                          const InstructionBlock* pred,
1189                          const InstructionOperand& pred_op);
1190 
1191   void CommitSpillsInDeferredBlocks(TopLevelLiveRange* range,
1192                                     LiveRangeBoundArray* array,
1193                                     Zone* temp_zone);
1194 
1195   RegisterAllocationData* const data_;
1196 
1197   DISALLOW_COPY_AND_ASSIGN(LiveRangeConnector);
1198 };
1199 
1200 }  // namespace compiler
1201 }  // namespace internal
1202 }  // namespace v8
1203 
1204 #endif  // V8_COMPILER_REGISTER_ALLOCATOR_H_
1205