1 /*
2  * Copyright 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
19 #undef LOG_TAG
20 #define LOG_TAG "RegionSamplingThread"
21 
22 #include "RegionSamplingThread.h"
23 
24 #include <cutils/properties.h>
25 #include <gui/IRegionSamplingListener.h>
26 #include <utils/Trace.h>
27 #include <string>
28 
29 #include <compositionengine/Display.h>
30 #include <compositionengine/impl/OutputCompositionState.h>
31 #include "DisplayDevice.h"
32 #include "Layer.h"
33 #include "SurfaceFlinger.h"
34 
35 namespace android {
36 using namespace std::chrono_literals;
37 
38 template <typename T>
39 struct SpHash {
operator ()android::SpHash40     size_t operator()(const sp<T>& p) const { return std::hash<T*>()(p.get()); }
41 };
42 
43 constexpr auto lumaSamplingStepTag = "LumaSamplingStep";
44 enum class samplingStep {
45     noWorkNeeded,
46     idleTimerWaiting,
47     waitForZeroPhase,
48     waitForSamplePhase,
49     sample
50 };
51 
52 constexpr auto defaultRegionSamplingOffset = -3ms;
53 constexpr auto defaultRegionSamplingPeriod = 100ms;
54 constexpr auto defaultRegionSamplingTimerTimeout = 100ms;
55 // TODO: (b/127403193) duration to string conversion could probably be constexpr
56 template <typename Rep, typename Per>
toNsString(std::chrono::duration<Rep,Per> t)57 inline std::string toNsString(std::chrono::duration<Rep, Per> t) {
58     return std::to_string(std::chrono::duration_cast<std::chrono::nanoseconds>(t).count());
59 }
60 
EnvironmentTimingTunables()61 RegionSamplingThread::EnvironmentTimingTunables::EnvironmentTimingTunables() {
62     char value[PROPERTY_VALUE_MAX] = {};
63 
64     property_get("debug.sf.region_sampling_offset_ns", value,
65                  toNsString(defaultRegionSamplingOffset).c_str());
66     int const samplingOffsetNsRaw = atoi(value);
67 
68     property_get("debug.sf.region_sampling_period_ns", value,
69                  toNsString(defaultRegionSamplingPeriod).c_str());
70     int const samplingPeriodNsRaw = atoi(value);
71 
72     property_get("debug.sf.region_sampling_timer_timeout_ns", value,
73                  toNsString(defaultRegionSamplingTimerTimeout).c_str());
74     int const samplingTimerTimeoutNsRaw = atoi(value);
75 
76     if ((samplingPeriodNsRaw < 0) || (samplingTimerTimeoutNsRaw < 0)) {
77         ALOGW("User-specified sampling tuning options nonsensical. Using defaults");
78         mSamplingOffset = defaultRegionSamplingOffset;
79         mSamplingPeriod = defaultRegionSamplingPeriod;
80         mSamplingTimerTimeout = defaultRegionSamplingTimerTimeout;
81     } else {
82         mSamplingOffset = std::chrono::nanoseconds(samplingOffsetNsRaw);
83         mSamplingPeriod = std::chrono::nanoseconds(samplingPeriodNsRaw);
84         mSamplingTimerTimeout = std::chrono::nanoseconds(samplingTimerTimeoutNsRaw);
85     }
86 }
87 
88 struct SamplingOffsetCallback : DispSync::Callback {
SamplingOffsetCallbackandroid::SamplingOffsetCallback89     SamplingOffsetCallback(RegionSamplingThread& samplingThread, Scheduler& scheduler,
90                            std::chrono::nanoseconds targetSamplingOffset)
91           : mRegionSamplingThread(samplingThread),
92             mScheduler(scheduler),
93             mTargetSamplingOffset(targetSamplingOffset) {}
94 
~SamplingOffsetCallbackandroid::SamplingOffsetCallback95     ~SamplingOffsetCallback() { stopVsyncListener(); }
96 
97     SamplingOffsetCallback(const SamplingOffsetCallback&) = delete;
98     SamplingOffsetCallback& operator=(const SamplingOffsetCallback&) = delete;
99 
startVsyncListenerandroid::SamplingOffsetCallback100     void startVsyncListener() {
101         std::lock_guard lock(mMutex);
102         if (mVsyncListening) return;
103 
104         mPhaseIntervalSetting = Phase::ZERO;
105         mScheduler.withPrimaryDispSync([this](android::DispSync& sync) {
106             sync.addEventListener("SamplingThreadDispSyncListener", 0, this, mLastCallbackTime);
107         });
108         mVsyncListening = true;
109     }
110 
stopVsyncListenerandroid::SamplingOffsetCallback111     void stopVsyncListener() {
112         std::lock_guard lock(mMutex);
113         stopVsyncListenerLocked();
114     }
115 
116 private:
stopVsyncListenerLockedandroid::SamplingOffsetCallback117     void stopVsyncListenerLocked() /*REQUIRES(mMutex)*/ {
118         if (!mVsyncListening) return;
119 
120         mScheduler.withPrimaryDispSync([this](android::DispSync& sync) {
121             sync.removeEventListener(this, &mLastCallbackTime);
122         });
123         mVsyncListening = false;
124     }
125 
onDispSyncEventandroid::SamplingOffsetCallback126     void onDispSyncEvent(nsecs_t /* when */) final {
127         std::unique_lock<decltype(mMutex)> lock(mMutex);
128 
129         if (mPhaseIntervalSetting == Phase::ZERO) {
130             ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForSamplePhase));
131             mPhaseIntervalSetting = Phase::SAMPLING;
132             mScheduler.withPrimaryDispSync([this](android::DispSync& sync) {
133                 sync.changePhaseOffset(this, mTargetSamplingOffset.count());
134             });
135             return;
136         }
137 
138         if (mPhaseIntervalSetting == Phase::SAMPLING) {
139             mPhaseIntervalSetting = Phase::ZERO;
140             mScheduler.withPrimaryDispSync(
141                     [this](android::DispSync& sync) { sync.changePhaseOffset(this, 0); });
142             stopVsyncListenerLocked();
143             lock.unlock();
144             mRegionSamplingThread.notifySamplingOffset();
145             return;
146         }
147     }
148 
149     RegionSamplingThread& mRegionSamplingThread;
150     Scheduler& mScheduler;
151     const std::chrono::nanoseconds mTargetSamplingOffset;
152     mutable std::mutex mMutex;
153     nsecs_t mLastCallbackTime = 0;
154     enum class Phase {
155         ZERO,
156         SAMPLING
157     } mPhaseIntervalSetting /*GUARDED_BY(mMutex) macro doesnt work with unique_lock?*/
158             = Phase::ZERO;
159     bool mVsyncListening /*GUARDED_BY(mMutex)*/ = false;
160 };
161 
RegionSamplingThread(SurfaceFlinger & flinger,Scheduler & scheduler,const TimingTunables & tunables)162 RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler,
163                                            const TimingTunables& tunables)
164       : mFlinger(flinger),
165         mScheduler(scheduler),
166         mTunables(tunables),
167         mIdleTimer(std::chrono::duration_cast<std::chrono::milliseconds>(
168                            mTunables.mSamplingTimerTimeout),
169                    [] {}, [this] { checkForStaleLuma(); }),
170         mPhaseCallback(std::make_unique<SamplingOffsetCallback>(*this, mScheduler,
171                                                                 tunables.mSamplingOffset)),
172         lastSampleTime(0ns) {
__anonedeb02ff0702() 173     mThread = std::thread([this]() { threadMain(); });
174     pthread_setname_np(mThread.native_handle(), "RegionSamplingThread");
175     mIdleTimer.start();
176 }
177 
RegionSamplingThread(SurfaceFlinger & flinger,Scheduler & scheduler)178 RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler)
179       : RegionSamplingThread(flinger, scheduler,
180                              TimingTunables{defaultRegionSamplingOffset,
181                                             defaultRegionSamplingPeriod,
182                                             defaultRegionSamplingTimerTimeout}) {}
183 
~RegionSamplingThread()184 RegionSamplingThread::~RegionSamplingThread() {
185     mIdleTimer.stop();
186 
187     {
188         std::lock_guard lock(mThreadControlMutex);
189         mRunning = false;
190         mCondition.notify_one();
191     }
192 
193     if (mThread.joinable()) {
194         mThread.join();
195     }
196 }
197 
addListener(const Rect & samplingArea,const sp<IBinder> & stopLayerHandle,const sp<IRegionSamplingListener> & listener)198 void RegionSamplingThread::addListener(const Rect& samplingArea, const sp<IBinder>& stopLayerHandle,
199                                        const sp<IRegionSamplingListener>& listener) {
200     wp<Layer> stopLayer = stopLayerHandle != nullptr
201             ? static_cast<Layer::Handle*>(stopLayerHandle.get())->owner
202             : nullptr;
203 
204     sp<IBinder> asBinder = IInterface::asBinder(listener);
205     asBinder->linkToDeath(this);
