1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stdint.h>
6 #include "src/base/logging.h"
7 #include "src/utils.h"
8 
9 #include "src/fast-dtoa.h"
10 
11 #include "src/cached-powers.h"
12 #include "src/diy-fp.h"
13 #include "src/double.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 // The minimal and maximal target exponent define the range of w's binary
19 // exponent, where 'w' is the result of multiplying the input by a cached power
20 // of ten.
21 //
22 // A different range might be chosen on a different platform, to optimize digit
23 // generation, but a smaller range requires more powers of ten to be cached.
24 static const int kMinimalTargetExponent = -60;
25 static const int kMaximalTargetExponent = -32;
26 
27 
28 // Adjusts the last digit of the generated number, and screens out generated
29 // solutions that may be inaccurate. A solution may be inaccurate if it is
30 // outside the safe interval, or if we ctannot prove that it is closer to the
31 // input than a neighboring representation of the same length.
32 //
33 // Input: * buffer containing the digits of too_high / 10^kappa
34 //        * the buffer's length
35 //        * distance_too_high_w == (too_high - w).f() * unit
36 //        * unsafe_interval == (too_high - too_low).f() * unit
37 //        * rest = (too_high - buffer * 10^kappa).f() * unit
38 //        * ten_kappa = 10^kappa * unit
39 //        * unit = the common multiplier
40 // Output: returns true if the buffer is guaranteed to contain the closest
41 //    representable number to the input.
42 //  Modifies the generated digits in the buffer to approach (round towards) w.
RoundWeed(Vector<char> buffer,int length,uint64_t distance_too_high_w,uint64_t unsafe_interval,uint64_t rest,uint64_t ten_kappa,uint64_t unit)43 static bool RoundWeed(Vector<char> buffer,
44                       int length,
45                       uint64_t distance_too_high_w,
46                       uint64_t unsafe_interval,
47                       uint64_t rest,
48                       uint64_t ten_kappa,
49                       uint64_t unit) {
50   uint64_t small_distance = distance_too_high_w - unit;
51   uint64_t big_distance = distance_too_high_w + unit;
52   // Let w_low  = too_high - big_distance, and
53   //     w_high = too_high - small_distance.
54   // Note: w_low < w < w_high
55   //
56   // The real w (* unit) must lie somewhere inside the interval
57   // ]w_low; w_high[ (often written as "(w_low; w_high)")
58 
59   // Basically the buffer currently contains a number in the unsafe interval
60   // ]too_low; too_high[ with too_low < w < too_high
61   //
62   //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63   //                     ^v 1 unit            ^      ^                 ^      ^
64   //  boundary_high ---------------------     .      .                 .      .
65   //                     ^v 1 unit            .      .                 .      .
66   //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
67   //                                          .      .         ^       .      .
68   //                                          .  big_distance  .       .      .
69   //                                          .      .         .       .    rest
70   //                              small_distance     .         .       .      .
71   //                                          v      .         .       .      .
72   //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
73   //                     ^v 1 unit                   .         .       .      .
74   //  w ----------------------------------------     .         .       .      .
75   //                     ^v 1 unit                   v         .       .      .
76   //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
77   //                                                           .       .      v
78   //  buffer --------------------------------------------------+-------+--------
79   //                                                           .       .
80   //                                                  safe_interval    .
81   //                                                           v       .
82   //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
83   //                     ^v 1 unit                                     .
84   //  boundary_low -------------------------                     unsafe_interval
85   //                     ^v 1 unit                                     v
86   //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
87   //
88   //
89   // Note that the value of buffer could lie anywhere inside the range too_low
90   // to too_high.
91   //
92   // boundary_low, boundary_high and w are approximations of the real boundaries
93   // and v (the input number). They are guaranteed to be precise up to one unit.
94   // In fact the error is guaranteed to be strictly less than one unit.
95   //
96   // Anything that lies outside the unsafe interval is guaranteed not to round
97   // to v when read again.
