1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/modules/video_processing/deflickering.h"
12 
13 #include <math.h>
14 #include <stdlib.h>
15 
16 #include "webrtc/base/logging.h"
17 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
18 #include "webrtc/system_wrappers/include/sort.h"
19 
20 namespace webrtc {
21 
22 // Detection constants
23 // (Q4) Maximum allowed deviation for detection.
24 enum { kFrequencyDeviation = 39 };
25 // (Q4) Minimum frequency that can be detected.
26 enum { kMinFrequencyToDetect = 32 };
27 // Number of flickers before we accept detection
28 enum { kNumFlickerBeforeDetect = 2 };
29 enum { kmean_valueScaling = 4 };  // (Q4) In power of 2
30 // Dead-zone region in terms of pixel values
31 enum { kZeroCrossingDeadzone = 10 };
32 // Deflickering constants.
33 // Compute the quantiles over 1 / DownsamplingFactor of the image.
34 enum { kDownsamplingFactor = 8 };
35 enum { kLog2OfDownsamplingFactor = 3 };
36 
37 // To generate in Matlab:
38 // >> probUW16 = round(2^11 *
39 //     [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.97]);
40 // >> fprintf('%d, ', probUW16)
41 // Resolution reduced to avoid overflow when multiplying with the
42 // (potentially) large number of pixels.
43 const uint16_t VPMDeflickering::prob_uw16_[kNumProbs] = {
44     102,  205,  410,  614,  819,  1024,
45     1229, 1434, 1638, 1843, 1946, 1987};  // <Q11>
46 
47 // To generate in Matlab:
48 // >> numQuants = 14; maxOnlyLength = 5;
49 // >> weightUW16 = round(2^15 *
50 //    [linspace(0.5, 1.0, numQuants - maxOnlyLength)]);
51 // >> fprintf('%d, %d,\n ', weightUW16);
52 const uint16_t VPMDeflickering::weight_uw16_[kNumQuants - kMaxOnlyLength] = {
53     16384, 18432, 20480, 22528, 24576, 26624, 28672, 30720, 32768};  // <Q15>
54 
VPMDeflickering()55 VPMDeflickering::VPMDeflickering() {
56   Reset();
57 }
58 
~VPMDeflickering()59 VPMDeflickering::~VPMDeflickering() {}
60 
Reset()61 void VPMDeflickering::Reset() {
62   mean_buffer_length_ = 0;
63   detection_state_ = 0;
64   frame_rate_ = 0;
65 
66   memset(mean_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
67   memset(timestamp_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
68 
69   // Initialize the history with a uniformly distributed histogram.
70   quant_hist_uw8_[0][0] = 0;
71   quant_hist_uw8_[0][kNumQuants - 1] = 255;
72   for (int32_t i = 0; i < kNumProbs; i++) {
73     // Unsigned round. <Q0>
74     quant_hist_uw8_[0][i + 1] =
75         static_cast<uint8_t>((prob_uw16_[i] * 255 + (1 << 10)) >> 11);
76   }
77 
78   for (int32_t i = 1; i < kFrameHistory_size; i++) {
79     memcpy(quant_hist_uw8_[i], quant_hist_uw8_[0],
80            sizeof(uint8_t) * kNumQuants);
81   }
82 }
83 
ProcessFrame(VideoFrame * frame,VideoProcessing::FrameStats * stats)84 int32_t VPMDeflickering::ProcessFrame(VideoFrame* frame,
85                                       VideoProcessing::FrameStats* stats) {
86   assert(frame);
87   uint32_t frame_memory;
88   uint8_t quant_uw8[kNumQuants];
89   uint8_t maxquant_uw8[kNumQuants];
90   uint8_t minquant_uw8[kNumQuants];
91   uint16_t target_quant_uw16[kNumQuants];
92   uint16_t increment_uw16;
93   uint8_t map_uw8[256];
94 
95   uint16_t tmp_uw16;
96   uint32_t tmp_uw32;
97   int width = frame->width();
98   int height = frame->height();
99 
100   if (frame->IsZeroSize()) {
101     return VPM_GENERAL_ERROR;
102   }
103 
104   // Stricter height check due to subsampling size calculation below.
