• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/strtod.h"
6 
7 #include <stdarg.h>
8 #include <cmath>
9 
10 #include "src/bignum.h"
11 #include "src/cached-powers.h"
12 #include "src/double.h"
13 #include "src/globals.h"
14 #include "src/utils.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 // 2^53 = 9007199254740992.
20 // Any integer with at most 15 decimal digits will hence fit into a double
21 // (which has a 53bit significand) without loss of precision.
22 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
23 // 2^64 = 18446744073709551616 > 10^19
24 static const int kMaxUint64DecimalDigits = 19;
25 
26 // Max double: 1.7976931348623157 x 10^308
27 // Min non-zero double: 4.9406564584124654 x 10^-324
28 // Any x >= 10^309 is interpreted as +infinity.
29 // Any x <= 10^-324 is interpreted as 0.
30 // Note that 2.5e-324 (despite being smaller than the min double) will be read
31 // as non-zero (equal to the min non-zero double).
32 static const int kMaxDecimalPower = 309;
33 static const int kMinDecimalPower = -324;
34 
35 // 2^64 = 18446744073709551616
36 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
37 
38 // clang-format off
39 static const double exact_powers_of_ten[] = {
40   1.0,  // 10^0
41   10.0,
42   100.0,
43   1000.0,
44   10000.0,
45   100000.0,
46   1000000.0,
47   10000000.0,
48   100000000.0,
49   1000000000.0,
50   10000000000.0,  // 10^10
51   100000000000.0,
52   1000000000000.0,
53   10000000000000.0,
54   100000000000000.0,
55   1000000000000000.0,
56   10000000000000000.0,
57   100000000000000000.0,
58   1000000000000000000.0,
59   10000000000000000000.0,
60   100000000000000000000.0,  // 10^20
61   1000000000000000000000.0,
62   // 10^22 = 0x21E19E0C9BAB2400000 = 0x878678326EAC9 * 2^22
63   10000000000000000000000.0
64 };
65 // clang-format on
66 static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
67 
68 // Maximum number of significant digits in the decimal representation.
69 // In fact the value is 772 (see conversions.cc), but to give us some margin
70 // we round up to 780.
71 static const int kMaxSignificantDecimalDigits = 780;
72 
TrimLeadingZeros(Vector<const char> buffer)73 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
74   for (int i = 0; i < buffer.length(); i++) {
75     if (buffer[i] != '0') {
76       return buffer.SubVector(i, buffer.length());
77     }
78   }
79   return Vector<const char>(buffer.start(), 0);
80 }
81 
82 
TrimTrailingZeros(Vector<const char> buffer)83 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
84   for (int i = buffer.length() - 1; i >= 0; --i) {
85     if (buffer[i] != '0') {
86       return buffer.SubVector(0, i + 1);
87     }
88   }
89   return Vector<const char>(buffer.start(), 0);
90 }
91 
92 
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)93 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
94                                        int exponent,
95                                        char* significant_buffer,
96                                        int* significant_exponent) {
97   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
98     significant_buffer[i] = buffer[i];
99   }
100   // The input buffer has been trimmed. Therefore the last digit must be
101   // different from '0'.
102   DCHECK_NE(buffer[buffer.length() - 1], '0');
103   // Set the last digit to be non-zero. This is sufficient to guarantee
104   // correct rounding.
105   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
106   *significant_exponent =
107       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
108 }
109 
110 
111 // Reads digits from the buffer and converts them to a uint64.
112 // Reads in as many digits as fit into a uint64.
113 // When the string starts with "1844674407370955161" no further digit is read.
114 // Since 2^64 = 18446744073709551616 it would still be possible read another
115 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)116 static uint64_t ReadUint64(Vector<const char> buffer,
117                            int* number_of_read_digits) {
118   uint64_t result = 0;
119   int i = 0;
120   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
121     int digit = buffer[i++] - '0';
122     DCHECK(0 <= digit && digit <= 9);
123     result = 10 * result + digit;
124   }
125   *number_of_read_digits = i;
126   return result;
127 }
128 
129 
130 // Reads a DiyFp from the buffer.
131 // The returned DiyFp is not necessarily normalized.
132 // If remaining_decimals is zero then the returned DiyFp is accurate.
133 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)134 static void ReadDiyFp(Vector<const char> buffer,
135                       DiyFp* result,
136                       int* remaining_decimals) {
137   int read_digits;
138   uint64_t significand = ReadUint64(buffer, &read_digits);
139   if (buffer.length() == read_digits) {
140     *result = DiyFp(significand, 0);
141     *remaining_decimals = 0;
142   } else {
143     // Round the significand.
144     if (buffer[read_digits] >= '5') {
145       significand++;
146     }
147     // Compute the binary exponent.
148     int exponent = 0;
149     *result = DiyFp(significand, exponent);
150     *remaining_decimals = buffer.length() - read_digits;
151   }
152 }
153 
154 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)155 static bool DoubleStrtod(Vector<const char> trimmed,
156                          int exponent,
157                          double* result) {
158 #if (V8_TARGET_ARCH_IA32 || defined(USE_SIMULATOR)) && !defined(_MSC_VER)
159   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
160   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
161   // result is not accurate.
