1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13
14 #include "src/dsp/dsp.h"
15
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <stdlib.h> // for abs()
19 #include <emmintrin.h>
20
21 #include "src/dsp/common_sse2.h"
22 #include "src/enc/cost_enc.h"
23 #include "src/enc/vp8i_enc.h"
24
25 //------------------------------------------------------------------------------
26 // Transforms (Paragraph 14.4)
27
28 // Does one or two inverse transforms.
ITransform_SSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)29 static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
30 int do_two) {
31 // This implementation makes use of 16-bit fixed point versions of two
32 // multiply constants:
33 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
34 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
35 //
36 // To be able to use signed 16-bit integers, we use the following trick to
37 // have constants within range:
38 // - Associated constants are obtained by subtracting the 16-bit fixed point
39 // version of one:
40 // k = K - (1 << 16) => K = k + (1 << 16)
41 // K1 = 85267 => k1 = 20091
42 // K2 = 35468 => k2 = -30068
43 // - The multiplication of a variable by a constant become the sum of the
44 // variable and the multiplication of that variable by the associated
45 // constant:
46 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
47 const __m128i k1 = _mm_set1_epi16(20091);
48 const __m128i k2 = _mm_set1_epi16(-30068);
49 __m128i T0, T1, T2, T3;
50
51 // Load and concatenate the transform coefficients (we'll do two inverse
52 // transforms in parallel). In the case of only one inverse transform, the
53 // second half of the vectors will just contain random value we'll never
54 // use nor store.
55 __m128i in0, in1, in2, in3;
56 {
57 in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
58 in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
59 in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
60 in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
61 // a00 a10 a20 a30 x x x x
62 // a01 a11 a21 a31 x x x x
63 // a02 a12 a22 a32 x x x x
64 // a03 a13 a23 a33 x x x x
65 if (do_two) {
66 const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
67 const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
68 const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
69 const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
70 in0 = _mm_unpacklo_epi64(in0, inB0);
71 in1 = _mm_unpacklo_epi64(in1, inB1);
72 in2 = _mm_unpacklo_epi64(in2, inB2);
73 in3 = _mm_unpacklo_epi64(in3, inB3);
74 // a00 a10 a20 a30 b00 b10 b20 b30
75 // a01 a11 a21 a31 b01 b11 b21 b31
76 // a02 a12 a22 a32 b02 b12 b22 b32
77 // a03 a13 a23 a33 b03 b13 b23 b33
78 }
79 }
80
81 // Vertical pass and subsequent transpose.
82 {
83 // First pass, c and d calculations are longer because of the "trick"
84 // multiplications.
85 const __m128i a = _mm_add_epi16(in0, in2);
86 const __m128i b = _mm_sub_epi16(in0, in2);
87 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
88 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
89 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
90 const __m128i c3 = _mm_sub_epi16(in1, in3);
91 const __m128i c4 = _mm_sub_epi16(c1, c2);
92 const __m128i c = _mm_add_epi16(c3, c4);
93 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
94 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
95 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
96 const __m128i d3 = _mm_add_epi16(in1, in3);
97 const __m128i d4 = _mm_add_epi16(d1, d2);
98 const __m128i d = _mm_add_epi16(d3, d4);
99
100 // Second pass.
101 const __m128i tmp0 = _mm_add_epi16(a, d);
102 const __m128i tmp1 = _mm_add_epi16(b, c);
103 const __m128i tmp2 = _mm_sub_epi16(b, c);
104 const __m128i tmp3 = _mm_sub_epi16(a, d);
105
106 // Transpose the two 4x4.
107 VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
108 }
109
110 // Horizontal pass and subsequent transpose.
111 {
112 // First pass, c and d calculations are longer because of the "trick"
113 // multiplications.
114 const __m128i four = _mm_set1_epi16(4);
115 const __m128i dc = _mm_add_epi16(T0, four);
116 const __m128i a = _mm_add_epi16(dc, T2);
117 const __m128i b = _mm_sub_epi16(dc, T2);
118 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
119 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
120 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
121 const __m128i c3 = _mm_sub_epi16(T1, T3);
122 const __m128i c4 = _mm_sub_epi16(c1, c2);
123 const __m128i c = _mm_add_epi16(c3, c4);
124 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
125 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
126 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
127 const __m128i d3 = _mm_add_epi16(T1, T3);
128 const __m128i d4 = _mm_add_epi16(d1, d2);
129 const __m128i d = _mm_add_epi16(d3, d4);
130
131 // Second pass.
132 const __m128i tmp0 = _mm_add_epi16(a, d);
133 const __m128i tmp1 = _mm_add_epi16(b, c);
134 const __m128i tmp2 = _mm_sub_epi16(b, c);
135 const __m128i tmp3 = _mm_sub_epi16(a, d);
136 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
137 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
138 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
139 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
140
141 // Transpose the two 4x4.
142 VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
143 &T2, &T3);
144 }
145
146 // Add inverse transform to 'ref' and store.
147 {
148 const __m128i zero = _mm_setzero_si128();
149 // Load the reference(s).
150 __m128i ref0, ref1, ref2, ref3;
151 if (do_two) {
152 // Load eight bytes/pixels per line.
153 ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
154 ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
155 ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
156 ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
157 } else {
158 // Load four bytes/pixels per line.
159 ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
160 ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
161 ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
162 ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
163 }
164 // Convert to 16b.
165 ref0 = _mm_unpacklo_epi8(ref0, zero);
166 ref1 = _mm_unpacklo_epi8(ref1, zero);
167 ref2 = _mm_unpacklo_epi8(ref2, zero);
168 ref3 = _mm_unpacklo_epi8(ref3, zero);
169 // Add the inverse transform(s).
