1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // PLEASE READ BEFORE CHANGING THIS FILE!
6 //
7 // This file implements the support code for the out of bounds signal handler.
8 // Nothing in here actually runs in the signal handler, but the code here
9 // manipulates data structures used by the signal handler so we still need to be
10 // careful. In order to minimize this risk, here are some rules to follow.
11 //
12 // 1. Avoid introducing new external dependencies. The files in src/trap-handler
13 //    should be as self-contained as possible to make it easy to audit the code.
14 //
15 // 2. Any changes must be reviewed by someone from the crash reporting
16 //    or security team. Se OWNERS for suggested reviewers.
17 //
18 // For more information, see https://goo.gl/yMeyUY.
19 //
20 // For the code that runs in the signal handler itself, see handler-inside.cc.
21 
22 #include <signal.h>
23 #include <stddef.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 
28 #include <atomic>
29 #include <limits>
30 
31 #include "src/trap-handler/trap-handler-internal.h"
32 #include "src/trap-handler/trap-handler.h"
33 
34 namespace {
35 size_t gNextCodeObject = 0;
36 
37 #ifdef DEBUG
38 constexpr bool kEnableDebug = true;
39 #else
40 constexpr bool kEnableDebug = false;
41 #endif
42 }
43 
44 namespace v8 {
45 namespace internal {
46 namespace trap_handler {
47 
48 constexpr size_t kInitialCodeObjectSize = 1024;
49 constexpr size_t kCodeObjectGrowthFactor = 2;
50 
HandlerDataSize(size_t num_protected_instructions)51 constexpr size_t HandlerDataSize(size_t num_protected_instructions) {
52   return offsetof(CodeProtectionInfo, instructions) +
53          num_protected_instructions * sizeof(ProtectedInstructionData);
54 }
55 
56 namespace {
57 #ifdef DEBUG
IsDisjoint(const CodeProtectionInfo * a,const CodeProtectionInfo * b)58 bool IsDisjoint(const CodeProtectionInfo* a, const CodeProtectionInfo* b) {
59   if (a == nullptr || b == nullptr) {
60     return true;
61   }
62   return a->base >= b->base + b->size || b->base >= a->base + a->size;
63 }
64 #endif
65 
66 // Verify that the code range does not overlap any that have already been
67 // registered.
VerifyCodeRangeIsDisjoint(const CodeProtectionInfo * code_info)68 void VerifyCodeRangeIsDisjoint(const CodeProtectionInfo* code_info) {
69   for (size_t i = 0; i < gNumCodeObjects; ++i) {
70     DCHECK(IsDisjoint(code_info, gCodeObjects[i].code_info));
71   }
72 }
73 
ValidateCodeObjects()74 void ValidateCodeObjects() {
75   // Sanity-check the code objects
76   for (unsigned i = 0; i < gNumCodeObjects; ++i) {
77     const auto* data = gCodeObjects[i].code_info;
78 
79     if (data == nullptr) continue;
80 
81     // Do some sanity checks on the protected instruction data
82     for (unsigned i = 0; i < data->num_protected_instructions; ++i) {
83       DCHECK_GE(data->instructions[i].instr_offset, 0);
84       DCHECK_LT(data->instructions[i].instr_offset, data->size);
85       DCHECK_GE(data->instructions[i].landing_offset, 0);
86       DCHECK_LT(data->instructions[i].landing_offset, data->size);
87       DCHECK_GT(data->instructions[i].landing_offset,
88                 data->instructions[i].instr_offset);
89     }
90   }
91 
92   // Check the validity of the free list.
93   size_t free_count = 0;
94   for (size_t i = gNextCodeObject; i != gNumCodeObjects;
95        i = gCodeObjects[i].next_free) {
96     DCHECK_LT(i, gNumCodeObjects);
97     ++free_count;
98     // This check will fail if we encounter a cycle.
99     DCHECK_LE(free_count, gNumCodeObjects);
100   }
101 
102   // Check that all free entries are reachable via the free list.
