1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 /**
30  * Math utilities and approximations for common math functions.
31  * Reduced precision is usually acceptable in shaders...
32  *
33  * "fast" is used in the names of functions which are low-precision,
34  * or at least lower-precision than the normal C lib functions.
35  */
36 
37 
38 #ifndef U_MATH_H
39 #define U_MATH_H
40 
41 
42 #include "pipe/p_compiler.h"
43 
44 
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48 
49 
50 #include <math.h>
51 #include <float.h>
52 #include <stdarg.h>
53 
54 #ifdef PIPE_OS_UNIX
55 #include <strings.h> /* for ffs */
56 #endif
57 
58 
59 #ifndef M_SQRT2
60 #define M_SQRT2 1.41421356237309504880
61 #endif
62 
63 
64 #if defined(_MSC_VER)
65 
66 #if _MSC_VER < 1400 && !defined(__cplusplus)
67 
cosf(float f)68 static inline float cosf( float f )
69 {
70    return (float) cos( (double) f );
71 }
72 
sinf(float f)73 static inline float sinf( float f )
74 {
75    return (float) sin( (double) f );
76 }
77 
ceilf(float f)78 static inline float ceilf( float f )
79 {
80    return (float) ceil( (double) f );
81 }
82 
floorf(float f)83 static inline float floorf( float f )
84 {
85    return (float) floor( (double) f );
86 }
87 
powf(float f,float g)88 static inline float powf( float f, float g )
89 {
90    return (float) pow( (double) f, (double) g );
91 }
92 
sqrtf(float f)93 static inline float sqrtf( float f )
94 {
95    return (float) sqrt( (double) f );
96 }
97 
fabsf(float f)98 static inline float fabsf( float f )
99 {
100    return (float) fabs( (double) f );
101 }
102 
logf(float f)103 static inline float logf( float f )
104 {
105    return (float) log( (double) f );
106 }
107 
108 #else
109 /* Work-around an extra semi-colon in VS 2005 logf definition */
110 #ifdef logf
111 #undef logf
112 #define logf(x) ((float)log((double)(x)))
113 #endif /* logf */
114 
115 #if _MSC_VER < 1800
116 #define isfinite(x) _finite((double)(x))
117 #define isnan(x) _isnan((double)(x))
118 #endif /* _MSC_VER < 1800 */
119 #endif /* _MSC_VER < 1400 && !defined(__cplusplus) */
120 
121 #if _MSC_VER < 1800
log2(double x)122 static inline double log2( double x )
123 {
124    const double invln2 = 1.442695041;
125    return log( x ) * invln2;
126 }
127 
128 static inline double
round(double x)129 round(double x)
130 {
131    return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
132 }
133 
134 static inline float
roundf(float x)135 roundf(float x)
136 {
137    return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
138 }
139 #endif
140 
141 #ifndef INFINITY
142 #define INFINITY (DBL_MAX + DBL_MAX)
143 #endif
144 
145 #ifndef NAN
146 #define NAN (INFINITY - INFINITY)
147 #endif
148 
149 #endif /* _MSC_VER */
150 
151 
152 #if __STDC_VERSION__ < 199901L && (!defined(__cplusplus) || defined(_MSC_VER))
153 static inline long int
lrint(double d)154 lrint(double d)
155 {
156    long int rounded = (long int)(d + 0.5);
157 
158    if (d - floor(d) == 0.5) {
159       if (rounded % 2 != 0)
160          rounded += (d > 0) ? -1 : 1;
161    }
162 
163    return rounded;
164 }
165 
166 static inline long int
lrintf(float f)167 lrintf(float f)
168 {
169    long int rounded = (long int)(f + 0.5f);
170 
171    if (f - floorf(f) == 0.5f) {
172       if (rounded % 2 != 0)
173          rounded += (f > 0) ? -1 : 1;
174    }
175 
176    return rounded;
177 }
178 
179 static inline long long int
llrint(double d)180 llrint(double d)
181 {
182    long long int rounded = (long long int)(d + 0.5);
183 
184    if (d - floor(d) == 0.5) {
185       if (rounded % 2 != 0)
186          rounded += (d > 0) ? -1 : 1;
187    }
188 
189    return rounded;
190 }
191 
192 static inline long long int
llrintf(float f)193 llrintf(float f)
194 {
195    long long int rounded = (long long int)(f + 0.5f);
196 
197    if (f - floorf(f) == 0.5f) {
198       if (rounded % 2 != 0)
199          rounded += (f > 0) ? -1 : 1;
200    }
201 
202    return rounded;
203 }
204 #endif /* C99 */
205 
206 #define POW2_TABLE_SIZE_LOG2 9
207 #define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
208 #define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
209 #define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
210 extern float pow2_table[POW2_TABLE_SIZE];
211 
212 
213 /**
214  * Initialize math module.  This should be called before using any
215  * other functions in this module.