170 ref0 = _mm_add_epi16(ref0, T0);
171 ref1 = _mm_add_epi16(ref1, T1);
172 ref2 = _mm_add_epi16(ref2, T2);
173 ref3 = _mm_add_epi16(ref3, T3);
174 // Unsigned saturate to 8b.
175 ref0 = _mm_packus_epi16(ref0, ref0);
176 ref1 = _mm_packus_epi16(ref1, ref1);
177 ref2 = _mm_packus_epi16(ref2, ref2);
178 ref3 = _mm_packus_epi16(ref3, ref3);
179 // Store the results.
180 if (do_two) {
181 // Store eight bytes/pixels per line.
182 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
183 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
184 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
185 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
186 } else {
187 // Store four bytes/pixels per line.
188 WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
189 WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
190 WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
191 WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
192 }
193 }
194 }
195
FTransformPass1_SSE2(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)196 static void FTransformPass1_SSE2(const __m128i* const in01,
197 const __m128i* const in23,
198 __m128i* const out01,
199 __m128i* const out32) {
200 const __m128i k937 = _mm_set1_epi32(937);
201 const __m128i k1812 = _mm_set1_epi32(1812);
202
203 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
204 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
205 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
206 2217, 5352, 2217, 5352);
207 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
208 -5352, 2217, -5352, 2217);
209
210 // *in01 = 00 01 10 11 02 03 12 13
211 // *in23 = 20 21 30 31 22 23 32 33
212 const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
213 const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
214 // 00 01 10 11 03 02 13 12
215 // 20 21 30 31 23 22 33 32
216 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
217 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
218 // 00 01 10 11 20 21 30 31
219 // 03 02 13 12 23 22 33 32
220 const __m128i a01 = _mm_add_epi16(s01, s32);
221 const __m128i a32 = _mm_sub_epi16(s01, s32);
222 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
223 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
224
225 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
226 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
227 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
228 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
229 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
230 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
231 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
232 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
233 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
234 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
235 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
236 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
237 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
238 *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
239 *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
240 }
241
FTransformPass2_SSE2(const __m128i * const v01,const __m128i * const v32,int16_t * out)242 static void FTransformPass2_SSE2(const __m128i* const v01,
243 const __m128i* const v32,
244 int16_t* out) {
245 const __m128i zero = _mm_setzero_si128();
246 const __m128i seven = _mm_set1_epi16(7);
247 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
248 5352, 2217, 5352, 2217);
249 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
250 2217, -5352, 2217, -5352);
251 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
252 const __m128i k51000 = _mm_set1_epi32(51000);
253
254 // Same operations are done on the (0,3) and (1,2) pairs.
255 // a3 = v0 - v3
256 // a2 = v1 - v2
257 const __m128i a32 = _mm_sub_epi16(*v01, *v32);
258 const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
259
260 const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
261 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
262 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
263 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
264 const __m128i d3 = _mm_add_epi32(c3, k51000);
265 const __m128i e1 = _mm_srai_epi32(d1, 16);
266 const __m128i e3 = _mm_srai_epi32(d3, 16);
267 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
268 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
269 const __m128i f1 = _mm_packs_epi32(e1, e1);
270 const __m128i f3 = _mm_packs_epi32(e3, e3);
271 // g1 = f1 + (a3 != 0);
272 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
273 // desired (0, 1), we add one earlier through k12000_plus_one.
274 // -> g1 = f1 + 1 - (a3 == 0)
275 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
276
277 // a0 = v0 + v3
278 // a1 = v1 + v2
279 const __m128i a01 = _mm_add_epi16(*v01, *v32);
280 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
281 const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
282 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
283 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
284 // d0 = (a0 + a1 + 7) >> 4;
285 // d2 = (a0 - a1 + 7) >> 4;
286 const __m128i d0 = _mm_srai_epi16(c0, 4);
287 const __m128i d2 = _mm_srai_epi16(c2, 4);
288
289 const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
290 const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
291 _mm_storeu_si128((__m128i*)&out[0], d0_g1);
292 _mm_storeu_si128((__m128i*)&out[8], d2_f3);
293 }
294
FTransform_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)295 static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
296 int16_t* out) {
297 const __m128i zero = _mm_setzero_si128();
298 // Load src.
299 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
300 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
301 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
302 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
303 // 00 01 02 03 *
304 // 10 11 12 13 *
305 // 20 21 22 23 *
306 // 30 31 32 33 *
307 // Shuffle.
308 const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
309 const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
310 // 00 01 10 11 02 03 12 13 * * ...
311 // 20 21 30 31 22 22 32 33 * * ...
312
313 // Load ref.
314 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
315 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
316 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
317 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
318 const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
319 const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);
320
321 // Convert both to 16 bit.
322 const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
323 const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
324 const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
325 const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);
326
327 // Compute the difference.
328 const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
329 const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
330 __m128i v01, v32;
331
332 // First pass
333 FTransformPass1_SSE2(&row01, &row23, &v01, &v32);
334
335 // Second pass
336 FTransformPass2_SSE2(&v01, &v32, out);
337 }
338
FTransform2_SSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)339 static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
340 int16_t* out) {
341 const __m128i zero = _mm_setzero_si128();
342
343 // Load src and convert to 16b.
344 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
345 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
346 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
347 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
348 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
349 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
350 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
351 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
352 // Load ref and convert to 16b.
353 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
354 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
355 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
356 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
357 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
358 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
359 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
360 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
361 // Compute difference. -> 00 01 02 03 00' 01' 02' 03'
362 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
363 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
364 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
365 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
366
367 // Unpack and shuffle
368 // 00 01 02 03 0 0 0 0
369 // 10 11 12 13 0 0 0 0
370 // 20 21 22 23 0 0 0 0
371 // 30 31 32 33 0 0 0 0
372 const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
373 const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
374 const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
375 const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
376 __m128i v01l, v32l;
377 __m128i v01h, v32h;
378
379 // First pass
380 FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
381 FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);
382
383 // Second pass
384 FTransformPass2_SSE2(&v01l, &v32l, out + 0);
385 FTransformPass2_SSE2(&v01h, &v32h, out + 16);
386 }
387
FTransformWHTRow_SSE2(const int16_t * const in,__m128i * const out)388 static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
389 const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
390 const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
391 const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
392 const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
393 const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
394 const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ...
