1# 2# Copyright (C) 2017 The Android Open Source Project 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. # 15 16# LSTM Test: No Cifg, No Peephole, No Projection, and No Clipping. 17 18model = Model() 19 20n_batch = 2 21n_input = 2 22n_cell = 4 23n_output = n_cell 24 25input_ = Input("input", ("TENSOR_QUANT8_ASYMM", (n_batch, n_input), 1 / 128, 128)) 26 27weights_scale = 0.00408021 28weights_zero_point = 100 29 30input_to_input_weights = Input("inputToInputWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_input), weights_scale, weights_zero_point)) 31input_to_forget_weights = Input("inputToForgetWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_input), weights_scale, weights_zero_point)) 32input_to_cell_weights = Input("inputToCellWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_input), weights_scale, weights_zero_point)) 33input_to_output_weights = Input("inputToOutputWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_input), weights_scale, weights_zero_point)) 34 35recurrent_to_input_weights = Input("recurrentToInputWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_output), weights_scale, weights_zero_point)) 36recurrent_to_forget_weights = Input("recurrentToForgetWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_output), weights_scale, weights_zero_point)) 37recurrent_to_cell_weights = Input("recurrentToCellWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_output), weights_scale, weights_zero_point)) 38recurrent_to_output_weights = Input("recurrentToOutputWeights", ("TENSOR_QUANT8_ASYMM", (n_output, n_output), weights_scale, weights_zero_point)) 39 40input_gate_bias = Input("inputGateBias", ("TENSOR_INT32", (n_output,), weights_scale / 128., 0)) 41forget_gate_bias = Input("forgetGateBias", ("TENSOR_INT32", (n_output,), weights_scale / 128., 0)) 42cell_gate_bias = Input("cellGateBias", ("TENSOR_INT32", (n_output,), weights_scale / 128., 0)) 43output_gate_bias = Input("outputGateBias", ("TENSOR_INT32", (n_output,), weights_scale / 128., 0)) 44 45prev_cell_state = Input("prevCellState", ("TENSOR_QUANT16_SYMM", (n_batch, n_cell), 1 / 2048, 0)) 46prev_output = Input("prevOutput", ("TENSOR_QUANT8_ASYMM", (n_batch, n_output), 1 / 128, 128)) 47 48cell_state_out = Output("cellStateOut", ("TENSOR_QUANT16_SYMM", (n_batch, n_cell), 1 / 2048, 0)) 49output = Output("output", ("TENSOR_QUANT8_ASYMM", (n_batch, n_output), 1 / 128, 128)) 50 51 52model = model.Operation("QUANTIZED_16BIT_LSTM", 53 input_, 54 input_to_input_weights, 55 input_to_forget_weights, 56 input_to_cell_weights, 57 input_to_output_weights, 58 recurrent_to_input_weights, 59 recurrent_to_forget_weights, 60 recurrent_to_cell_weights, 61 recurrent_to_output_weights, 62 input_gate_bias, 63 forget_gate_bias, 64 cell_gate_bias, 65 output_gate_bias, 66 prev_cell_state, 67 prev_output 68).To([cell_state_out, output]) 69 70input_dict = { 71 input_: [166, 179, 50, 150], 72 input_to_input_weights: [146, 250, 235, 171, 10, 218, 171, 108], 73 input_to_forget_weights: [24, 50, 132, 179, 158, 110, 3, 169], 74 input_to_cell_weights: [133, 34, 29, 49, 206, 109, 54, 183], 75 input_to_output_weights: [195, 187, 11, 99, 109, 10, 218, 48], 76 recurrent_to_input_weights: [254, 206, 77, 168, 71, 20, 215, 6, 223, 7, 118, 225, 59, 130, 174, 26], 77 recurrent_to_forget_weights: [137, 240, 103, 52, 68, 51, 237, 112, 0, 220, 89, 23, 69, 4, 207, 253], 78 recurrent_to_cell_weights: [172, 60, 205, 65, 14, 0, 140, 168, 240, 223, 133, 56, 142, 64, 246, 216], 79 recurrent_to_output_weights: [106, 214, 67, 23, 59, 158, 45, 3, 119, 132, 49, 205, 129, 218, 11, 98], 80 input_gate_bias: [-7876, 13488, -726, 32839], 81 forget_gate_bias: [9206, -46884, -11693, -38724], 82 cell_gate_bias: [39481, 48624, 48976, -21419], 83 output_gate_bias: [-58999, -17050, -41852, -40538], 84 prev_cell_state: [876, 1034, 955, -909, 761, 1029, 796, -1036], 85 prev_output: [136, 150, 140, 115, 135, 152, 138, 112], 86} 87 88output_dict = { 89 cell_state_out: [1485, 1177, 1373, -1023, 1019, 1355, 1097, -1235], 90 output: [140, 151, 146, 112, 136, 156, 142, 112] 91} 92Example((input_dict, output_dict), model=model).AddVariations("relaxed") 93 94 95# TEST 2: same as the first one but only the first batch is tested and weights 96# are compile time constants 97model = Model() 98 99n_batch = 1 100n_input = 2 101n_cell = 4 102n_output = n_cell 103 104input_ = Input("input", 105 ("TENSOR_QUANT8_ASYMM", (n_batch, n_input), 1 / 128, 128)) 106 107weights_scale = 0.00408021 108weights_zero_point = 100 109 110input_to_input_weights = Parameter( 111 "inputToInputWeights", 112 ("TENSOR_QUANT8_ASYMM", 113 (n_output, n_input), weights_scale, weights_zero_point), 114 [146, 250, 235, 171, 10, 218, 171, 108]) 115input_to_forget_weights = Parameter( 116 "inputToForgetWeights", 117 ("TENSOR_QUANT8_ASYMM", 118 (n_output, n_input), weights_scale, weights_zero_point), 119 [24, 50, 132, 179, 158, 110, 3, 169]) 120input_to_cell_weights = Parameter( 121 "inputToCellWeights", 122 ("TENSOR_QUANT8_ASYMM", 123 (n_output, n_input), weights_scale, weights_zero_point), 124 [133, 34, 29, 49, 206, 109, 54, 183]) 125input_to_output_weights = Parameter( 126 "inputToOutputWeights", 127 ("TENSOR_QUANT8_ASYMM", 128 (n_output, n_input), weights_scale, weights_zero_point), 129 [195, 187, 11, 99, 109, 10, 218, 48]) 130 131recurrent_to_input_weights = Parameter( 132 "recurrentToInputWeights", 133 ("TENSOR_QUANT8_ASYMM", 134 (n_output, n_output), weights_scale, weights_zero_point), 135 [254, 206, 77, 168, 71, 20, 215, 6, 223, 7, 118, 225, 59, 130, 174, 26]) 136recurrent_to_forget_weights = Parameter( 137 "recurrentToForgetWeights", 138 ("TENSOR_QUANT8_ASYMM", 139 (n_output, n_output), weights_scale, weights_zero_point), 140 [137, 240, 103, 52, 68, 51, 237, 112, 0, 220, 89, 23, 69, 4, 207, 253]) 141recurrent_to_cell_weights = Parameter( 142 "recurrentToCellWeights", 143 ("TENSOR_QUANT8_ASYMM", 144 (n_output, n_output), weights_scale, weights_zero_point), 145 [172, 60, 205, 65, 14, 0, 140, 168, 240, 223, 133, 56, 142, 64, 246, 216]) 146recurrent_to_output_weights = Parameter( 147 "recurrentToOutputWeights", 148 ("TENSOR_QUANT8_ASYMM", 149 (n_output, n_output), weights_scale, weights_zero_point), 150 [106, 214, 67, 23, 59, 158, 45, 3, 119, 132, 49, 205, 129, 218, 11, 98]) 151 152input_gate_bias = Parameter("inputGateBias", 153 ("TENSOR_INT32", 154 (n_output,), weights_scale / 128., 0), 155 [-7876, 13488, -726, 32839]) 156forget_gate_bias = Parameter("forgetGateBias", 157 ("TENSOR_INT32", 158 (n_output,), weights_scale / 128., 0), 159 [9206, -46884, -11693, -38724]) 160cell_gate_bias = Parameter("cellGateBias", 161 ("TENSOR_INT32", 162 (n_output,), weights_scale / 128., 0), 163 [39481, 48624, 48976, -21419]) 164output_gate_bias = Parameter("outputGateBias", 165 ("TENSOR_INT32", 166 (n_output,), weights_scale / 128., 0), 167 [-58999, -17050, -41852, -40538]) 168 169prev_cell_state = Input("prevCellState", 170 ("TENSOR_QUANT16_SYMM", (n_batch, n_cell), 1 / 2048, 0)) 171prev_output = Input("prevOutput", 172 ("TENSOR_QUANT8_ASYMM", (n_batch, n_output), 1 / 128, 128)) 173 174cell_state_out = Output("cellStateOut", 175 ("TENSOR_QUANT16_SYMM", (n_batch, n_cell), 1 / 2048, 0)) 176output = Output("output", 177 ("TENSOR_QUANT8_ASYMM", (n_batch, n_output), 1 / 128, 128)) 178 179model = model.Operation("QUANTIZED_16BIT_LSTM", input_, input_to_input_weights, 180 input_to_forget_weights, input_to_cell_weights, 181 input_to_output_weights, recurrent_to_input_weights, 182 recurrent_to_forget_weights, recurrent_to_cell_weights, 183 recurrent_to_output_weights, input_gate_bias, 184 forget_gate_bias, cell_gate_bias, output_gate_bias, 185 prev_cell_state, 186 prev_output).To([cell_state_out, output]) 187 188input_dict = { 189 input_: [166, 179], 190 prev_cell_state: [876, 1034, 955, -909], 191 prev_output: [136, 150, 140, 115], 192} 193 194output_dict = { 195 cell_state_out: [1485, 1177, 1373, -1023], 196 output: [140, 151, 146, 112] 197} 198Example((input_dict, output_dict), model=model, 199 name="constant_weights").AddVariations("relaxed") 200