216  */
217 extern void
218 util_init_math(void);
219 
220 
221 union fi {
222    float f;
223    int32_t i;
224    uint32_t ui;
225 };
226 
227 
228 union di {
229    double d;
230    int64_t i;
231    uint64_t ui;
232 };
233 
234 
235 /**
236  * Extract the IEEE float32 exponent.
237  */
238 static inline signed
util_get_float32_exponent(float x)239 util_get_float32_exponent(float x) {
240    union fi f;
241 
242    f.f = x;
243 
244    return ((f.ui >> 23) & 0xff) - 127;
245 }
246 
247 
248 /**
249  * Fast version of 2^x
250  * Identity: exp2(a + b) = exp2(a) * exp2(b)
251  * Let ipart = int(x)
252  * Let fpart = x - ipart;
253  * So, exp2(x) = exp2(ipart) * exp2(fpart)
254  * Compute exp2(ipart) with i << ipart
255  * Compute exp2(fpart) with lookup table.
256  */
257 static inline float
util_fast_exp2(float x)258 util_fast_exp2(float x)
259 {
260    int32_t ipart;
261    float fpart, mpart;
262    union fi epart;
263 
264    if(x > 129.00000f)
265       return 3.402823466e+38f;
266 
267    if (x < -126.99999f)
268       return 0.0f;
269 
270    ipart = (int32_t) x;
271    fpart = x - (float) ipart;
272 
273    /* same as
274     *   epart.f = (float) (1 << ipart)
275     * but faster and without integer overflow for ipart > 31
276     */
277    epart.i = (ipart + 127 ) << 23;
278 
279    mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
280 
281    return epart.f * mpart;
282 }
283 
284 
285 /**
286  * Fast approximation to exp(x).
287  */
288 static inline float
util_fast_exp(float x)289 util_fast_exp(float x)
290 {
291    const float k = 1.44269f; /* = log2(e) */
292    return util_fast_exp2(k * x);
293 }
294 
295 
296 #if 0
297 
298 #define LOG2_TABLE_SIZE_LOG2 16
299 #define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
300 #define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
301 extern float log2_table[LOG2_TABLE_SIZE];
302 
303 
304 /**
305  * Fast approximation to log2(x).
306  */
307 static inline float
308 util_fast_log2(float x)
309 {
310    union fi num;
311    float epart, mpart;
312    num.f = x;
313    epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
314    /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
315    mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
316    return epart + mpart;
317 }
318 
319 
320 /**
321  * Fast approximation to x^y.
322  */
323 static inline float
324 util_fast_pow(float x, float y)
325 {
326    return util_fast_exp2(util_fast_log2(x) * y);
327 }
328 #endif
329 /* Note that this counts zero as a power of two.
330  */
331 static inline boolean
util_is_power_of_two(unsigned v)332 util_is_power_of_two( unsigned v )
333 {
334    return (v & (v-1)) == 0;
335 }
336 
337 
338 /**
339  * Floor(x), returned as int.