395 const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ...
396 const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ...
397 const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ...
398 const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ...
399 const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ...
400 const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1
401 *out = _mm_madd_epi16(D, kMult);
402 }
403
FTransformWHT_SSE2(const int16_t * in,int16_t * out)404 static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
405 // Input is 12b signed.
406 __m128i row0, row1, row2, row3;
407 // Rows are 14b signed.
408 FTransformWHTRow_SSE2(in + 0 * 64, &row0);
409 FTransformWHTRow_SSE2(in + 1 * 64, &row1);
410 FTransformWHTRow_SSE2(in + 2 * 64, &row2);
411 FTransformWHTRow_SSE2(in + 3 * 64, &row3);
412
413 {
414 // The a* are 15b signed.
415 const __m128i a0 = _mm_add_epi32(row0, row2);
416 const __m128i a1 = _mm_add_epi32(row1, row3);
417 const __m128i a2 = _mm_sub_epi32(row1, row3);
418 const __m128i a3 = _mm_sub_epi32(row0, row2);
419 const __m128i a0a3 = _mm_packs_epi32(a0, a3);
420 const __m128i a1a2 = _mm_packs_epi32(a1, a2);
421
422 // The b* are 16b signed.
423 const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
424 const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
425 const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
426 const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);
427
428 _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
429 _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
430 }
431 }
432
433 //------------------------------------------------------------------------------
434 // Compute susceptibility based on DCT-coeff histograms:
435 // the higher, the "easier" the macroblock is to compress.
436
CollectHistogram_SSE2(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)437 static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
438 int start_block, int end_block,
439 VP8Histogram* const histo) {
440 const __m128i zero = _mm_setzero_si128();
441 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
442 int j;
443 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
444 for (j = start_block; j < end_block; ++j) {
445 int16_t out[16];
446 int k;
447
448 FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
449
450 // Convert coefficients to bin (within out[]).
451 {
452 // Load.
453 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
454 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
455 const __m128i d0 = _mm_sub_epi16(zero, out0);
456 const __m128i d1 = _mm_sub_epi16(zero, out1);
457 const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b
458 const __m128i abs1 = _mm_max_epi16(out1, d1);
459 // v = abs(out) >> 3
460 const __m128i v0 = _mm_srai_epi16(abs0, 3);
461 const __m128i v1 = _mm_srai_epi16(abs1, 3);
462 // bin = min(v, MAX_COEFF_THRESH)
463 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
464 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
465 // Store.
466 _mm_storeu_si128((__m128i*)&out[0], bin0);
467 _mm_storeu_si128((__m128i*)&out[8], bin1);
468 }
469
470 // Convert coefficients to bin.
471 for (k = 0; k < 16; ++k) {
472 ++distribution[out[k]];
473 }
474 }
475 VP8SetHistogramData(distribution, histo);
476 }
477
478 //------------------------------------------------------------------------------
479 // Intra predictions
480
481 // helper for chroma-DC predictions
Put8x8uv_SSE2(uint8_t v,uint8_t * dst)482 static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
483 int j;
484 const __m128i values = _mm_set1_epi8(v);
485 for (j = 0; j < 8; ++j) {
486 _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
487 }
488 }
489
Put16_SSE2(uint8_t v,uint8_t * dst)490 static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
491 int j;
492 const __m128i values = _mm_set1_epi8(v);
493 for (j = 0; j < 16; ++j) {
494 _mm_store_si128((__m128i*)(dst + j * BPS), values);
495 }
496 }
497
Fill_SSE2(uint8_t * dst,int value,int size)498 static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
499 if (size == 4) {
500 int j;
501 for (j = 0; j < 4; ++j) {
502 memset(dst + j * BPS, value, 4);
503 }
504 } else if (size == 8) {
505 Put8x8uv_SSE2(value, dst);
506 } else {
507 Put16_SSE2(value, dst);
508 }
509 }
510
VE8uv_SSE2(uint8_t * dst,const uint8_t * top)511 static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
512 int j;
513 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
514 for (j = 0; j < 8; ++j) {
515 _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
516 }
517 }
518
VE16_SSE2(uint8_t * dst,const uint8_t * top)519 static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
520 const __m128i top_values = _mm_load_si128((const __m128i*)top);
521 int j;
522 for (j = 0; j < 16; ++j) {
523 _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
524 }
525 }
526
VerticalPred_SSE2(uint8_t * dst,const uint8_t * top,int size)527 static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
528 const uint8_t* top, int size) {
529 if (top != NULL) {
530 if (size == 8) {
531 VE8uv_SSE2(dst, top);
532 } else {
533 VE16_SSE2(dst, top);
534 }
535 } else {
536 Fill_SSE2(dst, 127, size);
537 }
538 }
539
HE8uv_SSE2(uint8_t * dst,const uint8_t * left)540 static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
541 int j;
542 for (j = 0; j < 8; ++j) {
543 const __m128i values = _mm_set1_epi8(left[j]);
544 _mm_storel_epi64((__m128i*)dst, values);
545 dst += BPS;
546 }
547 }
548
HE16_SSE2(uint8_t * dst,const uint8_t * left)549 static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