98   // Anything that lies inside the safe interval is guaranteed to round to v
99   // when read again.
100   // If the number inside the buffer lies inside the unsafe interval but not
101   // inside the safe interval then we simply do not know and bail out (returning
102   // false).
103   //
104   // Similarly we have to take into account the imprecision of 'w' when finding
105   // the closest representation of 'w'. If we have two potential
106   // representations, and one is closer to both w_low and w_high, then we know
107   // it is closer to the actual value v.
108   //
109   // By generating the digits of too_high we got the largest (closest to
110   // too_high) buffer that is still in the unsafe interval. In the case where
111   // w_high < buffer < too_high we try to decrement the buffer.
112   // This way the buffer approaches (rounds towards) w.
113   // There are 3 conditions that stop the decrementation process:
114   //   1) the buffer is already below w_high
115   //   2) decrementing the buffer would make it leave the unsafe interval
116   //   3) decrementing the buffer would yield a number below w_high and farther
117   //      away than the current number. In other words:
118   //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
119   // Instead of using the buffer directly we use its distance to too_high.
120   // Conceptually rest ~= too_high - buffer
121   // We need to do the following tests in this order to avoid over- and
122   // underflows.
123   DCHECK(rest <= unsafe_interval);
124   while (rest < small_distance &&  // Negated condition 1
125          unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
126          (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
127           small_distance - rest >= rest + ten_kappa - small_distance)) {
128     buffer[length - 1]--;
129     rest += ten_kappa;
130   }
131 
132   // We have approached w+ as much as possible. We now test if approaching w-
133   // would require changing the buffer. If yes, then we have two possible
134   // representations close to w, but we cannot decide which one is closer.
135   if (rest < big_distance &&
136       unsafe_interval - rest >= ten_kappa &&
137       (rest + ten_kappa < big_distance ||
138        big_distance - rest > rest + ten_kappa - big_distance)) {
139     return false;
140   }
141 
142   // Weeding test.
143   //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
144   //   Since too_low = too_high - unsafe_interval this is equivalent to
145   //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
146   //   Conceptually we have: rest ~= too_high - buffer
147   return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
148 }
149 
150 
151 // Rounds the buffer upwards if the result is closer to v by possibly adding
152 // 1 to the buffer. If the precision of the calculation is not sufficient to
153 // round correctly, return false.
154 // The rounding might shift the whole buffer in which case the kappa is
155 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
156 //
157 // If 2*rest > ten_kappa then the buffer needs to be round up.
158 // rest can have an error of +/- 1 unit. This function accounts for the
159 // imprecision and returns false, if the rounding direction cannot be
160 // unambiguously determined.
161 //
162 // Precondition: rest < ten_kappa.
RoundWeedCounted(Vector<char> buffer,int length,uint64_t rest,uint64_t ten_kappa,uint64_t unit,int * kappa)163 static bool RoundWeedCounted(Vector<char> buffer,
164                              int length,
165                              uint64_t rest,
166                              uint64_t ten_kappa,
167                              uint64_t unit,
168                              int* kappa) {
169   DCHECK(rest < ten_kappa);
170   // The following tests are done in a specific order to avoid overflows. They
171   // will work correctly with any uint64 values of rest < ten_kappa and unit.
172   //
173   // If the unit is too big, then we don't know which way to round. For example
174   // a unit of 50 means that the real number lies within rest +/- 50. If
175   // 10^kappa == 40 then there is no way to tell which way to round.
176   if (unit >= ten_kappa) return false;
177   // Even if unit is just half the size of 10^kappa we are already completely
178   // lost. (And after the previous test we know that the expression will not
179   // over/underflow.)
180   if (ten_kappa - unit <= unit) return false;
181   // If 2 * (rest + unit) <= 10^kappa we can safely round down.
182   if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
183     return true;
184   }
185   // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
186   if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
187     // Increment the last digit recursively until we find a non '9' digit.