162   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
163   // therefore accurate.
164   // Note that the ARM and MIPS simulators are compiled for 32bits. They
165   // therefore exhibit the same problem.
166   USE(exact_powers_of_ten);
167   USE(kMaxExactDoubleIntegerDecimalDigits);
168   USE(kExactPowersOfTenSize);
169   return false;
170 #else
171   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
172     int read_digits;
173     // The trimmed input fits into a double.
174     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
175     // can compute the result-double simply by multiplying (resp. dividing) the
176     // two numbers.
177     // This is possible because IEEE guarantees that floating-point operations
178     // return the best possible approximation.
179     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
180       // 10^-exponent fits into a double.
181       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
182       DCHECK(read_digits == trimmed.length());
183       *result /= exact_powers_of_ten[-exponent];
184       return true;
185     }
186     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
187       // 10^exponent fits into a double.
188       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
189       DCHECK(read_digits == trimmed.length());
190       *result *= exact_powers_of_ten[exponent];
191       return true;
192     }
193     int remaining_digits =
194         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
195     if ((0 <= exponent) &&
196         (exponent - remaining_digits < kExactPowersOfTenSize)) {
197       // The trimmed string was short and we can multiply it with
198       // 10^remaining_digits. As a result the remaining exponent now fits
199       // into a double too.
200       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
201       DCHECK(read_digits == trimmed.length());
202       *result *= exact_powers_of_ten[remaining_digits];
203       *result *= exact_powers_of_ten[exponent - remaining_digits];
204       return true;
205     }
206   }
207   return false;
208 #endif
209 }
210 
211 
212 // Returns 10^exponent as an exact DiyFp.
213 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)214 static DiyFp AdjustmentPowerOfTen(int exponent) {
215   DCHECK_LT(0, exponent);
216   DCHECK_LT(exponent, PowersOfTenCache::kDecimalExponentDistance);
217   // Simply hardcode the remaining powers for the given decimal exponent
218   // distance.
219   DCHECK_EQ(PowersOfTenCache::kDecimalExponentDistance, 8);
220   switch (exponent) {
221     case 1:
222       return DiyFp(V8_2PART_UINT64_C(0xA0000000, 00000000), -60);
223     case 2:
224       return DiyFp(V8_2PART_UINT64_C(0xC8000000, 00000000), -57);
225     case 3:
226       return DiyFp(V8_2PART_UINT64_C(0xFA000000, 00000000), -54);
227     case 4:
228       return DiyFp(V8_2PART_UINT64_C(0x9C400000, 00000000), -50);
229     case 5:
230       return DiyFp(V8_2PART_UINT64_C(0xC3500000, 00000000), -47);
231     case 6:
232       return DiyFp(V8_2PART_UINT64_C(0xF4240000, 00000000), -44);
233     case 7:
234       return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
235     default:
236       UNREACHABLE();
237   }
238 }
239 
240 
241 // If the function returns true then the result is the correct double.
242 // Otherwise it is either the correct double or the double that is just below
243 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)244 static bool DiyFpStrtod(Vector<const char> buffer,
245                         int exponent,
246                         double* result) {
247   DiyFp input;
248   int remaining_decimals;
249   ReadDiyFp(buffer, &input, &remaining_decimals);
250   // Since we may have dropped some digits the input is not accurate.
251   // If remaining_decimals is different than 0 than the error is at most
252   // .5 ulp (unit in the last place).
253   // We don't want to deal with fractions and therefore keep a common
254   // denominator.
255   const int kDenominatorLog = 3;
256   const int kDenominator = 1 << kDenominatorLog;
257   // Move the remaining decimals into the exponent.
258   exponent += remaining_decimals;
259   int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
260 
261   int old_e = input.e();
262   input.Normalize();
263   error <<= old_e - input.e();
264 
265   DCHECK_LE(exponent, PowersOfTenCache::kMaxDecimalExponent);
266   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
267     *result = 0.0;
268     return true;
269   }
270   DiyFp cached_power;
271   int cached_decimal_exponent;
272   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
273                                                      &cached_power,
274                                                      &cached_decimal_exponent);
275 
276   if (cached_decimal_exponent != exponent) {
277     int adjustment_exponent = exponent - cached_decimal_exponent;
278     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
279     input.Multiply(adjustment_power);
280     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
281       // The product of input with the adjustment power fits into a 64 bit
282       // integer.
283       DCHECK_EQ(DiyFp::kSignificandSize, 64);
284     } else {
285       // The adjustment power is exact. There is hence only an error of 0.5.
286       error += kDenominator / 2;
287     }
288   }
289 
290   input.Multiply(cached_power);
291   // The error introduced by a multiplication of a*b equals
292   //   error_a + error_b + error_a*error_b/2^64 + 0.5
293   // Substituting a with 'input' and b with 'cached_power' we have
294   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
295   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
296   int error_b = kDenominator / 2;
297   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
298   int fixed_error = kDenominator / 2;
299   error += error_b + error_ab + fixed_error;
300 
301   old_e = input.e();
302   input.Normalize();
303   error <<= old_e - input.e();
304 
305   // See if the double's significand changes if we add/subtract the error.