105   if (height < 2) {
106     LOG(LS_ERROR) << "Invalid frame size.";
107     return VPM_GENERAL_ERROR;
108   }
109 
110   if (!VideoProcessing::ValidFrameStats(*stats)) {
111     return VPM_GENERAL_ERROR;
112   }
113 
114   if (PreDetection(frame->timestamp(), *stats) == -1)
115     return VPM_GENERAL_ERROR;
116 
117   // Flicker detection
118   int32_t det_flicker = DetectFlicker();
119   if (det_flicker < 0) {
120     return VPM_GENERAL_ERROR;
121   } else if (det_flicker != 1) {
122     return 0;
123   }
124 
125   // Size of luminance component.
126   const uint32_t y_size = height * width;
127 
128   const uint32_t y_sub_size =
129       width * (((height - 1) >> kLog2OfDownsamplingFactor) + 1);
130   uint8_t* y_sorted = new uint8_t[y_sub_size];
131   uint32_t sort_row_idx = 0;
132   for (int i = 0; i < height; i += kDownsamplingFactor) {
133     memcpy(y_sorted + sort_row_idx * width, frame->buffer(kYPlane) + i * width,
134            width);
135     sort_row_idx++;
136   }
137 
138   webrtc::Sort(y_sorted, y_sub_size, webrtc::TYPE_UWord8);
139 
140   uint32_t prob_idx_uw32 = 0;
141   quant_uw8[0] = 0;
142   quant_uw8[kNumQuants - 1] = 255;
143 
144   // Ensure we won't get an overflow below.
145   // In practice, the number of subsampled pixels will not become this large.
146   if (y_sub_size > (1 << 21) - 1) {
147     LOG(LS_ERROR) << "Subsampled number of pixels too large.";
148     return -1;
149   }
150 
151   for (int32_t i = 0; i < kNumProbs; i++) {
152     // <Q0>.
153     prob_idx_uw32 = WEBRTC_SPL_UMUL_32_16(y_sub_size, prob_uw16_[i]) >> 11;
154     quant_uw8[i + 1] = y_sorted[prob_idx_uw32];
155   }
156 
157   delete[] y_sorted;
158   y_sorted = NULL;
159 
160   // Shift history for new frame.
161   memmove(quant_hist_uw8_[1], quant_hist_uw8_[0],
162           (kFrameHistory_size - 1) * kNumQuants * sizeof(uint8_t));
163   // Store current frame in history.
164   memcpy(quant_hist_uw8_[0], quant_uw8, kNumQuants * sizeof(uint8_t));
165 
166   // We use a frame memory equal to the ceiling of half the frame rate to
167   // ensure we capture an entire period of flicker.
168   frame_memory = (frame_rate_ + (1 << 5)) >> 5;  // Unsigned ceiling. <Q0>
169                                                  // frame_rate_ in Q4.
170   if (frame_memory > kFrameHistory_size) {
171     frame_memory = kFrameHistory_size;
172   }
173 
174   // Get maximum and minimum.
175   for (int32_t i = 0; i < kNumQuants; i++) {
176     maxquant_uw8[i] = 0;
177     minquant_uw8[i] = 255;
178     for (uint32_t j = 0; j < frame_memory; j++) {
179       if (quant_hist_uw8_[j][i] > maxquant_uw8[i]) {
180         maxquant_uw8[i] = quant_hist_uw8_[j][i];
181       }
182 
183       if (quant_hist_uw8_[j][i] < minquant_uw8[i]) {
184         minquant_uw8[i] = quant_hist_uw8_[j][i];
185       }
186     }
187   }
188 
189   // Get target quantiles.
190   for (int32_t i = 0; i < kNumQuants - kMaxOnlyLength; i++) {
191     // target = w * maxquant_uw8 + (1 - w) * minquant_uw8
192     // Weights w = |weight_uw16_| are in Q15, hence the final output has to be
193     // right shifted by 8 to end up in Q7.
194     target_quant_uw16[i] = static_cast<uint16_t>(
195         (weight_uw16_[i] * maxquant_uw8[i] +
196          ((1 << 15) - weight_uw16_[i]) * minquant_uw8[i]) >>
197         8);  // <Q7>
198   }
199 
200   for (int32_t i = kNumQuants - kMaxOnlyLength; i < kNumQuants; i++) {
201     target_quant_uw16[i] = ((uint16_t)maxquant_uw8[i]) << 7;
202   }
203 
204   // Compute the map from input to output pixels.