188     buffer[length - 1]++;
189     for (int i = length - 1; i > 0; --i) {
190       if (buffer[i] != '0' + 10) break;
191       buffer[i] = '0';
192       buffer[i - 1]++;
193     }
194     // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
195     // exception of the first digit all digits are now '0'. Simply switch the
196     // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
197     // the power (the kappa) is increased.
198     if (buffer[0] == '0' + 10) {
199       buffer[0] = '1';
200       (*kappa) += 1;
201     }
202     return true;
203   }
204   return false;
205 }
206 
207 
208 static const uint32_t kTen4 = 10000;
209 static const uint32_t kTen5 = 100000;
210 static const uint32_t kTen6 = 1000000;
211 static const uint32_t kTen7 = 10000000;
212 static const uint32_t kTen8 = 100000000;
213 static const uint32_t kTen9 = 1000000000;
214 
215 // Returns the biggest power of ten that is less than or equal than the given
216 // number. We furthermore receive the maximum number of bits 'number' has.
217 // If number_bits == 0 then 0^-1 is returned
218 // The number of bits must be <= 32.
219 // Precondition: number < (1 << (number_bits + 1)).
BiggestPowerTen(uint32_t number,int number_bits,uint32_t * power,int * exponent)220 static void BiggestPowerTen(uint32_t number,
221                             int number_bits,
222                             uint32_t* power,
223                             int* exponent) {
224   switch (number_bits) {
225     case 32:
226     case 31:
227     case 30:
228       if (kTen9 <= number) {
229         *power = kTen9;
230         *exponent = 9;
231         break;
232       }
233       V8_FALLTHROUGH;
234     case 29:
235     case 28:
236     case 27:
237       if (kTen8 <= number) {
238         *power = kTen8;
239         *exponent = 8;
240         break;
241       }
242       V8_FALLTHROUGH;
243     case 26:
244     case 25:
245     case 24:
246       if (kTen7 <= number) {
247         *power = kTen7;
248         *exponent = 7;
249         break;
250       }
251       V8_FALLTHROUGH;
252     case 23:
253     case 22:
254     case 21:
255     case 20:
256       if (kTen6 <= number) {
257         *power = kTen6;
258         *exponent = 6;
259         break;
260       }
261       V8_FALLTHROUGH;
262     case 19:
263     case 18:
264     case 17:
265       if (kTen5 <= number) {
266         *power = kTen5;
267         *exponent = 5;
268         break;
269       }
270       V8_FALLTHROUGH;
271     case 16:
272     case 15:
273     case 14:
274       if (kTen4 <= number) {
275         *power = kTen4;
276         *exponent = 4;
277         break;
278       }
279       V8_FALLTHROUGH;
280     case 13:
281     case 12:
282     case 11:
283     case 10:
284       if (1000 <= number) {
285         *power = 1000;
286         *exponent = 3;
287         break;
288       }
289       V8_FALLTHROUGH;
290     case 9:
291     case 8:
292     case 7:
293       if (100 <= number) {
294         *power = 100;
295         *exponent = 2;
296         break;
297       }
298       V8_FALLTHROUGH;
299     case 6:
300     case 5:
301     case 4:
302       if (10 <= number) {
303         *power = 10;
304         *exponent = 1;
305         break;
306       }
307       V8_FALLTHROUGH;
308     case 3:
309     case 2:
310     case 1:
311       if (1 <= number) {
312         *power = 1;
313         *exponent = 0;
314         break;
315       }
316       V8_FALLTHROUGH;
317     case 0:
318       *power = 0;
319       *exponent = -1;
320       break;
321     default:
322       // Following assignments are here to silence compiler warnings.
323       *power = 0;
324       *exponent = 0;
325       UNREACHABLE();
326   }
327 }
328 
329 // Generates the digits of input number w.
330 // w is a floating-point number (DiyFp), consisting of a significand and an
331 // exponent. Its exponent is bounded by kMinimalTargetExponent and
332 // kMaximalTargetExponent.
