1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_ML_NN_COMMON_CPU_EXECUTOR_H
18 #define ANDROID_ML_NN_COMMON_CPU_EXECUTOR_H
19 
20 #include "HalInterfaces.h"
21 #include "OperationResolver.h"
22 #include "OperationsUtils.h"
23 #include "Utils.h"
24 
25 #include <android-base/macros.h>
26 #include <ui/GraphicBuffer.h>
27 #include <algorithm>
28 #include <optional>
29 #include <vector>
30 
31 namespace android {
32 namespace nn {
33 
34 // Information we maintain about each operand during execution that
35 // may change during execution.
36 struct RunTimeOperandInfo {
37     // TODO Storing the type here is redundant, as it won't change during execution.
38     OperandType type;
39     // The type and dimensions of the operand.  The dimensions can
40     // change at runtime.  We include the type because it's useful
41     // to pass together with the dimension to the functions implementing
42     // the operators.
43     //
44     // A dimension being zero has different meanings for different operands at different stages:
45     // - Model inputs:
46     //   * Specified in model: implies "dynamic", and must be fully-specified in request.
47     //   * Specified in request: illegal.
48     // - Constant operands: illegal.
49     // - Model outputs and internal operands:
50     //   * Before evaluation: implies unknown and to be deduced from execution.
51     //   * After evaluation:
52     //     - If isSufficient reports true: the tensor is zero-sized.
53     //     - Otherwise: implies unknown.
54     std::vector<uint32_t> dimensions;
55 
56     float scale;
57     int32_t zeroPoint;
58     // Where the operand's data is stored.  Check the corresponding
59     // location information in the model to figure out if this points
60     // to memory we have allocated for an temporary operand.
61     uint8_t* buffer;
62     // The length of the buffer.
63     uint32_t length;
64     // Whether this is a temporary variable, a model input, a constant, etc.
65     OperandLifeTime lifetime;
66     // Keeps track of how many operations have yet to make use
67     // of this temporary variable.  When the count is decremented to 0,
68     // we free the buffer.  For non-temporary variables, this count is
69     // always 0.
70     uint32_t numberOfUsesLeft;
71 
72     Operand::ExtraParams extraParams;
73 
shapeRunTimeOperandInfo74     Shape shape() const {
75         return {
76                 .type = type,
77                 .dimensions = dimensions,
78                 .scale = scale,
79                 .offset = zeroPoint,
80                 .extraParams = extraParams,
81         };
82     }
83 
isSufficientRunTimeOperandInfo84     bool isSufficient() const {
85         if (isExtensionOperandType(type)) {
86             // We don't know sizes of extension types.
87             return true;
88         }
89         return length >= nonExtensionOperandSizeOfData(type, dimensions);
90     }
91 };
92 
93 // Used to keep a pointer to each of the memory pools.
94 //
95 // RunTimePoolInfo references a region of memory. Other RunTimePoolInfo objects
96 // may reference the same region of memory by either:
97 // (1) copying an existing RunTimePoolInfo object, or
98 // (2) creating multiple RunTimePoolInfo objects from the same memory resource
99 //     (e.g., "createFromHidlMemory" or "createFromExistingBuffer")
100 //
101 // If the underlying region of memory is mapped by "createFromHidlMemory", the
102 // mapping will be sustained until it is no longer referenced by any
103 // RunTimePoolInfo objects.
104 class RunTimePoolInfo {
105    public:
106     static std::optional<RunTimePoolInfo> createFromHidlMemory(const hidl_memory& hidlMemory);
107     static RunTimePoolInfo createFromExistingBuffer(uint8_t* buffer);
108 
109     uint8_t* getBuffer() const;
110     bool update() const;
111     hidl_memory getHidlMemory() const;
112 
113    private:
114     class RunTimePoolInfoImpl;
115     RunTimePoolInfo(const std::shared_ptr<const RunTimePoolInfoImpl>& impl);
116 
117     std::shared_ptr<const RunTimePoolInfoImpl> mImpl;
118 };
119 
120 bool setRunTimePoolInfosFromHidlMemories(std::vector<RunTimePoolInfo>* poolInfos,
121                                          const hidl_vec<hidl_memory>& pools);
122 
123 // This class is used to execute a model on the CPU.
124 class CpuExecutor {
125    public:
126     // This constructor allows clients of CpuExecutor to provide custom CPU
127     // operation implementations. It is used by a sample driver to test
128     // extension support.
129     //
130     // Note that it is not possible to provide custom CPU implementations for
131     // non-OperationResolver operations (b/124041202).
132     //
133     // The operation resolver must outlive the executor.
CpuExecutor(const IOperationResolver * operationResolver)134     explicit CpuExecutor(const IOperationResolver* operationResolver)
135         : mOperationResolver(operationResolver) {}
136 
CpuExecutor()137     CpuExecutor() : CpuExecutor(BuiltinOperationResolver::get()) {}
138 
139     // Executes the model. The results will be stored at the locations
140     // specified in the constructor.
141     // The model must outlive the executor.  We prevent it from being modified
142     // while this is executing.
143     int run(const Model& model, const Request& request,
144             const std::vector<RunTimePoolInfo>& modelPoolInfos,
145             const std::vector<RunTimePoolInfo>& requestPoolInfos);
146 
getOutputShapes()147     const std::vector<OutputShape>& getOutputShapes() const {
148         CHECK(mFinished) << "getOutputShapes() called by an unfinished CpuExecutor.";
149         return mOutputShapes;
150     }
151 
152    private:
153     bool initializeRunTimeInfo(const std::vector<RunTimePoolInfo>& modelPoolInfos,
154                                const std::vector<RunTimePoolInfo>& requestPoolInfos);
155     // Runs one operation of the graph.