205   uint16_t mapUW16;  // <Q7>
206   for (int32_t i = 1; i < kNumQuants; i++) {
207     // As quant and targetQuant are limited to UWord8, it's safe to use Q7 here.
208     tmp_uw32 =
209         static_cast<uint32_t>(target_quant_uw16[i] - target_quant_uw16[i - 1]);
210     tmp_uw16 = static_cast<uint16_t>(quant_uw8[i] - quant_uw8[i - 1]);  // <Q0>
211 
212     if (tmp_uw16 > 0) {
213       increment_uw16 =
214           static_cast<uint16_t>(WebRtcSpl_DivU32U16(tmp_uw32,
215                                                     tmp_uw16));  // <Q7>
216     } else {
217       // The value is irrelevant; the loop below will only iterate once.
218       increment_uw16 = 0;
219     }
220 
221     mapUW16 = target_quant_uw16[i - 1];
222     for (uint32_t j = quant_uw8[i - 1]; j < (uint32_t)(quant_uw8[i] + 1); j++) {
223       // Unsigned round. <Q0>
224       map_uw8[j] = (uint8_t)((mapUW16 + (1 << 6)) >> 7);
225       mapUW16 += increment_uw16;
226     }
227   }
228 
229   // Map to the output frame.
230   uint8_t* buffer = frame->buffer(kYPlane);
231   for (uint32_t i = 0; i < y_size; i++) {
232     buffer[i] = map_uw8[buffer[i]];
233   }
234 
235   // Frame was altered, so reset stats.
236   VideoProcessing::ClearFrameStats(stats);
237 
238   return VPM_OK;
239 }
240 
241 /**
242    Performs some pre-detection operations. Must be called before
243    DetectFlicker().
244 
245    \param[in] timestamp Timestamp of the current frame.
246    \param[in] stats     Statistics of the current frame.
247 
248    \return 0: Success\n
249            2: Detection not possible due to flickering frequency too close to
250               zero.\n
251           -1: Error
252 */
PreDetection(const uint32_t timestamp,const VideoProcessing::FrameStats & stats)253 int32_t VPMDeflickering::PreDetection(
254     const uint32_t timestamp,
255     const VideoProcessing::FrameStats& stats) {
256   int32_t mean_val;  // Mean value of frame (Q4)
257   uint32_t frame_rate = 0;
258   int32_t meanBufferLength;  // Temp variable.
259 
260   mean_val = ((stats.sum << kmean_valueScaling) / stats.num_pixels);
261   // Update mean value buffer.
262   // This should be done even though we might end up in an unreliable detection.
263   memmove(mean_buffer_ + 1, mean_buffer_,
264           (kMeanBufferLength - 1) * sizeof(int32_t));
265   mean_buffer_[0] = mean_val;
266 
267   // Update timestamp buffer.
268   // This should be done even though we might end up in an unreliable detection.
269   memmove(timestamp_buffer_ + 1, timestamp_buffer_,
270           (kMeanBufferLength - 1) * sizeof(uint32_t));
271   timestamp_buffer_[0] = timestamp;
272 
273   /* Compute current frame rate (Q4) */
274   if (timestamp_buffer_[kMeanBufferLength - 1] != 0) {
275     frame_rate = ((90000 << 4) * (kMeanBufferLength - 1));
276     frame_rate /=
277         (timestamp_buffer_[0] - timestamp_buffer_[kMeanBufferLength - 1]);
278   } else if (timestamp_buffer_[1] != 0) {
279     frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
280   }
281 
282   /* Determine required size of mean value buffer (mean_buffer_length_) */
283   if (frame_rate == 0) {
284     meanBufferLength = 1;
285   } else {
286     meanBufferLength =
287         (kNumFlickerBeforeDetect * frame_rate) / kMinFrequencyToDetect;
288   }
289   /* Sanity check of buffer length */
290   if (meanBufferLength >= kMeanBufferLength) {
291     /* Too long buffer. The flickering frequency is too close to zero, which
292      * makes the estimation unreliable.