340  */
341 static inline int
util_ifloor(float f)342 util_ifloor(float f)
343 {
344    int ai, bi;
345    double af, bf;
346    union fi u;
347    af = (3 << 22) + 0.5 + (double) f;
348    bf = (3 << 22) + 0.5 - (double) f;
349    u.f = (float) af;  ai = u.i;
350    u.f = (float) bf;  bi = u.i;
351    return (ai - bi) >> 1;
352 }
353 
354 
355 /**
356  * Round float to nearest int.
357  */
358 static inline int
util_iround(float f)359 util_iround(float f)
360 {
361 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
362    int r;
363    __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
364    return r;
365 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
366    int r;
367    _asm {
368       fld f
369       fistp r
370    }
371    return r;
372 #else
373    if (f >= 0.0f)
374       return (int) (f + 0.5f);
375    else
376       return (int) (f - 0.5f);
377 #endif
378 }
379 
380 
381 /**
382  * Approximate floating point comparison
383  */
384 static inline boolean
util_is_approx(float a,float b,float tol)385 util_is_approx(float a, float b, float tol)
386 {
387    return fabs(b - a) <= tol;
388 }
389 
390 
391 /**
392  * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
393  * util_is_X_nan        = test if x is NaN
394  * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
395  *
396  * NaN can be checked with x != x, however this fails with the fast math flag
397  **/
398 
399 
400 /**
401  * Single-float
402  */
403 static inline boolean
util_is_inf_or_nan(float x)404 util_is_inf_or_nan(float x)
405 {
406    union fi tmp;
407    tmp.f = x;
408    return (tmp.ui & 0x7f800000) == 0x7f800000;
409 }
410 
411 
412 static inline boolean
util_is_nan(float x)413 util_is_nan(float x)
414 {
415    union fi tmp;
416    tmp.f = x;
417    return (tmp.ui & 0x7fffffff) > 0x7f800000;
418 }
419 
420 
421 static inline int
util_inf_sign(float x)422 util_inf_sign(float x)
423 {
424    union fi tmp;
425    tmp.f = x;
426    if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
427       return 0;
428    }
429 
430    return (x < 0) ? -1 : 1;
431 }
432 
433 
434 /**
435  * Double-float
436  */
437 static inline boolean
util_is_double_inf_or_nan(double x)438 util_is_double_inf_or_nan(double x)
439 {
440    union di tmp;
441    tmp.d = x;
442    return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
443 }
444 
445 
446 static inline boolean
util_is_double_nan(double x)447 util_is_double_nan(double x)
448 {
449    union di tmp;
450    tmp.d = x;
451    return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
452 }
453 
454 
455 static inline int
util_double_inf_sign(double x)456 util_double_inf_sign(double x)
457 {
458    union di tmp;
459    tmp.d = x;
460    if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
461       return 0;
462    }
463 
464    return (x < 0) ? -1 : 1;
465 }
466 
467 
468 /**
469  * Half-float
470  */
471 static inline boolean
util_is_half_inf_or_nan(int16_t x)472 util_is_half_inf_or_nan(int16_t x)
473 {
474    return (x & 0x7c00) == 0x7c00;
475 }
476 
477 
478 static inline boolean
util_is_half_nan(int16_t x)479 util_is_half_nan(int16_t x)
480 {
481    return (x & 0x7fff) > 0x7c00;
482 }
483 
484 
485 static inline int
util_half_inf_sign(int16_t x)486 util_half_inf_sign(int16_t x)
487 {
488    if ((x & 0x7fff) != 0x7c00) {
489       return 0;
490    }
491 
492    return (x < 0) ? -1 : 1;
493 }
494 
495 
496 /**
497  * Find first bit set in word.  Least significant bit is 1.
498  * Return 0 if no bits set.