306   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
307   int effective_significand_size =
308       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
309   int precision_digits_count =
310       DiyFp::kSignificandSize - effective_significand_size;
311   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
312     // This can only happen for very small denormals. In this case the
313     // half-way multiplied by the denominator exceeds the range of an uint64.
314     // Simply shift everything to the right.
315     int shift_amount = (precision_digits_count + kDenominatorLog) -
316         DiyFp::kSignificandSize + 1;
317     input.set_f(input.f() >> shift_amount);
318     input.set_e(input.e() + shift_amount);
319     // We add 1 for the lost precision of error, and kDenominator for
320     // the lost precision of input.f().
321     error = (error >> shift_amount) + 1 + kDenominator;
322     precision_digits_count -= shift_amount;
323   }
324   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
325   DCHECK_EQ(DiyFp::kSignificandSize, 64);
326   DCHECK_LT(precision_digits_count, 64);
327   uint64_t one64 = 1;
328   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
329   uint64_t precision_bits = input.f() & precision_bits_mask;
330   uint64_t half_way = one64 << (precision_digits_count - 1);
331   precision_bits *= kDenominator;
332   half_way *= kDenominator;
333   DiyFp rounded_input(input.f() >> precision_digits_count,
334                       input.e() + precision_digits_count);
335   if (precision_bits >= half_way + error) {
336     rounded_input.set_f(rounded_input.f() + 1);
337   }
338   // If the last_bits are too close to the half-way case than we are too
339   // inaccurate and round down. In this case we return false so that we can
340   // fall back to a more precise algorithm.
341 
342   *result = Double(rounded_input).value();
343   if (half_way - error < precision_bits && precision_bits < half_way + error) {
344     // Too imprecise. The caller will have to fall back to a slower version.
345     // However the returned number is guaranteed to be either the correct
346     // double, or the next-lower double.
347     return false;
348   } else {
349     return true;
350   }
351 }
352 
353 
354 // Returns the correct double for the buffer*10^exponent.
355 // The variable guess should be a close guess that is either the correct double
356 // or its lower neighbor (the nearest double less than the correct one).
357 // Preconditions:
358 //   buffer.length() + exponent <= kMaxDecimalPower + 1
359 //   buffer.length() + exponent > kMinDecimalPower
360 //   buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)361 static double BignumStrtod(Vector<const char> buffer,
362                            int exponent,
363                            double guess) {
364   if (guess == V8_INFINITY) {
365     return guess;
366   }
367 
368   DiyFp upper_boundary = Double(guess).UpperBoundary();
369 
370   DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1);
371   DCHECK_GT(buffer.length() + exponent, kMinDecimalPower);
372   DCHECK_LE(buffer.length(), kMaxSignificantDecimalDigits);
373   // Make sure that the Bignum will be able to hold all our numbers.
374   // Our Bignum implementation has a separate field for exponents. Shifts will
375   // consume at most one bigit (< 64 bits).
376   // ln(10) == 3.3219...
377   DCHECK_LT((kMaxDecimalPower + 1) * 333 / 100, Bignum::kMaxSignificantBits);
378   Bignum input;
379   Bignum boundary;
380   input.AssignDecimalString(buffer);
381   boundary.AssignUInt64(upper_boundary.f());
382   if (exponent >= 0) {
383     input.MultiplyByPowerOfTen(exponent);
384   } else {
385     boundary.MultiplyByPowerOfTen(-exponent);
386   }
387   if (upper_boundary.e() > 0) {
388     boundary.ShiftLeft(upper_boundary.e());
389   } else {
390     input.ShiftLeft(-upper_boundary.e());
391   }
392   int comparison = Bignum::Compare(input, boundary);
393   if (comparison < 0) {
394     return guess;
395   } else if (comparison > 0) {
396     return Double(guess).NextDouble();
397   } else if ((Double(guess).Significand() & 1) == 0) {
398     // Round towards even.
399     return guess;
400   } else {
401     return Double(guess).NextDouble();
402   }
403 }
404 
405 
Strtod(Vector<const char> buffer,int exponent)406 double Strtod(Vector<const char> buffer, int exponent) {
407   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
408   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
409   exponent += left_trimmed.length() - trimmed.length();
410   if (trimmed.length() == 0) return 0.0;
411   if (trimmed.length() > kMaxSignificantDecimalDigits) {
412     char significant_buffer[kMaxSignificantDecimalDigits];
413     int significant_exponent;
414     TrimToMaxSignificantDigits(trimmed, exponent,
415                                significant_buffer, &significant_exponent);
416     return Strtod(Vector<const char>(significant_buffer,
417                                      kMaxSignificantDecimalDigits),
418                   significant_exponent);
419   }
420   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
421   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
422 
423   double guess;
424   if (DoubleStrtod(trimmed, exponent, &guess) ||
425       DiyFpStrtod(trimmed, exponent, &guess)) {
426     return guess;
427   }
428   return BignumStrtod(trimmed, exponent, guess);
429 }
430 
431 }  // namespace internal
432 }  // namespace v8
433