333 //       Hence -60 <= w.e() <= -32.
334 //
335 // Returns false if it fails, in which case the generated digits in the buffer
336 // should not be used.
337 // Preconditions:
338 //  * low, w and high are correct up to 1 ulp (unit in the last place). That
339 //    is, their error must be less than a unit of their last digits.
340 //  * low.e() == w.e() == high.e()
341 //  * low < w < high, and taking into account their error: low~ <= high~
342 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
343 // Postconditions: returns false if procedure fails.
344 //   otherwise:
345 //     * buffer is not null-terminated, but len contains the number of digits.
346 //     * buffer contains the shortest possible decimal digit-sequence
347 //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
348 //       correct values of low and high (without their error).
349 //     * if more than one decimal representation gives the minimal number of
350 //       decimal digits then the one closest to W (where W is the correct value
351 //       of w) is chosen.
352 // Remark: this procedure takes into account the imprecision of its input
353 //   numbers. If the precision is not enough to guarantee all the postconditions
354 //   then false is returned. This usually happens rarely (~0.5%).
355 //
356 // Say, for the sake of example, that
357 //   w.e() == -48, and w.f() == 0x1234567890ABCDEF
358 // w's value can be computed by w.f() * 2^w.e()
359 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
360 //  -> w's integral part is 0x1234
361 //  w's fractional part is therefore 0x567890ABCDEF.
362 // Printing w's integral part is easy (simply print 0x1234 in decimal).
363 // In order to print its fraction we repeatedly multiply the fraction by 10 and
364 // get each digit. Example the first digit after the point would be computed by
365 //   (0x567890ABCDEF * 10) >> 48. -> 3
366 // The whole thing becomes slightly more complicated because we want to stop
367 // once we have enough digits. That is, once the digits inside the buffer
368 // represent 'w' we can stop. Everything inside the interval low - high
369 // represents w. However we have to pay attention to low, high and w's
370 // imprecision.
DigitGen(DiyFp low,DiyFp w,DiyFp high,Vector<char> buffer,int * length,int * kappa)371 static bool DigitGen(DiyFp low,
372                      DiyFp w,
373                      DiyFp high,
374                      Vector<char> buffer,
375                      int* length,
376                      int* kappa) {
377   DCHECK(low.e() == w.e() && w.e() == high.e());
378   DCHECK(low.f() + 1 <= high.f() - 1);
379   DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
380   // low, w and high are imprecise, but by less than one ulp (unit in the last
381   // place).
382   // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
383   // the new numbers are outside of the interval we want the final
384   // representation to lie in.
385   // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
386   // numbers that are certain to lie in the interval. We will use this fact
387   // later on.
388   // We will now start by generating the digits within the uncertain
389   // interval. Later we will weed out representations that lie outside the safe
390   // interval and thus _might_ lie outside the correct interval.
391   uint64_t unit = 1;
392   DiyFp too_low = DiyFp(low.f() - unit, low.e());
393   DiyFp too_high = DiyFp(high.f() + unit, high.e());
394   // too_low and too_high are guaranteed to lie outside the interval we want the
395   // generated number in.
396   DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
397   // We now cut the input number into two parts: the integral digits and the
398   // fractionals. We will not write any decimal separator though, but adapt
399   // kappa instead.
400   // Reminder: we are currently computing the digits (stored inside the buffer)
401   // such that:   too_low < buffer * 10^kappa < too_high
402   // We use too_high for the digit_generation and stop as soon as possible.
403   // If we stop early we effectively round down.
404   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
405   // Division by one is a shift.
406   uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
407   // Modulo by one is an and.
