1 // clang-format off
2 // Generated file (from: svdf_relaxed.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_FLOAT32, {2, 3});
5   OperandType type1(Type::TENSOR_FLOAT32, {4, 3});
6   OperandType type2(Type::TENSOR_FLOAT32, {4, 10});
7   OperandType type3(Type::TENSOR_FLOAT32, {4});
8   OperandType type4(Type::TENSOR_FLOAT32, {2, 40});
9   OperandType type5(Type::INT32, {});
10   OperandType type6(Type::TENSOR_FLOAT32, {2, 4});
11   // Phase 1, operands
12   auto input = model->addOperand(&type0);
13   auto weights_feature = model->addOperand(&type1);
14   auto weights_time = model->addOperand(&type2);
15   auto bias = model->addOperand(&type3);
16   auto state_in = model->addOperand(&type4);
17   auto rank_param = model->addOperand(&type5);
18   auto activation_param = model->addOperand(&type5);
19   auto state_out = model->addOperand(&type4);
20   auto output = model->addOperand(&type6);
21   // Phase 2, operations
22   static int32_t rank_param_init[] = {1};
23   model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
24   static int32_t activation_param_init[] = {0};
25   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
26   model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});
27   // Phase 3, inputs and outputs
28   model->identifyInputsAndOutputs(
29     {input, weights_feature, weights_time, bias, state_in},
30     {state_out, output});
31   // Phase 4: set relaxed execution
32   model->relaxComputationFloat32toFloat16(true);
33   assert(model->isValid());
34 }
35 
is_ignored(int i)36 inline bool is_ignored(int i) {
37   static std::set<int> ignore = {0};
38   return ignore.find(i) != ignore.end();
39 }
40 
CreateModel_dynamic_output_shape(Model * model)41 void CreateModel_dynamic_output_shape(Model *model) {
42   OperandType type0(Type::TENSOR_FLOAT32, {2, 3});
43   OperandType type1(Type::TENSOR_FLOAT32, {4, 3});
44   OperandType type2(Type::TENSOR_FLOAT32, {4, 10});
45   OperandType type3(Type::TENSOR_FLOAT32, {4});
46   OperandType type4(Type::TENSOR_FLOAT32, {2, 40});
47   OperandType type5(Type::INT32, {});
48   OperandType type7(Type::TENSOR_FLOAT32, {0, 0});
49   // Phase 1, operands
50   auto input = model->addOperand(&type0);
51   auto weights_feature = model->addOperand(&type1);
52   auto weights_time = model->addOperand(&type2);
53   auto bias = model->addOperand(&type3);
54   auto state_in = model->addOperand(&type4);
55   auto rank_param = model->addOperand(&type5);
56   auto activation_param = model->addOperand(&type5);
57   auto state_out = model->addOperand(&type7);
58   auto output = model->addOperand(&type7);
59   // Phase 2, operations
60   static int32_t rank_param_init[] = {1};
61   model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
62   static int32_t activation_param_init[] = {0};
63   model->setOperandValue(activation_param, activation_param_init, sizeof(int32_t) * 1);
64   model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});
65   // Phase 3, inputs and outputs
66   model->identifyInputsAndOutputs(
67     {input, weights_feature, weights_time, bias, state_in},
68     {state_out, output});
69   // Phase 4: set relaxed execution
70   model->relaxComputationFloat32toFloat16(true);
71   assert(model->isValid());
72 }
73 
is_ignored_dynamic_output_shape(int i)74 inline bool is_ignored_dynamic_output_shape(int i) {
75   static std::set<int> ignore = {0};
76   return ignore.find(i) != ignore.end();
77 }
78 
79