550 int j;
551 for (j = 0; j < 16; ++j) {
552 const __m128i values = _mm_set1_epi8(left[j]);
553 _mm_store_si128((__m128i*)dst, values);
554 dst += BPS;
555 }
556 }
557
HorizontalPred_SSE2(uint8_t * dst,const uint8_t * left,int size)558 static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
559 const uint8_t* left, int size) {
560 if (left != NULL) {
561 if (size == 8) {
562 HE8uv_SSE2(dst, left);
563 } else {
564 HE16_SSE2(dst, left);
565 }
566 } else {
567 Fill_SSE2(dst, 129, size);
568 }
569 }
570
TM_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)571 static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
572 const uint8_t* top, int size) {
573 const __m128i zero = _mm_setzero_si128();
574 int y;
575 if (size == 8) {
576 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
577 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
578 for (y = 0; y < 8; ++y, dst += BPS) {
579 const int val = left[y] - left[-1];
580 const __m128i base = _mm_set1_epi16(val);
581 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
582 _mm_storel_epi64((__m128i*)dst, out);
583 }
584 } else {
585 const __m128i top_values = _mm_load_si128((const __m128i*)top);
586 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
587 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
588 for (y = 0; y < 16; ++y, dst += BPS) {
589 const int val = left[y] - left[-1];
590 const __m128i base = _mm_set1_epi16(val);
591 const __m128i out_0 = _mm_add_epi16(base, top_base_0);
592 const __m128i out_1 = _mm_add_epi16(base, top_base_1);
593 const __m128i out = _mm_packus_epi16(out_0, out_1);
594 _mm_store_si128((__m128i*)dst, out);
595 }
596 }
597 }
598
TrueMotion_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)599 static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
600 const uint8_t* top, int size) {
601 if (left != NULL) {
602 if (top != NULL) {
603 TM_SSE2(dst, left, top, size);
604 } else {
605 HorizontalPred_SSE2(dst, left, size);
606 }
607 } else {
608 // true motion without left samples (hence: with default 129 value)
609 // is equivalent to VE prediction where you just copy the top samples.
610 // Note that if top samples are not available, the default value is
611 // then 129, and not 127 as in the VerticalPred case.
612 if (top != NULL) {
613 VerticalPred_SSE2(dst, top, size);
614 } else {
615 Fill_SSE2(dst, 129, size);
616 }
617 }
618 }
619
DC8uv_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)620 static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
621 const uint8_t* top) {
622 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
623 const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
624 const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
625 const int DC = VP8HorizontalAdd8b(&combined) + 8;
626 Put8x8uv_SSE2(DC >> 4, dst);
627 }
628
DC8uvNoLeft_SSE2(uint8_t * dst,const uint8_t * top)629 static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
630 const __m128i zero = _mm_setzero_si128();
631 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
632 const __m128i sum = _mm_sad_epu8(top_values, zero);
633 const int DC = _mm_cvtsi128_si32(sum) + 4;
634 Put8x8uv_SSE2(DC >> 3, dst);
635 }
636
DC8uvNoTop_SSE2(uint8_t * dst,const uint8_t * left)637 static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
638 // 'left' is contiguous so we can reuse the top summation.
639 DC8uvNoLeft_SSE2(dst, left);
640 }
641
DC8uvNoTopLeft_SSE2(uint8_t * dst)642 static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
643 Put8x8uv_SSE2(0x80, dst);
644 }
645
DC8uvMode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)646 static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
647 const uint8_t* top) {
648 if (top != NULL) {
649 if (left != NULL) { // top and left present
650 DC8uv_SSE2(dst, left, top);
651 } else { // top, but no left
652 DC8uvNoLeft_SSE2(dst, top);
653 }
654 } else if (left != NULL) { // left but no top
655 DC8uvNoTop_SSE2(dst, left);
656 } else { // no top, no left, nothing.
657 DC8uvNoTopLeft_SSE2(dst);
658 }
659 }
660
DC16_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)661 static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
662 const uint8_t* top) {
663 const __m128i top_row = _mm_load_si128((const __m128i*)top);
664 const __m128i left_row = _mm_load_si128((const __m128i*)left);
665 const int DC =
666 VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
667 Put16_SSE2(DC >> 5, dst);
668 }
669
DC16NoLeft_SSE2(uint8_t * dst,const uint8_t * top)670 static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
671 const __m128i top_row = _mm_load_si128((const __m128i*)top);
672 const int DC = VP8HorizontalAdd8b(&top_row) + 8;
673 Put16_SSE2(DC >> 4, dst);
674 }
675
DC16NoTop_SSE2(uint8_t * dst,const uint8_t * left)676 static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
677 // 'left' is contiguous so we can reuse the top summation.
678 DC16NoLeft_SSE2(dst, left);
679 }
680
DC16NoTopLeft_SSE2(uint8_t * dst)681 static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
682 Put16_SSE2(0x80, dst);
683 }
684
DC16Mode_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)685 static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
686 const uint8_t* top) {
687 if (top != NULL) {
688 if (left != NULL) { // top and left present
689 DC16_SSE2(dst, left, top);
690 } else { // top, but no left
691 DC16NoLeft_SSE2(dst, top);
692 }
693 } else if (left != NULL) { // left but no top
694 DC16NoTop_SSE2(dst, left);
695 } else { // no top, no left, nothing.