408   uint64_t fractionals = too_high.f() & (one.f() - 1);
409   uint32_t divisor;
410   int divisor_exponent;
411   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
412                   &divisor, &divisor_exponent);
413   *kappa = divisor_exponent + 1;
414   *length = 0;
415   // Loop invariant: buffer = too_high / 10^kappa  (integer division)
416   // The invariant holds for the first iteration: kappa has been initialized
417   // with the divisor exponent + 1. And the divisor is the biggest power of ten
418   // that is smaller than integrals.
419   while (*kappa > 0) {
420     int digit = integrals / divisor;
421     buffer[*length] = '0' + digit;
422     (*length)++;
423     integrals %= divisor;
424     (*kappa)--;
425     // Note that kappa now equals the exponent of the divisor and that the
426     // invariant thus holds again.
427     uint64_t rest =
428         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
429     // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
430     // Reminder: unsafe_interval.e() == one.e()
431     if (rest < unsafe_interval.f()) {
432       // Rounding down (by not emitting the remaining digits) yields a number
433       // that lies within the unsafe interval.
434       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
435                        unsafe_interval.f(), rest,
436                        static_cast<uint64_t>(divisor) << -one.e(), unit);
437     }
438     divisor /= 10;
439   }
440 
441   // The integrals have been generated. We are at the point of the decimal
442   // separator. In the following loop we simply multiply the remaining digits by
443   // 10 and divide by one. We just need to pay attention to multiply associated
444   // data (like the interval or 'unit'), too.
445   // Note that the multiplication by 10 does not overflow, because w.e >= -60
446   // and thus one.e >= -60.
447   DCHECK_GE(one.e(), -60);
448   DCHECK(fractionals < one.f());
449   DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
450   while (true) {
451     fractionals *= 10;
452     unit *= 10;
453     unsafe_interval.set_f(unsafe_interval.f() * 10);
454     // Integer division by one.
455     int digit = static_cast<int>(fractionals >> -one.e());
456     buffer[*length] = '0' + digit;
457     (*length)++;
458     fractionals &= one.f() - 1;  // Modulo by one.
459     (*kappa)--;
460     if (fractionals < unsafe_interval.f()) {
461       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
462                        unsafe_interval.f(), fractionals, one.f(), unit);
463     }
464   }
465 }
466 
467 
468 
469 // Generates (at most) requested_digits of input number w.
470 // w is a floating-point number (DiyFp), consisting of a significand and an
471 // exponent. Its exponent is bounded by kMinimalTargetExponent and
472 // kMaximalTargetExponent.
473 //       Hence -60 <= w.e() <= -32.
474 //
475 // Returns false if it fails, in which case the generated digits in the buffer
476 // should not be used.
477 // Preconditions:
478 //  * w is correct up to 1 ulp (unit in the last place). That
479 //    is, its error must be strictly less than a unit of its last digit.
480 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
481 //
482 // Postconditions: returns false if procedure fails.
483 //   otherwise:
484 //     * buffer is not null-terminated, but length contains the number of
485 //       digits.
486 //     * the representation in buffer is the most precise representation of
487 //       requested_digits digits.
488 //     * buffer contains at most requested_digits digits of w. If there are less
489 //       than requested_digits digits then some trailing '0's have been removed.
490 //     * kappa is such that
491 //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
492 //
493 // Remark: This procedure takes into account the imprecision of its input
494 //   numbers. If the precision is not enough to guarantee all the postconditions
495 //   then false is returned. This usually happens rarely, but the failure-rate
496 //   increases with higher requested_digits.
DigitGenCounted(DiyFp w,int requested_digits,Vector<char> buffer,int * length,int * kappa)497 static bool DigitGenCounted(DiyFp w,
498                             int requested_digits,
499                             Vector<char> buffer,
500                             int* length,
501                             int* kappa) {
502   DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
503   DCHECK_GE(kMinimalTargetExponent, -60);
504   DCHECK_LE(kMaximalTargetExponent, -32);
505   // w is assumed to have an error less than 1 unit. Whenever w is scaled we
506   // also scale its error.
