1 // clang-format off
2 // Generated file (from: conv_quant8_large.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_QUANT8_ASYMM, {1, 2, 3, 3}, 0.5f, 0);
5   OperandType type1(Type::TENSOR_QUANT8_ASYMM, {3, 1, 1, 3}, 0.5f, 0);
6   OperandType type2(Type::TENSOR_INT32, {3}, 0.25f, 0);
7   OperandType type3(Type::INT32, {});
8   OperandType type4(Type::TENSOR_QUANT8_ASYMM, {1, 2, 3, 3}, 1.0f, 0);
9   // Phase 1, operands
10   auto op1 = model->addOperand(&type0);
11   auto op2 = model->addOperand(&type1);
12   auto op3 = model->addOperand(&type2);
13   auto pad0 = model->addOperand(&type3);
14   auto stride = model->addOperand(&type3);
15   auto act = model->addOperand(&type3);
16   auto op4 = model->addOperand(&type4);
17   // Phase 2, operations
18   static uint8_t op2_init[] = {1, 4, 7, 2, 5, 8, 3, 6, 9};
19   model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 9);
20   static int32_t op3_init[] = {0, 0, 0};
21   model->setOperandValue(op3, op3_init, sizeof(int32_t) * 3);
22   static int32_t pad0_init[] = {0};
23   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
24   static int32_t stride_init[] = {1};
25   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
26   static int32_t act_init[] = {0};
27   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
28   model->addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, act}, {op4});
29   // Phase 3, inputs and outputs
30   model->identifyInputsAndOutputs(
31     {op1},
32     {op4});
33   assert(model->isValid());
34 }
35 
is_ignored(int i)36 inline bool is_ignored(int i) {
37   static std::set<int> ignore = {};
38   return ignore.find(i) != ignore.end();
39 }
40 
CreateModel_dynamic_output_shape(Model * model)41 void CreateModel_dynamic_output_shape(Model *model) {
42   OperandType type0(Type::TENSOR_QUANT8_ASYMM, {1, 2, 3, 3}, 0.5f, 0);
43   OperandType type1(Type::TENSOR_QUANT8_ASYMM, {3, 1, 1, 3}, 0.5f, 0);
44   OperandType type2(Type::TENSOR_INT32, {3}, 0.25f, 0);
45   OperandType type3(Type::INT32, {});
46   OperandType type5(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0, 0}, 1.0f, 0);
47   // Phase 1, operands
48   auto op1 = model->addOperand(&type0);
49   auto op2 = model->addOperand(&type1);
50   auto op3 = model->addOperand(&type2);
51   auto pad0 = model->addOperand(&type3);
52   auto stride = model->addOperand(&type3);
53   auto act = model->addOperand(&type3);
54   auto op4 = model->addOperand(&type5);
55   // Phase 2, operations
56   static uint8_t op2_init[] = {1, 4, 7, 2, 5, 8, 3, 6, 9};
57   model->setOperandValue(op2, op2_init, sizeof(uint8_t) * 9);
58   static int32_t op3_init[] = {0, 0, 0};
59   model->setOperandValue(op3, op3_init, sizeof(int32_t) * 3);
60   static int32_t pad0_init[] = {0};
61   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
62   static int32_t stride_init[] = {1};
63   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
64   static int32_t act_init[] = {0};
65   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
66   model->addOperation(ANEURALNETWORKS_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, act}, {op4});
67   // Phase 3, inputs and outputs
68   model->identifyInputsAndOutputs(
69     {op1},
70     {op4});
71   assert(model->isValid());
72 }
73 
is_ignored_dynamic_output_shape(int i)74 inline bool is_ignored_dynamic_output_shape(int i) {
75   static std::set<int> ignore = {};
76   return ignore.find(i) != ignore.end();
77 }
78 
79