696 DC16NoTopLeft_SSE2(dst);
697 }
698 }
699
700 //------------------------------------------------------------------------------
701 // 4x4 predictions
702
703 #define DST(x, y) dst[(x) + (y) * BPS]
704 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
705 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
706
707 // We use the following 8b-arithmetic tricks:
708 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
709 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
710 // and:
711 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
712 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
713 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
714
VE4_SSE2(uint8_t * dst,const uint8_t * top)715 static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
716 const uint8_t* top) { // vertical
717 const __m128i one = _mm_set1_epi8(1);
718 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
719 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
720 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
721 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
722 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
723 const __m128i b = _mm_subs_epu8(a, lsb);
724 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
725 const uint32_t vals = _mm_cvtsi128_si32(avg);
726 int i;
727 for (i = 0; i < 4; ++i) {
728 WebPUint32ToMem(dst + i * BPS, vals);
729 }
730 }
731
HE4_SSE2(uint8_t * dst,const uint8_t * top)732 static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
733 const uint8_t* top) { // horizontal
734 const int X = top[-1];
735 const int I = top[-2];
736 const int J = top[-3];
737 const int K = top[-4];
738 const int L = top[-5];
739 WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
740 WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
741 WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
742 WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
743 }
744
DC4_SSE2(uint8_t * dst,const uint8_t * top)745 static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
746 uint32_t dc = 4;
747 int i;
748 for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
749 Fill_SSE2(dst, dc >> 3, 4);
750 }
751
LD4_SSE2(uint8_t * dst,const uint8_t * top)752 static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
753 const uint8_t* top) { // Down-Left
754 const __m128i one = _mm_set1_epi8(1);
755 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
756 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
757 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
758 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
759 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
760 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
761 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
762 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
763 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
764 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
765 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
766 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
767 }
768
VR4_SSE2(uint8_t * dst,const uint8_t * top)769 static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
770 const uint8_t* top) { // Vertical-Right
771 const __m128i one = _mm_set1_epi8(1);
772 const int I = top[-2];
773 const int J = top[-3];
774 const int K = top[-4];
775 const int X = top[-1];
776 const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
777 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
778 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
779 const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
780 const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
781 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
782 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
783 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
784 const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
785 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
786 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
787 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
788 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
789
790 // these two are hard to implement in SSE2, so we keep the C-version:
791 DST(0, 2) = AVG3(J, I, X);
792 DST(0, 3) = AVG3(K, J, I);
793 }
794
VL4_SSE2(uint8_t * dst,const uint8_t * top)795 static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
796 const uint8_t* top) { // Vertical-Left
797 const __m128i one = _mm_set1_epi8(1);
798 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
799 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
800 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
801 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
802 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
803 const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
804 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
805 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
806 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
807 const __m128i abbc = _mm_or_si128(ab, bc);
808 const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
809 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
810 const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
811 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
812 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
813 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
814 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
815
816 // these two are hard to get and irregular
817 DST(3, 2) = (extra_out >> 0) & 0xff;
818 DST(3, 3) = (extra_out >> 8) & 0xff;
819 }
820
RD4_SSE2(uint8_t * dst,const uint8_t * top)821 static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
822 const uint8_t* top) { // Down-right
823 const __m128i one = _mm_set1_epi8(1);
824 const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
825 const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
826 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
827 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
828 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
829 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
830 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
831 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
832 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
833 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
834 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
835 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
836 }
837
HU4_SSE2(uint8_t * dst,const uint8_t * top)838 static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
839 const int I = top[-2];
840 const int J = top[-3];
841 const int K = top[-4];
842 const int L = top[-5];
843 DST(0, 0) = AVG2(I, J);
844 DST(2, 0) = DST(0, 1) = AVG2(J, K);
845 DST(2, 1) = DST(0, 2) = AVG2(K, L);
846 DST(1, 0) = AVG3(I, J, K);
847 DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
848 DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
849 DST(3, 2) = DST(2, 2) =
850 DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
851 }
852
HD4_SSE2(uint8_t * dst,const uint8_t * top)853 static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
854 const int X = top[-1];
855 const int I = top[-2];
856 const int J = top[-3];
857 const int K = top[-4];
858 const int L = top[-5];