507   uint64_t w_error = 1;
508   // We cut the input number into two parts: the integral digits and the
509   // fractional digits. We don't emit any decimal separator, but adapt kappa
510   // instead. Example: instead of writing "1.2" we put "12" into the buffer and
511   // increase kappa by 1.
512   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
513   // Division by one is a shift.
514   uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
515   // Modulo by one is an and.
516   uint64_t fractionals = w.f() & (one.f() - 1);
517   uint32_t divisor;
518   int divisor_exponent;
519   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
520                   &divisor, &divisor_exponent);
521   *kappa = divisor_exponent + 1;
522   *length = 0;
523 
524   // Loop invariant: buffer = w / 10^kappa  (integer division)
525   // The invariant holds for the first iteration: kappa has been initialized
526   // with the divisor exponent + 1. And the divisor is the biggest power of ten
527   // that is smaller than 'integrals'.
528   while (*kappa > 0) {
529     int digit = integrals / divisor;
530     buffer[*length] = '0' + digit;
531     (*length)++;
532     requested_digits--;
533     integrals %= divisor;
534     (*kappa)--;
535     // Note that kappa now equals the exponent of the divisor and that the
536     // invariant thus holds again.
537     if (requested_digits == 0) break;
538     divisor /= 10;
539   }
540 
541   if (requested_digits == 0) {
542     uint64_t rest =
543         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
544     return RoundWeedCounted(buffer, *length, rest,
545                             static_cast<uint64_t>(divisor) << -one.e(), w_error,
546                             kappa);
547   }
548 
549   // The integrals have been generated. We are at the point of the decimal
550   // separator. In the following loop we simply multiply the remaining digits by
551   // 10 and divide by one. We just need to pay attention to multiply associated
552   // data (the 'unit'), too.
553   // Note that the multiplication by 10 does not overflow, because w.e >= -60
554   // and thus one.e >= -60.
555   DCHECK_GE(one.e(), -60);
556   DCHECK(fractionals < one.f());
557   DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
558   while (requested_digits > 0 && fractionals > w_error) {
559     fractionals *= 10;
560     w_error *= 10;
561     // Integer division by one.
562     int digit = static_cast<int>(fractionals >> -one.e());
563     buffer[*length] = '0' + digit;
564     (*length)++;
565     requested_digits--;
566     fractionals &= one.f() - 1;  // Modulo by one.
567     (*kappa)--;
568   }
569   if (requested_digits != 0) return false;
570   return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
571                           kappa);
572 }
573 
574 
575 // Provides a decimal representation of v.
576 // Returns true if it succeeds, otherwise the result cannot be trusted.
577 // There will be *length digits inside the buffer (not null-terminated).
578 // If the function returns true then
579 //        v == (double) (buffer * 10^decimal_exponent).
580 // The digits in the buffer are the shortest representation possible: no
581 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
582 // chosen even if the longer one would be closer to v.
583 // The last digit will be closest to the actual v. That is, even if several
584 // digits might correctly yield 'v' when read again, the closest will be
585 // computed.
Grisu3(double v,Vector<char> buffer,int * length,int * decimal_exponent)586 static bool Grisu3(double v,
587                    Vector<char> buffer,
588                    int* length,
589                    int* decimal_exponent) {
590   DiyFp w = Double(v).AsNormalizedDiyFp();
591   // boundary_minus and boundary_plus are the boundaries between v and its
592   // closest floating-point neighbors. Any number strictly between
593   // boundary_minus and boundary_plus will round to v when convert to a double.
594   // Grisu3 will never output representations that lie exactly on a boundary.
595   DiyFp boundary_minus, boundary_plus;
596   Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
597   DCHECK(boundary_plus.e() == w.e());
598   DiyFp ten_mk;  // Cached power of ten: 10^-k
599   int mk;        // -k
600   int ten_mk_minimal_binary_exponent =
601      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
602   int ten_mk_maximal_binary_exponent =
603      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
604   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
605       ten_mk_minimal_binary_exponent,
606       ten_mk_maximal_binary_exponent,
607       &ten_mk, &mk);
608   DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
609           DiyFp::kSignificandSize) &&
610          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
611           DiyFp::kSignificandSize));
612   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
613   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
614 
615   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
616   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
617   // off by a small amount.