156     int executeOperation(const Operation& entry);
157     // Decrement the usage count for the operands listed.  Frees the memory
158     // allocated for any temporary variable with a count of zero.
159     void freeNoLongerUsedOperands(const std::vector<uint32_t>& inputs);
160 
161     // Frees the memory allocated for any temporary variable, and sets the
162     // output operand shapes returning to the runtime.
163     void finish(int result);
164 
165     // The model and the request that we'll execute. Only valid while run()
166     // is being executed.
167     const Model* mModel = nullptr;
168     const Request* mRequest = nullptr;
169 
170     // We're copying the list of all the dimensions from the model, as
171     // these may be modified when we run the operations.  Since we're
172     // making a full copy, the indexes used in the operand description
173     // stay valid.
174     //    std::vector<uint32_t> mDimensions;
175     // Runtime information about all the operands.
176     std::vector<RunTimeOperandInfo> mOperands;
177 
178     // The output operand shapes returning to the runtime.
179     std::vector<OutputShape> mOutputShapes;
180 
181     // Whether execution is finished and mOutputShapes is ready
182     bool mFinished = false;
183 
184     const IOperationResolver* mOperationResolver;
185 };
186 
187 // Class for setting reasonable OpenMP threading settings. (OpenMP is used by
188 // the Eigen matrix library.)
189 //
190 // Currently sets a low blocktime: the time OpenMP threads busy-wait for more
191 // work before going to sleep. See b/79159165, https://reviews.llvm.org/D18577.
192 // The default is 200ms, we set to 20ms here, see b/109645291. This keeps the
193 // cores enabled throughout inference computation without too much extra power
194 // consumption afterwards.
195 //
196 // The OpenMP settings are thread-local (applying only to worker threads formed
197 // from that thread), see https://software.intel.com/en-us/node/522688 and
198 // http://lists.llvm.org/pipermail/openmp-dev/2016-July/001432.html. This class
199 // ensures that within the scope in which an object is instantiated we use the
200 // right settings (scopes may be nested), as long as no other library changes
201 // them.  (Note that in current NNAPI usage only one instance is used in the
202 // CpuExecutor thread).
203 //
204 // TODO(mikie): consider also setting the number of threads used. Using as many
205 // threads as there are cores results in more variable performance: if we don't
206 // get all cores for our threads, the latency is doubled as we wait for one core
207 // to do twice the amount of work. Reality is complicated though as not all
208 // cores are the same. Decision to be based on benchmarking against a
209 // representative set of workloads and devices. I'm keeping the code here for
210 // reference.
211 // b/109953668, disable OpenMP
212 #ifdef NNAPI_OPENMP
213 class ScopedOpenmpSettings {
214 public:
215     ScopedOpenmpSettings();
216     ~ScopedOpenmpSettings();
217     DISALLOW_COPY_AND_ASSIGN(ScopedOpenmpSettings);
218 private:
219     int mBlocktimeInitial;
220 #if NNAPI_LIMIT_CPU_THREADS
221     int mMaxThreadsInitial;
222 #endif
223 };
224 #endif  // NNAPI_OPENMP
225 
226 
227 namespace {
228 
229 template <typename T>
getScalarData(const RunTimeOperandInfo & info)230 T getScalarData(const RunTimeOperandInfo& info) {
231     // TODO: Check buffer is at least as long as size of data.
232     T* data = reinterpret_cast<T*>(info.buffer);
233     return data[0];
234 }
235 
IsNullInput(const RunTimeOperandInfo * input)236 inline bool IsNullInput(const RunTimeOperandInfo *input) {
237     return input->lifetime == OperandLifeTime::NO_VALUE;
238 }
239 
NumInputsWithValues(const Operation & operation,std::vector<RunTimeOperandInfo> & operands)240 inline int NumInputsWithValues(const Operation &operation,
241                                std::vector<RunTimeOperandInfo> &operands) {
242   const std::vector<uint32_t> &inputs = operation.inputs;
243   return std::count_if(inputs.begin(), inputs.end(),
244                        [&operands](uint32_t i) {
245                          return !IsNullInput(&operands[i]);
246                        });
247 }
248 
NumOutputs(const Operation & operation)249 inline int NumOutputs(const Operation &operation) {
250   return operation.outputs.size();
251 }
252 
NumDimensions(const RunTimeOperandInfo * operand)253 inline size_t NumDimensions(const RunTimeOperandInfo *operand) {
254   return operand->shape().dimensions.size();
255 }
256 
SizeOfDimension(const RunTimeOperandInfo * operand,int i)257 inline uint32_t SizeOfDimension(const RunTimeOperandInfo *operand, int i) {
258   return operand->shape().dimensions[i];
259 }
260 
GetInput(const Operation & operation,std::vector<RunTimeOperandInfo> & operands,int index)261 inline RunTimeOperandInfo *GetInput(const Operation &operation,
262                                     std::vector<RunTimeOperandInfo> &operands,
263                                     int index) {
264   return &operands[operation.inputs[index]];
265 }
266 
GetOutput(const Operation & operation,std::vector<RunTimeOperandInfo> & operands,int index)267 inline RunTimeOperandInfo *GetOutput(const Operation &operation,
268                                      std::vector<RunTimeOperandInfo> &operands,
269                                      int index) {
270   return &operands[operation.outputs[index]];
271 }
272 
273 }  // anonymous namespace
274 
275 } // namespace nn
276 } // namespace android
277 
278 #endif // ANDROID_ML_NN_COMMON_CPU_EXECUTOR_H
279