859 const int A = top[0];
860 const int B = top[1];
861 const int C = top[2];
862
863 DST(0, 0) = DST(2, 1) = AVG2(I, X);
864 DST(0, 1) = DST(2, 2) = AVG2(J, I);
865 DST(0, 2) = DST(2, 3) = AVG2(K, J);
866 DST(0, 3) = AVG2(L, K);
867
868 DST(3, 0) = AVG3(A, B, C);
869 DST(2, 0) = AVG3(X, A, B);
870 DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
871 DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
872 DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
873 DST(1, 3) = AVG3(L, K, J);
874 }
875
TM4_SSE2(uint8_t * dst,const uint8_t * top)876 static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
877 const __m128i zero = _mm_setzero_si128();
878 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
879 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
880 int y;
881 for (y = 0; y < 4; ++y, dst += BPS) {
882 const int val = top[-2 - y] - top[-1];
883 const __m128i base = _mm_set1_epi16(val);
884 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
885 WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
886 }
887 }
888
889 #undef DST
890 #undef AVG3
891 #undef AVG2
892
893 //------------------------------------------------------------------------------
894 // luma 4x4 prediction
895
896 // Left samples are top[-5 .. -2], top_left is top[-1], top are
897 // located at top[0..3], and top right is top[4..7]
Intra4Preds_SSE2(uint8_t * dst,const uint8_t * top)898 static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
899 DC4_SSE2(I4DC4 + dst, top);
900 TM4_SSE2(I4TM4 + dst, top);
901 VE4_SSE2(I4VE4 + dst, top);
902 HE4_SSE2(I4HE4 + dst, top);
903 RD4_SSE2(I4RD4 + dst, top);
904 VR4_SSE2(I4VR4 + dst, top);
905 LD4_SSE2(I4LD4 + dst, top);
906 VL4_SSE2(I4VL4 + dst, top);
907 HD4_SSE2(I4HD4 + dst, top);
908 HU4_SSE2(I4HU4 + dst, top);
909 }
910
911 //------------------------------------------------------------------------------
912 // Chroma 8x8 prediction (paragraph 12.2)
913
IntraChromaPreds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)914 static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
915 const uint8_t* top) {
916 // U block
917 DC8uvMode_SSE2(C8DC8 + dst, left, top);
918 VerticalPred_SSE2(C8VE8 + dst, top, 8);
919 HorizontalPred_SSE2(C8HE8 + dst, left, 8);
920 TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
921 // V block
922 dst += 8;
923 if (top != NULL) top += 8;
924 if (left != NULL) left += 16;
925 DC8uvMode_SSE2(C8DC8 + dst, left, top);
926 VerticalPred_SSE2(C8VE8 + dst, top, 8);
927 HorizontalPred_SSE2(C8HE8 + dst, left, 8);
928 TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
929 }
930
931 //------------------------------------------------------------------------------
932 // luma 16x16 prediction (paragraph 12.3)
933
Intra16Preds_SSE2(uint8_t * dst,const uint8_t * left,const uint8_t * top)934 static void Intra16Preds_SSE2(uint8_t* dst,
935 const uint8_t* left, const uint8_t* top) {
936 DC16Mode_SSE2(I16DC16 + dst, left, top);
937 VerticalPred_SSE2(I16VE16 + dst, top, 16);
938 HorizontalPred_SSE2(I16HE16 + dst, left, 16);
939 TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
940 }
941
942 //------------------------------------------------------------------------------
943 // Metric
944
SubtractAndAccumulate_SSE2(const __m128i a,const __m128i b,__m128i * const sum)945 static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
946 const __m128i b,
947 __m128i* const sum) {
948 // take abs(a-b) in 8b
949 const __m128i a_b = _mm_subs_epu8(a, b);
950 const __m128i b_a = _mm_subs_epu8(b, a);
951 const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
952 // zero-extend to 16b
953 const __m128i zero = _mm_setzero_si128();
954 const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
955 const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
956 // multiply with self
957 const __m128i sum1 = _mm_madd_epi16(C0, C0);
958 const __m128i sum2 = _mm_madd_epi16(C1, C1);
959 *sum = _mm_add_epi32(sum1, sum2);
960 }
961
SSE_16xN_SSE2(const uint8_t * a,const uint8_t * b,int num_pairs)962 static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
963 int num_pairs) {
964 __m128i sum = _mm_setzero_si128();
965 int32_t tmp[4];
966 int i;
967
968 for (i = 0; i < num_pairs; ++i) {
969 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
970 const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
971 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
972 const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
973 __m128i sum1, sum2;
974 SubtractAndAccumulate_SSE2(a0, b0, &sum1);
975 SubtractAndAccumulate_SSE2(a1, b1, &sum2);
976 sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
977 a += 2 * BPS;
978 b += 2 * BPS;
979 }
980 _mm_storeu_si128((__m128i*)tmp, sum);
981 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
982 }
983
SSE16x16_SSE2(const uint8_t * a,const uint8_t * b)984 static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
985 return SSE_16xN_SSE2(a, b, 8);
986 }
987
SSE16x8_SSE2(const uint8_t * a,const uint8_t * b)988 static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
989 return SSE_16xN_SSE2(a, b, 4);
990 }
991
992 #define LOAD_8x16b(ptr) \
993 _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
994
SSE8x8_SSE2(const uint8_t * a,const uint8_t * b)995 static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
996 const __m128i zero = _mm_setzero_si128();
997 int num_pairs = 4;
998 __m128i sum = zero;
999 int32_t tmp[4];
1000 while (num_pairs-- > 0) {
1001 const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1002 const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1003 const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1004 const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1005 // subtract
1006 const __m128i c0 = _mm_subs_epi16(a0, b0);
1007 const __m128i c1 = _mm_subs_epi16(a1, b1);
1008 // multiply/accumulate with self
1009 const __m128i d0 = _mm_madd_epi16(c0, c0);
1010 const __m128i d1 = _mm_madd_epi16(c1, c1);
1011 // collect
1012 const __m128i sum01 = _mm_add_epi32(d0, d1);
1013 sum = _mm_add_epi32(sum, sum01);
1014 a += 2 * BPS;
1015 b += 2 * BPS;
1016 }
1017 _mm_storeu_si128((__m128i*)tmp, sum);
1018 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1019 }
1020 #undef LOAD_8x16b
1021
SSE4x4_SSE2(const uint8_t * a,const uint8_t * b)1022 static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
1023 const __m128i zero = _mm_setzero_si128();
1024
1025 // Load values. Note that we read 8 pixels instead of 4,
1026 // but the a/b buffers are over-allocated to that effect.
1027 const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1028 const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1029 const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1030 const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1031 const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1032 const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1033 const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1034 const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1035 // Combine pair of lines.
1036 const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1037 const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1038 const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1039 const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1040 // Convert to 16b.