499  */
500 #ifndef FFS_DEFINED
501 #define FFS_DEFINED 1
502 
503 #if defined(_MSC_VER) && _MSC_VER >= 1300 && (_M_IX86 || _M_AMD64 || _M_IA64)
504 unsigned char _BitScanForward(unsigned long* Index, unsigned long Mask);
505 #pragma intrinsic(_BitScanForward)
506 static inline
ffs(unsigned long u)507 unsigned long ffs( unsigned long u )
508 {
509    unsigned long i;
510    if (_BitScanForward(&i, u))
511       return i + 1;
512    else
513       return 0;
514 }
515 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
516 static inline
ffs(unsigned u)517 unsigned ffs( unsigned u )
518 {
519    unsigned i;
520 
521    if (u == 0) {
522       return 0;
523    }
524 
525    __asm bsf eax, [u]
526    __asm inc eax
527    __asm mov [i], eax
528 
529    return i;
530 }
531 #elif defined(__MINGW32__) || defined(PIPE_OS_ANDROID)
532 #define ffs __builtin_ffs
533 #endif
534 
535 #endif /* FFS_DEFINED */
536 
537 /**
538  * Find last bit set in a word.  The least significant bit is 1.
539  * Return 0 if no bits are set.
540  */
util_last_bit(unsigned u)541 static inline unsigned util_last_bit(unsigned u)
542 {
543 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304)
544    return u == 0 ? 0 : 32 - __builtin_clz(u);
545 #else
546    unsigned r = 0;
547    while (u) {
548        r++;
549        u >>= 1;
550    }
551    return r;
552 #endif
553 }
554 
555 /**
556  * Find last bit in a word that does not match the sign bit. The least
557  * significant bit is 1.
558  * Return 0 if no bits are set.
559  */
util_last_bit_signed(int i)560 static inline unsigned util_last_bit_signed(int i)
561 {
562 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 407)
563    return 31 - __builtin_clrsb(i);
564 #else
565    if (i >= 0)
566       return util_last_bit(i);
567    else
568       return util_last_bit(~(unsigned)i);
569 #endif
570 }
571 
572 /* Destructively loop over all of the bits in a mask as in:
573  *
574  * while (mymask) {
575  *   int i = u_bit_scan(&mymask);
576  *   ... process element i
577  * }
578  *
579  */
u_bit_scan(unsigned * mask)580 static inline int u_bit_scan(unsigned *mask)
581 {
582    int i = ffs(*mask) - 1;
583    *mask &= ~(1 << i);
584    return i;
585 }
586 
587 /* For looping over a bitmask when you want to loop over consecutive bits
588  * manually, for example:
589  *
590  * while (mask) {
591  *    int start, count, i;
592  *
593  *    u_bit_scan_consecutive_range(&mask, &start, &count);
594  *
595  *    for (i = 0; i < count; i++)
596  *       ... process element (start+i)
597  * }
598  */
599 static inline void
u_bit_scan_consecutive_range(unsigned * mask,int * start,int * count)600 u_bit_scan_consecutive_range(unsigned *mask, int *start, int *count)
601 {
602    if (*mask == 0xffffffff) {
603       *start = 0;
604       *count = 32;
605       *mask = 0;
606       return;
607    }
608    *start = ffs(*mask) - 1;
609    *count = ffs(~(*mask >> *start)) - 1;
610    *mask &= ~(((1u << *count) - 1) << *start);
611 }
612 
613 /**
614  * Return float bits.
615  */
616 static inline unsigned
fui(float f)617 fui( float f )
618 {
619    union fi fi;
620    fi.f = f;
621    return fi.ui;
622 }
623 
624 
625 /**
626  * Convert ubyte to float in [0, 1].
627  * XXX a 256-entry lookup table would be slightly faster.