103   size_t free_count2 = 0;
104   for (size_t i = 0; i < gNumCodeObjects; ++i) {
105     if (gCodeObjects[i].code_info == nullptr) {
106       ++free_count2;
107     }
108   }
109   DCHECK_EQ(free_count, free_count2);
110 }
111 }  // namespace
112 
CreateHandlerData(Address base,size_t size,size_t num_protected_instructions,const ProtectedInstructionData * protected_instructions)113 CodeProtectionInfo* CreateHandlerData(
114     Address base, size_t size, size_t num_protected_instructions,
115     const ProtectedInstructionData* protected_instructions) {
116   const size_t alloc_size = HandlerDataSize(num_protected_instructions);
117   CodeProtectionInfo* data =
118       reinterpret_cast<CodeProtectionInfo*>(malloc(alloc_size));
119 
120   if (data == nullptr) {
121     return nullptr;
122   }
123 
124   data->base = base;
125   data->size = size;
126   data->num_protected_instructions = num_protected_instructions;
127 
128   memcpy(data->instructions, protected_instructions,
129          num_protected_instructions * sizeof(ProtectedInstructionData));
130 
131   return data;
132 }
133 
RegisterHandlerData(Address base,size_t size,size_t num_protected_instructions,const ProtectedInstructionData * protected_instructions)134 int RegisterHandlerData(
135     Address base, size_t size, size_t num_protected_instructions,
136     const ProtectedInstructionData* protected_instructions) {
137 
138   CodeProtectionInfo* data = CreateHandlerData(
139       base, size, num_protected_instructions, protected_instructions);
140 
141   if (data == nullptr) {
142     abort();
143   }
144 
145   MetadataLock lock;
146 
147   if (kEnableDebug) {
148     VerifyCodeRangeIsDisjoint(data);
149   }
150 
151   size_t i = gNextCodeObject;
152 
153   // Explicitly convert std::numeric_limits<int>::max() to unsigned to avoid
154   // compiler warnings about signed/unsigned comparisons. We aren't worried
155   // about sign extension because we know std::numeric_limits<int>::max() is
156   // positive.
157   const size_t int_max = std::numeric_limits<int>::max();
158 
159   // We didn't find an opening in the available space, so grow.
160   if (i == gNumCodeObjects) {
161     size_t new_size = gNumCodeObjects > 0
162                           ? gNumCodeObjects * kCodeObjectGrowthFactor
163                           : kInitialCodeObjectSize;
164 
165     // Because we must return an int, there is no point in allocating space for
166     // more objects than can fit in an int.
167     if (new_size > int_max) {
168       new_size = int_max;
169     }
170     if (new_size == gNumCodeObjects) {
171       free(data);
172       return kInvalidIndex;
173     }
174 
175     // Now that we know our new size is valid, we can go ahead and realloc the
176     // array.
177     gCodeObjects = static_cast<CodeProtectionInfoListEntry*>(
178         realloc(gCodeObjects, sizeof(*gCodeObjects) * new_size));
179 
180     if (gCodeObjects == nullptr) {
181       abort();
182     }
183 
184     memset(gCodeObjects + gNumCodeObjects, 0,
185            sizeof(*gCodeObjects) * (new_size - gNumCodeObjects));
186     for (size_t j = gNumCodeObjects; j < new_size; ++j) {
187       gCodeObjects[j].next_free = j + 1;
188     }
189     gNumCodeObjects = new_size;
190   }
191 
192   DCHECK(gCodeObjects[i].code_info == nullptr);
193 
194   // Find out where the next entry should go.
195   gNextCodeObject = gCodeObjects[i].next_free;
196 
197   if (i <= int_max) {
198     gCodeObjects[i].code_info = data;
199 
200     if (kEnableDebug) {
201       ValidateCodeObjects();
202     }
203 
204     return static_cast<int>(i);
205   } else {
206     free(data);
207     return kInvalidIndex;
208   }
209 }
210 
ReleaseHandlerData(int index)211 void ReleaseHandlerData(int index) {
212   if (index == kInvalidIndex) {
213     return;
214   }
215   DCHECK_GE(index, 0);
216 
217   // Remove the data from the global list if it's there.
218   CodeProtectionInfo* data = nullptr;
219   {
220     MetadataLock lock;
221 
222     data = gCodeObjects[index].code_info;
223     gCodeObjects[index].code_info = nullptr;
224 
225     gCodeObjects[index].next_free = gNextCodeObject;
226     gNextCodeObject = index;
227 
228     if (kEnableDebug) {
229       ValidateCodeObjects();
230     }
231   }
232   // TODO(eholk): on debug builds, ensure there are no more copies in
233   // the list.
234   DCHECK_NOT_NULL(data);  // make sure we're releasing legitimate handler data.
235   free(data);
236 }
237 
GetRecoveredTrapCount()238 size_t GetRecoveredTrapCount() {
239   return gRecoveredTrapCount.load(std::memory_order_relaxed);
240 }
241 
242 #if !V8_TRAP_HANDLER_SUPPORTED
243 // This version is provided for systems that do not support trap handlers.
244 // Otherwise, the correct one should be implemented in the appropriate
245 // platform-specific handler-outside.cc.
RegisterDefaultTrapHandler()246 bool RegisterDefaultTrapHandler() { return false; }
247 #endif
248 
249 bool g_is_trap_handler_enabled;
250 
EnableTrapHandler(bool use_v8_signal_handler)251 bool EnableTrapHandler(bool use_v8_signal_handler) {
252   if (!V8_TRAP_HANDLER_SUPPORTED) {
253     return false;
254   }
255   if (use_v8_signal_handler) {
256     g_is_trap_handler_enabled = RegisterDefaultTrapHandler();
257     return g_is_trap_handler_enabled;
258   }
259   g_is_trap_handler_enabled = true;
260   return true;
261 }
262 
263 }  // namespace trap_handler
264 }  // namespace internal
265 }  // namespace v8
266