1041 const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1042 const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1043 const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1044 const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1045 // subtract, square and accumulate
1046 const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1047 const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1048 const __m128i e0 = _mm_madd_epi16(d0, d0);
1049 const __m128i e1 = _mm_madd_epi16(d1, d1);
1050 const __m128i sum = _mm_add_epi32(e0, e1);
1051
1052 int32_t tmp[4];
1053 _mm_storeu_si128((__m128i*)tmp, sum);
1054 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1055 }
1056
1057 //------------------------------------------------------------------------------
1058
Mean16x4_SSE2(const uint8_t * ref,uint32_t dc[4])1059 static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
1060 const __m128i mask = _mm_set1_epi16(0x00ff);
1061 const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
1062 const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
1063 const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
1064 const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
1065 const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte
1066 const __m128i b1 = _mm_srli_epi16(a1, 8);
1067 const __m128i b2 = _mm_srli_epi16(a2, 8);
1068 const __m128i b3 = _mm_srli_epi16(a3, 8);
1069 const __m128i c0 = _mm_and_si128(a0, mask); // lo byte
1070 const __m128i c1 = _mm_and_si128(a1, mask);
1071 const __m128i c2 = _mm_and_si128(a2, mask);
1072 const __m128i c3 = _mm_and_si128(a3, mask);
1073 const __m128i d0 = _mm_add_epi32(b0, c0);
1074 const __m128i d1 = _mm_add_epi32(b1, c1);
1075 const __m128i d2 = _mm_add_epi32(b2, c2);
1076 const __m128i d3 = _mm_add_epi32(b3, c3);
1077 const __m128i e0 = _mm_add_epi32(d0, d1);
1078 const __m128i e1 = _mm_add_epi32(d2, d3);
1079 const __m128i f0 = _mm_add_epi32(e0, e1);
1080 uint16_t tmp[8];
1081 _mm_storeu_si128((__m128i*)tmp, f0);
1082 dc[0] = tmp[0] + tmp[1];
1083 dc[1] = tmp[2] + tmp[3];
1084 dc[2] = tmp[4] + tmp[5];
1085 dc[3] = tmp[6] + tmp[7];
1086 }
1087
1088 //------------------------------------------------------------------------------
1089 // Texture distortion
1090 //
1091 // We try to match the spectral content (weighted) between source and
1092 // reconstructed samples.
1093
1094 // Hadamard transform
1095 // Returns the weighted sum of the absolute value of transformed coefficients.
1096 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform_SSE2(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)1097 static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
1098 const uint16_t* const w) {
1099 int32_t sum[4];
1100 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1101 const __m128i zero = _mm_setzero_si128();
1102
1103 // Load and combine inputs.
1104 {
1105 const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1106 const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1107 const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1108 const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1109 const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1110 const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1111 const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1112 const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1113
1114 // Combine inA and inB (we'll do two transforms in parallel).
1115 const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
1116 const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
1117 const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
1118 const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
1119 tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
1120 tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
1121 tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
1122 tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
1123 // a00 a01 a02 a03 b00 b01 b02 b03
1124 // a10 a11 a12 a13 b10 b11 b12 b13
1125 // a20 a21 a22 a23 b20 b21 b22 b23
1126 // a30 a31 a32 a33 b30 b31 b32 b33
1127 }
1128
1129 // Vertical pass first to avoid a transpose (vertical and horizontal passes
1130 // are commutative because w/kWeightY is symmetric) and subsequent transpose.
1131 {
1132 // Calculate a and b (two 4x4 at once).
1133 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1134 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1135 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1136 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1137 const __m128i b0 = _mm_add_epi16(a0, a1);
1138 const __m128i b1 = _mm_add_epi16(a3, a2);
1139 const __m128i b2 = _mm_sub_epi16(a3, a2);
1140 const __m128i b3 = _mm_sub_epi16(a0, a1);
1141 // a00 a01 a02 a03 b00 b01 b02 b03
1142 // a10 a11 a12 a13 b10 b11 b12 b13
1143 // a20 a21 a22 a23 b20 b21 b22 b23
1144 // a30 a31 a32 a33 b30 b31 b32 b33
1145
1146 // Transpose the two 4x4.
1147 VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
1148 }
1149
1150 // Horizontal pass and difference of weighted sums.
1151 {
1152 // Load all inputs.
1153 const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1154 const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1155
1156 // Calculate a and b (two 4x4 at once).
1157 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1158 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1159 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1160 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1161 const __m128i b0 = _mm_add_epi16(a0, a1);
1162 const __m128i b1 = _mm_add_epi16(a3, a2);
1163 const __m128i b2 = _mm_sub_epi16(a3, a2);
1164 const __m128i b3 = _mm_sub_epi16(a0, a1);
1165
1166 // Separate the transforms of inA and inB.
1167 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1168 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1169 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1170 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1171
1172 {
1173 const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1174 const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1175 const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1176 const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1177 A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b
1178 A_b2 = _mm_max_epi16(A_b2, d1);
1179 B_b0 = _mm_max_epi16(B_b0, d2);
1180 B_b2 = _mm_max_epi16(B_b2, d3);
1181 }
1182
1183 // weighted sums
1184 A_b0 = _mm_madd_epi16(A_b0, w_0);
1185 A_b2 = _mm_madd_epi16(A_b2, w_8);
1186 B_b0 = _mm_madd_epi16(B_b0, w_0);
1187 B_b2 = _mm_madd_epi16(B_b2, w_8);
1188 A_b0 = _mm_add_epi32(A_b0, A_b2);
1189 B_b0 = _mm_add_epi32(B_b0, B_b2);
1190
1191 // difference of weighted sums
1192 A_b0 = _mm_sub_epi32(A_b0, B_b0);
1193 _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1194 }
1195 return sum[0] + sum[1] + sum[2] + sum[3];
1196 }
1197
Disto4x4_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1198 static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
1199 const uint16_t* const w) {
1200 const int diff_sum = TTransform_SSE2(a, b, w);
1201 return abs(diff_sum) >> 5;
1202 }
1203
Disto16x16_SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1204 static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
1205 const uint16_t* const w) {
1206 int D = 0;
1207 int x, y;
1208 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1209 for (x = 0; x < 16; x += 4) {
1210 D += Disto4x4_SSE2(a + x + y, b + x + y, w);
1211 }
1212 }
1213 return D;
1214 }
1215
1216 //------------------------------------------------------------------------------
1217 // Quantization
1218 //
1219
DoQuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)1220 static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1221 const uint16_t* const sharpen,
1222 const VP8Matrix* const mtx) {
1223 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1224 const __m128i zero = _mm_setzero_si128();
1225 __m128i coeff0, coeff8;
1226 __m128i out0, out8;
1227 __m128i packed_out;
1228
1229 // Load all inputs.