293      */
294     mean_buffer_length_ = 0;
295     return 2;
296   }
297   mean_buffer_length_ = meanBufferLength;
298 
299   if ((timestamp_buffer_[mean_buffer_length_ - 1] != 0) &&
300       (mean_buffer_length_ != 1)) {
301     frame_rate = ((90000 << 4) * (mean_buffer_length_ - 1));
302     frame_rate /=
303         (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
304   } else if (timestamp_buffer_[1] != 0) {
305     frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
306   }
307   frame_rate_ = frame_rate;
308 
309   return VPM_OK;
310 }
311 
312 /**
313    This function detects flicker in the video stream. As a side effect the
314    mean value buffer is updated with the new mean value.
315 
316    \return 0: No flickering detected\n
317            1: Flickering detected\n
318            2: Detection not possible due to unreliable frequency interval
319           -1: Error
320 */
DetectFlicker()321 int32_t VPMDeflickering::DetectFlicker() {
322   uint32_t i;
323   int32_t freqEst;  // (Q4) Frequency estimate to base detection upon
324   int32_t ret_val = -1;
325 
326   /* Sanity check for mean_buffer_length_ */
327   if (mean_buffer_length_ < 2) {
328     /* Not possible to estimate frequency */
329     return 2;
330   }
331   // Count zero crossings with a dead zone to be robust against noise. If the
332   // noise std is 2 pixel this corresponds to about 95% confidence interval.
333   int32_t deadzone = (kZeroCrossingDeadzone << kmean_valueScaling);  // Q4
334   int32_t meanOfBuffer = 0;  // Mean value of mean value buffer.
335   int32_t numZeros = 0;      // Number of zeros that cross the dead-zone.
336   int32_t cntState = 0;      // State variable for zero crossing regions.
337   int32_t cntStateOld = 0;   // Previous state for zero crossing regions.
338 
339   for (i = 0; i < mean_buffer_length_; i++) {
340     meanOfBuffer += mean_buffer_[i];
341   }
342   meanOfBuffer += (mean_buffer_length_ >> 1);  // Rounding, not truncation.
343   meanOfBuffer /= mean_buffer_length_;
344 
345   // Count zero crossings.
346   cntStateOld = (mean_buffer_[0] >= (meanOfBuffer + deadzone));
347   cntStateOld -= (mean_buffer_[0] <= (meanOfBuffer - deadzone));
348   for (i = 1; i < mean_buffer_length_; i++) {
349     cntState = (mean_buffer_[i] >= (meanOfBuffer + deadzone));
350     cntState -= (mean_buffer_[i] <= (meanOfBuffer - deadzone));
351     if (cntStateOld == 0) {
352       cntStateOld = -cntState;
353     }
354     if (((cntState + cntStateOld) == 0) && (cntState != 0)) {
355       numZeros++;
356       cntStateOld = cntState;
357     }
358   }
359   // END count zero crossings.
360 
361   /* Frequency estimation according to:
362   * freqEst = numZeros * frame_rate / 2 / mean_buffer_length_;
363   *
364   * Resolution is set to Q4
365   */
366   freqEst = ((numZeros * 90000) << 3);
367   freqEst /=
368       (timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
369 
370   /* Translate frequency estimate to regions close to 100 and 120 Hz */
371   uint8_t freqState = 0;  // Current translation state;
372                           // (0) Not in interval,
373                           // (1) Within valid interval,
374                           // (2) Out of range
375   int32_t freqAlias = freqEst;
376   if (freqEst > kMinFrequencyToDetect) {
377     uint8_t aliasState = 1;
378     while (freqState == 0) {
379       /* Increase frequency */
380       freqAlias += (aliasState * frame_rate_);
381       freqAlias += ((freqEst << 1) * (1 - (aliasState << 1)));
382       /* Compute state */
383       freqState = (abs(freqAlias - (100 << 4)) <= kFrequencyDeviation);
384       freqState += (abs(freqAlias - (120 << 4)) <= kFrequencyDeviation);
385       freqState += 2 * (freqAlias > ((120 << 4) + kFrequencyDeviation));
386       /* Switch alias state */
387       aliasState++;
388       aliasState &= 0x01;
389     }
390   }
391   /* Is frequency estimate within detection region? */
392   if (freqState == 1) {
393     ret_val = 1;
394   } else if (freqState == 0) {
395     ret_val = 2;
396   } else {
397     ret_val = 0;
398   }
399   return ret_val;
400 }
401 
402 }  // namespace webrtc
403