628  */
629 static inline float
ubyte_to_float(ubyte ub)630 ubyte_to_float(ubyte ub)
631 {
632    return (float) ub * (1.0f / 255.0f);
633 }
634 
635 
636 /**
637  * Convert float in [0,1] to ubyte in [0,255] with clamping.
638  */
639 static inline ubyte
float_to_ubyte(float f)640 float_to_ubyte(float f)
641 {
642    union fi tmp;
643 
644    tmp.f = f;
645    if (tmp.i < 0) {
646       return (ubyte) 0;
647    }
648    else if (tmp.i >= 0x3f800000 /* 1.0f */) {
649       return (ubyte) 255;
650    }
651    else {
652       tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
653       return (ubyte) tmp.i;
654    }
655 }
656 
657 static inline float
byte_to_float_tex(int8_t b)658 byte_to_float_tex(int8_t b)
659 {
660    return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
661 }
662 
663 static inline int8_t
float_to_byte_tex(float f)664 float_to_byte_tex(float f)
665 {
666    return (int8_t) (127.0F * f);
667 }
668 
669 /**
670  * Calc log base 2
671  */
672 static inline unsigned
util_logbase2(unsigned n)673 util_logbase2(unsigned n)
674 {
675 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
676    return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
677 #else
678    unsigned pos = 0;
679    if (n >= 1<<16) { n >>= 16; pos += 16; }
680    if (n >= 1<< 8) { n >>=  8; pos +=  8; }
681    if (n >= 1<< 4) { n >>=  4; pos +=  4; }
682    if (n >= 1<< 2) { n >>=  2; pos +=  2; }
683    if (n >= 1<< 1) {           pos +=  1; }
684    return pos;
685 #endif
686 }
687 
688 
689 /**
690  * Returns the smallest power of two >= x
691  */
692 static inline unsigned
util_next_power_of_two(unsigned x)693 util_next_power_of_two(unsigned x)
694 {
695 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
696    if (x <= 1)
697        return 1;
698 
699    return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
700 #else
701    unsigned val = x;
702 
703    if (x <= 1)
704       return 1;
705 
706    if (util_is_power_of_two(x))
707       return x;
708 
709    val--;
710    val = (val >> 1) | val;
711    val = (val >> 2) | val;
712    val = (val >> 4) | val;
713    val = (val >> 8) | val;
714    val = (val >> 16) | val;
715    val++;
716    return val;
717 #endif
718 }
719 
720 
721 /**
722  * Return number of bits set in n.
723  */
724 static inline unsigned
util_bitcount(unsigned n)725 util_bitcount(unsigned n)
726 {
727 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
728    return __builtin_popcount(n);
729 #else
730    /* K&R classic bitcount.
731     *
732     * For each iteration, clear the LSB from the bitfield.
733     * Requires only one iteration per set bit, instead of
734     * one iteration per bit less than highest set bit.
735     */
736    unsigned bits = 0;
737    for (bits; n; bits++) {
738       n &= n - 1;
739    }
740    return bits;
741 #endif
742 }
743 
744 /**
745  * Reverse bits in n
746  * Algorithm taken from:
747  * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
748  */
749 static inline unsigned
util_bitreverse(unsigned n)750 util_bitreverse(unsigned n)
751 {
752     n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
753     n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
754     n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
755     n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
756     n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
757     return n;
758 }
759 
760 /**
761  * Convert from little endian to CPU byte order.
762  */
763 
764 #ifdef PIPE_ARCH_BIG_ENDIAN
765 #define util_le64_to_cpu(x) util_bswap64(x)
766 #define util_le32_to_cpu(x) util_bswap32(x)
767 #define util_le16_to_cpu(x) util_bswap16(x)
768 #else
769 #define util_le64_to_cpu(x) (x)
770 #define util_le32_to_cpu(x) (x)
771 #define util_le16_to_cpu(x) (x)
772 #endif
773 
774 #define util_cpu_to_le64(x) util_le64_to_cpu(x)
775 #define util_cpu_to_le32(x) util_le32_to_cpu(x)
776 #define util_cpu_to_le16(x) util_le16_to_cpu(x)
777 
778 /**
779  * Reverse byte order of a 32 bit word.
