1 // clang-format off
2 // Generated file (from: lstm2_state2.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4 OperandType type0(Type::TENSOR_FLOAT32, {1, 2});
5 OperandType type1(Type::TENSOR_FLOAT32, {4, 2});
6 OperandType type2(Type::TENSOR_FLOAT32, {4, 4});
7 OperandType type3(Type::TENSOR_FLOAT32, {0});
8 OperandType type4(Type::TENSOR_FLOAT32, {4});
9 OperandType type5(Type::TENSOR_FLOAT32, {0, 0});
10 OperandType type6(Type::TENSOR_FLOAT32, {1, 4});
11 OperandType type7(Type::INT32, {});
12 OperandType type8(Type::FLOAT32, {});
13 OperandType type9(Type::TENSOR_FLOAT32, {1, 12});
14 // Phase 1, operands
15 auto input = model->addOperand(&type0);
16 auto input_to_input_weights = model->addOperand(&type1);
17 auto input_to_forget_weights = model->addOperand(&type1);
18 auto input_to_cell_weights = model->addOperand(&type1);
19 auto input_to_output_weights = model->addOperand(&type1);
20 auto recurrent_to_intput_weights = model->addOperand(&type2);
21 auto recurrent_to_forget_weights = model->addOperand(&type2);
22 auto recurrent_to_cell_weights = model->addOperand(&type2);
23 auto recurrent_to_output_weights = model->addOperand(&type2);
24 auto cell_to_input_weights = model->addOperand(&type3);
25 auto cell_to_forget_weights = model->addOperand(&type4);
26 auto cell_to_output_weights = model->addOperand(&type4);
27 auto input_gate_bias = model->addOperand(&type4);
28 auto forget_gate_bias = model->addOperand(&type4);
29 auto cell_gate_bias = model->addOperand(&type4);
30 auto output_gate_bias = model->addOperand(&type4);
31 auto projection_weights = model->addOperand(&type5);
32 auto projection_bias = model->addOperand(&type3);
33 auto output_state_in = model->addOperand(&type6);
34 auto cell_state_in = model->addOperand(&type6);
35 auto activation_param = model->addOperand(&type7);
36 auto cell_clip_param = model->addOperand(&type8);
37 auto proj_clip_param = model->addOperand(&type8);
38 auto scratch_buffer = model->addOperand(&type9);
39 auto output_state_out = model->addOperand(&type6);
40 auto cell_state_out = model->addOperand(&type6);
41 auto output = model->addOperand(&type6);
42 // Phase 2, operations
43 static int32_t activation_param_init[] = {4};
44 model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
45 static float cell_clip_param_init[] = {0.0f};
46 model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1);
47 static float proj_clip_param_init[] = {0.0f};
48 model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1);
49 model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output});
50 // Phase 3, inputs and outputs
51 model->identifyInputsAndOutputs(
52 {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in},
53 {scratch_buffer, output_state_out, cell_state_out, output});
54 assert(model->isValid());
55 }
56
is_ignored(int i)57 inline bool is_ignored(int i) {
58 static std::set<int> ignore = {0, 1, 2};
59 return ignore.find(i) != ignore.end();
60 }
61
CreateModel_dynamic_output_shape(Model * model)62 void CreateModel_dynamic_output_shape(Model *model) {
63 OperandType type0(Type::TENSOR_FLOAT32, {1, 2});
64 OperandType type1(Type::TENSOR_FLOAT32, {4, 2});
65 OperandType type2(Type::TENSOR_FLOAT32, {4, 4});
66 OperandType type3(Type::TENSOR_FLOAT32, {0});
67 OperandType type4(Type::TENSOR_FLOAT32, {4});
68 OperandType type5(Type::TENSOR_FLOAT32, {0, 0});
69 OperandType type6(Type::TENSOR_FLOAT32, {1, 4});
70 OperandType type7(Type::INT32, {});
71 OperandType type8(Type::FLOAT32, {});
72 // Phase 1, operands
73 auto input = model->addOperand(&type0);
74 auto input_to_input_weights = model->addOperand(&type1);
75 auto input_to_forget_weights = model->addOperand(&type1);
76 auto input_to_cell_weights = model->addOperand(&type1);
77 auto input_to_output_weights = model->addOperand(&type1);
78 auto recurrent_to_intput_weights = model->addOperand(&type2);
79 auto recurrent_to_forget_weights = model->addOperand(&type2);
80 auto recurrent_to_cell_weights = model->addOperand(&type2);
81 auto recurrent_to_output_weights = model->addOperand(&type2);
82 auto cell_to_input_weights = model->addOperand(&type3);
83 auto cell_to_forget_weights = model->addOperand(&type4);
84 auto cell_to_output_weights = model->addOperand(&type4);
85 auto input_gate_bias = model->addOperand(&type4);
86 auto forget_gate_bias = model->addOperand(&type4);
87 auto cell_gate_bias = model->addOperand(&type4);
88 auto output_gate_bias = model->addOperand(&type4);
89 auto projection_weights = model->addOperand(&type5);
90 auto projection_bias = model->addOperand(&type3);
91 auto output_state_in = model->addOperand(&type6);
92 auto cell_state_in = model->addOperand(&type6);
93 auto activation_param = model->addOperand(&type7);
94 auto cell_clip_param = model->addOperand(&type8);
95 auto proj_clip_param = model->addOperand(&type8);
96 auto scratch_buffer = model->addOperand(&type5);
97 auto output_state_out = model->addOperand(&type5);
98 auto cell_state_out = model->addOperand(&type5);
99 auto output = model->addOperand(&type5);
100 // Phase 2, operations
101 static int32_t activation_param_init[] = {4};
102 model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
103 static float cell_clip_param_init[] = {0.0f};
104 model->setOperandValue(cell_clip_param, cell_clip_param_init, sizeof(float) * 1);
105 static float proj_clip_param_init[] = {0.0f};
106 model->setOperandValue(proj_clip_param, proj_clip_param_init, sizeof(float) * 1);
107 model->addOperation(ANEURALNETWORKS_LSTM, {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in, activation_param, cell_clip_param, proj_clip_param}, {scratch_buffer, output_state_out, cell_state_out, output});
108 // Phase 3, inputs and outputs
109 model->identifyInputsAndOutputs(
110 {input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_intput_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, cell_to_input_weights, cell_to_forget_weights, cell_to_output_weights, input_gate_bias, forget_gate_bias, cell_gate_bias, output_gate_bias, projection_weights, projection_bias, output_state_in, cell_state_in},
111 {scratch_buffer, output_state_out, cell_state_out, output});
112 assert(model->isValid());
113 }
114
is_ignored_dynamic_output_shape(int i)115 inline bool is_ignored_dynamic_output_shape(int i) {
116 static std::set<int> ignore = {0, 1, 2};
117 return ignore.find(i) != ignore.end();
118 }
119
120