1 // clang-format off
2 // Generated file (from: rnn.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_FLOAT32, {2, 8});
5   OperandType type1(Type::TENSOR_FLOAT32, {16, 8});
6   OperandType type2(Type::TENSOR_FLOAT32, {16, 16});
7   OperandType type3(Type::TENSOR_FLOAT32, {16});
8   OperandType type4(Type::TENSOR_FLOAT32, {2, 16});
9   OperandType type5(Type::INT32, {});
10   // Phase 1, operands
11   auto input = model->addOperand(&type0);
12   auto weights = model->addOperand(&type1);
13   auto recurrent_weights = model->addOperand(&type2);
14   auto bias = model->addOperand(&type3);
15   auto hidden_state_in = model->addOperand(&type4);
16   auto activation_param = model->addOperand(&type5);
17   auto hidden_state_out = model->addOperand(&type4);
18   auto output = model->addOperand(&type4);
19   // Phase 2, operations
20   static int32_t activation_param_init[] = {1};
21   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
22   model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output});
23   // Phase 3, inputs and outputs
24   model->identifyInputsAndOutputs(
25     {input, weights, recurrent_weights, bias, hidden_state_in},
26     {hidden_state_out, output});
27   assert(model->isValid());
28 }
29 
is_ignored(int i)30 inline bool is_ignored(int i) {
31   static std::set<int> ignore = {0};
32   return ignore.find(i) != ignore.end();
33 }
34 
CreateModel_dynamic_output_shape(Model * model)35 void CreateModel_dynamic_output_shape(Model *model) {
36   OperandType type0(Type::TENSOR_FLOAT32, {2, 8});
37   OperandType type1(Type::TENSOR_FLOAT32, {16, 8});
38   OperandType type2(Type::TENSOR_FLOAT32, {16, 16});
39   OperandType type3(Type::TENSOR_FLOAT32, {16});
40   OperandType type4(Type::TENSOR_FLOAT32, {2, 16});
41   OperandType type5(Type::INT32, {});
42   OperandType type6(Type::TENSOR_FLOAT32, {0, 0});
43   // Phase 1, operands
44   auto input = model->addOperand(&type0);
45   auto weights = model->addOperand(&type1);
46   auto recurrent_weights = model->addOperand(&type2);
47   auto bias = model->addOperand(&type3);
48   auto hidden_state_in = model->addOperand(&type4);
49   auto activation_param = model->addOperand(&type5);
50   auto hidden_state_out = model->addOperand(&type6);
51   auto output = model->addOperand(&type6);
52   // Phase 2, operations
53   static int32_t activation_param_init[] = {1};
54   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
55   model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output});
56   // Phase 3, inputs and outputs
57   model->identifyInputsAndOutputs(
58     {input, weights, recurrent_weights, bias, hidden_state_in},
59     {hidden_state_out, output});
60   assert(model->isValid());
61 }
62 
is_ignored_dynamic_output_shape(int i)63 inline bool is_ignored_dynamic_output_shape(int i) {
64   static std::set<int> ignore = {0};
65   return ignore.find(i) != ignore.end();
66 }
67 
68