780  */
781 static inline uint32_t
util_bswap32(uint32_t n)782 util_bswap32(uint32_t n)
783 {
784 /* We need the gcc version checks for non-autoconf build system */
785 #if defined(HAVE___BUILTIN_BSWAP32) || (defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 403))
786    return __builtin_bswap32(n);
787 #else
788    return (n >> 24) |
789           ((n >> 8) & 0x0000ff00) |
790           ((n << 8) & 0x00ff0000) |
791           (n << 24);
792 #endif
793 }
794 
795 /**
796  * Reverse byte order of a 64bit word.
797  */
798 static inline uint64_t
util_bswap64(uint64_t n)799 util_bswap64(uint64_t n)
800 {
801 #if defined(HAVE___BUILTIN_BSWAP64)
802    return __builtin_bswap64(n);
803 #else
804    return ((uint64_t)util_bswap32(n) << 32) |
805           util_bswap32((n >> 32));
806 #endif
807 }
808 
809 
810 /**
811  * Reverse byte order of a 16 bit word.
812  */
813 static inline uint16_t
util_bswap16(uint16_t n)814 util_bswap16(uint16_t n)
815 {
816    return (n >> 8) |
817           (n << 8);
818 }
819 
820 
821 /**
822  * Clamp X to [MIN, MAX].
823  * This is a macro to allow float, int, uint, etc. types.
824  */
825 #define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
826 
827 #define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
828 #define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
829 
830 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
831 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
832 
833 #define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
834 #define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
835 
836 
837 /**
838  * Align a value, only works pot alignemnts.
839  */
840 static inline int
align(int value,int alignment)841 align(int value, int alignment)
842 {
843    return (value + alignment - 1) & ~(alignment - 1);
844 }
845 
846 /**
847  * Works like align but on npot alignments.
848  */
849 static inline size_t
util_align_npot(size_t value,size_t alignment)850 util_align_npot(size_t value, size_t alignment)
851 {
852    if (value % alignment)
853       return value + (alignment - (value % alignment));
854    return value;
855 }
856 
857 static inline unsigned
u_minify(unsigned value,unsigned levels)858 u_minify(unsigned value, unsigned levels)
859 {
860     return MAX2(1, value >> levels);
861 }
862 
863 #ifndef COPY_4V
864 #define COPY_4V( DST, SRC )         \
865 do {                                \
866    (DST)[0] = (SRC)[0];             \
867    (DST)[1] = (SRC)[1];             \
868    (DST)[2] = (SRC)[2];             \
869    (DST)[3] = (SRC)[3];             \
870 } while (0)
871 #endif
872 
873 
874 #ifndef COPY_4FV
875 #define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
876 #endif
877 
878 
879 #ifndef ASSIGN_4V
880 #define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
881 do {                                     \
882    (DST)[0] = (V0);                      \
883    (DST)[1] = (V1);                      \
884    (DST)[2] = (V2);                      \
885    (DST)[3] = (V3);                      \
886 } while (0)
887 #endif
888 
889 
util_unsigned_fixed(float value,unsigned frac_bits)890 static inline uint32_t util_unsigned_fixed(float value, unsigned frac_bits)
891 {
892    return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
893 }
894 
util_signed_fixed(float value,unsigned frac_bits)895 static inline int32_t util_signed_fixed(float value, unsigned frac_bits)
896 {
897    return (int32_t)(value * (1<<frac_bits));
898 }
899 
900 unsigned
901 util_fpstate_get(void);
902 unsigned
903 util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
904 void
905 util_fpstate_set(unsigned fpstate);
906 
907 
908 
909 #ifdef __cplusplus
910 }
911 #endif
912 
913 #endif /* U_MATH_H */
914