618   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
619   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
620   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
621   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
622   DCHECK(scaled_w.e() ==
623          boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
624   // In theory it would be possible to avoid some recomputations by computing
625   // the difference between w and boundary_minus/plus (a power of 2) and to
626   // compute scaled_boundary_minus/plus by subtracting/adding from
627   // scaled_w. However the code becomes much less readable and the speed
628   // enhancements are not terriffic.
629   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
630   DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
631 
632   // DigitGen will generate the digits of scaled_w. Therefore we have
633   // v == (double) (scaled_w * 10^-mk).
634   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
635   // integer than it will be updated. For instance if scaled_w == 1.23 then
636   // the buffer will be filled with "123" und the decimal_exponent will be
637   // decreased by 2.
638   int kappa;
639   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
640                          buffer, length, &kappa);
641   *decimal_exponent = -mk + kappa;
642   return result;
643 }
644 
645 
646 // The "counted" version of grisu3 (see above) only generates requested_digits
647 // number of digits. This version does not generate the shortest representation,
648 // and with enough requested digits 0.1 will at some point print as 0.9999999...
649 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
650 // therefore the rounding strategy for halfway cases is irrelevant.
Grisu3Counted(double v,int requested_digits,Vector<char> buffer,int * length,int * decimal_exponent)651 static bool Grisu3Counted(double v,
652                           int requested_digits,
653                           Vector<char> buffer,
654                           int* length,
655                           int* decimal_exponent) {
656   DiyFp w = Double(v).AsNormalizedDiyFp();
657   DiyFp ten_mk;  // Cached power of ten: 10^-k
658   int mk;        // -k
659   int ten_mk_minimal_binary_exponent =
660      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
661   int ten_mk_maximal_binary_exponent =
662      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
663   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
664       ten_mk_minimal_binary_exponent,
665       ten_mk_maximal_binary_exponent,
666       &ten_mk, &mk);
667   DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
668           DiyFp::kSignificandSize) &&
669          (kMaximalTargetExponent >= w.e() + ten_mk.e() +
670           DiyFp::kSignificandSize));
671   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
672   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
673 
674   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
675   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
676   // off by a small amount.
677   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
678   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
679   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
680   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
681 
682   // We now have (double) (scaled_w * 10^-mk).
683   // DigitGen will generate the first requested_digits digits of scaled_w and
684   // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
685   // will not always be exactly the same since DigitGenCounted only produces a
686   // limited number of digits.)
687   int kappa;
688   bool result = DigitGenCounted(scaled_w, requested_digits,
689                                 buffer, length, &kappa);
690   *decimal_exponent = -mk + kappa;
691   return result;
692 }
693 
694 
FastDtoa(double v,FastDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)695 bool FastDtoa(double v,
696               FastDtoaMode mode,
697               int requested_digits,
698               Vector<char> buffer,
699               int* length,
700               int* decimal_point) {
701   DCHECK_GT(v, 0);
702   DCHECK(!Double(v).IsSpecial());
703 
704   bool result = false;
705   int decimal_exponent = 0;
706   switch (mode) {
707     case FAST_DTOA_SHORTEST:
708       result = Grisu3(v, buffer, length, &decimal_exponent);
709       break;
710     case FAST_DTOA_PRECISION:
711       result = Grisu3Counted(v, requested_digits,
712                              buffer, length, &decimal_exponent);
713       break;
714     default:
715       UNREACHABLE();
716   }
717   if (result) {
718     *decimal_point = *length + decimal_exponent;
719     buffer[*length] = '\0';
720   }
721   return result;
722 }
723 
724 }  // namespace internal
725 }  // namespace v8
726