1230 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1231 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1232 const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1233 const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1234 const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1235 const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1236
1237 // extract sign(in) (0x0000 if positive, 0xffff if negative)
1238 const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1239 const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1240
1241 // coeff = abs(in) = (in ^ sign) - sign
1242 coeff0 = _mm_xor_si128(in0, sign0);
1243 coeff8 = _mm_xor_si128(in8, sign8);
1244 coeff0 = _mm_sub_epi16(coeff0, sign0);
1245 coeff8 = _mm_sub_epi16(coeff8, sign8);
1246
1247 // coeff = abs(in) + sharpen
1248 if (sharpen != NULL) {
1249 const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1250 const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1251 coeff0 = _mm_add_epi16(coeff0, sharpen0);
1252 coeff8 = _mm_add_epi16(coeff8, sharpen8);
1253 }
1254
1255 // out = (coeff * iQ + B) >> QFIX
1256 {
1257 // doing calculations with 32b precision (QFIX=17)
1258 // out = (coeff * iQ)
1259 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1260 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1261 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1262 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1263 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1264 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1265 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1266 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1267 // out = (coeff * iQ + B)
1268 const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1269 const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1270 const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1271 const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1272 out_00 = _mm_add_epi32(out_00, bias_00);
1273 out_04 = _mm_add_epi32(out_04, bias_04);
1274 out_08 = _mm_add_epi32(out_08, bias_08);
1275 out_12 = _mm_add_epi32(out_12, bias_12);
1276 // out = QUANTDIV(coeff, iQ, B, QFIX)
1277 out_00 = _mm_srai_epi32(out_00, QFIX);
1278 out_04 = _mm_srai_epi32(out_04, QFIX);
1279 out_08 = _mm_srai_epi32(out_08, QFIX);
1280 out_12 = _mm_srai_epi32(out_12, QFIX);
1281
1282 // pack result as 16b
1283 out0 = _mm_packs_epi32(out_00, out_04);
1284 out8 = _mm_packs_epi32(out_08, out_12);
1285
1286 // if (coeff > 2047) coeff = 2047
1287 out0 = _mm_min_epi16(out0, max_coeff_2047);
1288 out8 = _mm_min_epi16(out8, max_coeff_2047);
1289 }
1290
1291 // get sign back (if (sign[j]) out_n = -out_n)
1292 out0 = _mm_xor_si128(out0, sign0);
1293 out8 = _mm_xor_si128(out8, sign8);
1294 out0 = _mm_sub_epi16(out0, sign0);
1295 out8 = _mm_sub_epi16(out8, sign8);
1296
1297 // in = out * Q
1298 in0 = _mm_mullo_epi16(out0, q0);
1299 in8 = _mm_mullo_epi16(out8, q8);
1300
1301 _mm_storeu_si128((__m128i*)&in[0], in0);
1302 _mm_storeu_si128((__m128i*)&in[8], in8);
1303
1304 // zigzag the output before storing it.
1305 //
1306 // The zigzag pattern can almost be reproduced with a small sequence of
1307 // shuffles. After it, we only need to swap the 7th (ending up in third
1308 // position instead of twelfth) and 8th values.
1309 {
1310 __m128i outZ0, outZ8;
1311 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
1312 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1313 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1314 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
1315 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1316 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1317 _mm_storeu_si128((__m128i*)&out[0], outZ0);
1318 _mm_storeu_si128((__m128i*)&out[8], outZ8);
1319 packed_out = _mm_packs_epi16(outZ0, outZ8);
1320 }
1321 {
1322 const int16_t outZ_12 = out[12];
1323 const int16_t outZ_3 = out[3];
1324 out[3] = outZ_12;
1325 out[12] = outZ_3;
1326 }
1327
1328 // detect if all 'out' values are zeroes or not
1329 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1330 }
1331
QuantizeBlock_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1332 static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
1333 const VP8Matrix* const mtx) {
1334 return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
1335 }
1336
QuantizeBlockWHT_SSE2(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1337 static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
1338 const VP8Matrix* const mtx) {
1339 return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
1340 }
1341
Quantize2Blocks_SSE2(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)1342 static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
1343 const VP8Matrix* const mtx) {
1344 int nz;
1345 const uint16_t* const sharpen = &mtx->sharpen_[0];
1346 nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1347 nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1348 return nz;
1349 }
1350
1351 //------------------------------------------------------------------------------
1352 // Entry point
1353
1354 extern void VP8EncDspInitSSE2(void);
1355
VP8EncDspInitSSE2(void)1356 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1357 VP8CollectHistogram = CollectHistogram_SSE2;
1358 VP8EncPredLuma16 = Intra16Preds_SSE2;
1359 VP8EncPredChroma8 = IntraChromaPreds_SSE2;
1360 VP8EncPredLuma4 = Intra4Preds_SSE2;
1361 VP8EncQuantizeBlock = QuantizeBlock_SSE2;
1362 VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
1363 VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
1364 VP8ITransform = ITransform_SSE2;
1365 VP8FTransform = FTransform_SSE2;
1366 VP8FTransform2 = FTransform2_SSE2;
1367 VP8FTransformWHT = FTransformWHT_SSE2;
1368 VP8SSE16x16 = SSE16x16_SSE2;
1369 VP8SSE16x8 = SSE16x8_SSE2;
1370 VP8SSE8x8 = SSE8x8_SSE2;
1371 VP8SSE4x4 = SSE4x4_SSE2;
1372 VP8TDisto4x4 = Disto4x4_SSE2;
1373 VP8TDisto16x16 = Disto16x16_SSE2;
1374 VP8Mean16x4 = Mean16x4_SSE2;
1375 }
1376
1377 #else // !WEBP_USE_SSE2
1378
1379 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1380
1381 #endif // WEBP_USE_SSE2
1382