206     std::lock_guard lock(mSamplingMutex);
207     mDescriptors.emplace(wp<IBinder>(asBinder), Descriptor{samplingArea, stopLayer, listener});
208 }
209 
removeListener(const sp<IRegionSamplingListener> & listener)210 void RegionSamplingThread::removeListener(const sp<IRegionSamplingListener>& listener) {
211     std::lock_guard lock(mSamplingMutex);
212     mDescriptors.erase(wp<IBinder>(IInterface::asBinder(listener)));
213 }
214 
checkForStaleLuma()215 void RegionSamplingThread::checkForStaleLuma() {
216     std::lock_guard lock(mThreadControlMutex);
217 
218     if (mDiscardedFrames) {
219         ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForZeroPhase));
220         mDiscardedFrames = false;
221         mPhaseCallback->startVsyncListener();
222     }
223 }
224 
notifyNewContent()225 void RegionSamplingThread::notifyNewContent() {
226     doSample();
227 }
228 
notifySamplingOffset()229 void RegionSamplingThread::notifySamplingOffset() {
230     doSample();
231 }
232 
doSample()233 void RegionSamplingThread::doSample() {
234     std::lock_guard lock(mThreadControlMutex);
235     auto now = std::chrono::nanoseconds(systemTime(SYSTEM_TIME_MONOTONIC));
236     if (lastSampleTime + mTunables.mSamplingPeriod > now) {
237         ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::idleTimerWaiting));
238         mDiscardedFrames = true;
239         return;
240     }
241 
242     ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::sample));
243 
244     mDiscardedFrames = false;
245     lastSampleTime = now;
246 
247     mIdleTimer.reset();
248     mPhaseCallback->stopVsyncListener();
249 
250     mSampleRequested = true;
251     mCondition.notify_one();
252 }
253 
binderDied(const wp<IBinder> & who)254 void RegionSamplingThread::binderDied(const wp<IBinder>& who) {
255     std::lock_guard lock(mSamplingMutex);
256     mDescriptors.erase(who);
257 }
258 
259 namespace {
260 // Using Rec. 709 primaries
getLuma(float r,float g,float b)261 float getLuma(float r, float g, float b) {
262     constexpr auto rec709_red_primary = 0.2126f;
263     constexpr auto rec709_green_primary = 0.7152f;
264     constexpr auto rec709_blue_primary = 0.0722f;
265     return rec709_red_primary * r + rec709_green_primary * g + rec709_blue_primary * b;
266 }
267 } // anonymous namespace
268 
sampleArea(const uint32_t * data,int32_t width,int32_t height,int32_t stride,uint32_t orientation,const Rect & sample_area)269 float sampleArea(const uint32_t* data, int32_t width, int32_t height, int32_t stride,
270                  uint32_t orientation, const Rect& sample_area) {
271     if (!sample_area.isValid() || (sample_area.getWidth() > width) ||
272         (sample_area.getHeight() > height)) {
273         ALOGE("invalid sampling region requested");
274         return 0.0f;
275     }
276 
277     // (b/133849373) ROT_90 screencap images produced upside down
278     auto area = sample_area;
279     if (orientation & ui::Transform::ROT_90) {
280         area.top = height - area.top;
281         area.bottom = height - area.bottom;
282         std::swap(area.top, area.bottom);
283 
284         area.left = width - area.left;
285         area.right = width - area.right;
286         std::swap(area.left, area.right);
287     }
288 
289     std::array<int32_t, 256> brightnessBuckets = {};
290     const int32_t majoritySampleNum = area.getWidth() * area.getHeight() / 2;
291 
292     for (int32_t row = area.top; row < area.bottom; ++row) {
293         const uint32_t* rowBase = data + row * stride;
294         for (int32_t column = area.left; column < area.right; ++column) {
295             uint32_t pixel = rowBase[column];
296             const float r = (pixel & 0xFF) / 255.0f;
297             const float g = ((pixel >> 8) & 0xFF) / 255.0f;
298             const float b = ((pixel >> 16) & 0xFF) / 255.0f;
299             const uint8_t luma = std::round(getLuma(r, g, b) * 255.0f);
300             ++brightnessBuckets[luma];
301             if (brightnessBuckets[luma] > majoritySampleNum) return luma / 255.0f;
302         }
303     }
304 
305     int32_t accumulated = 0;
306     size_t bucket = 0;
307     for (; bucket < brightnessBuckets.size(); bucket++) {
308         accumulated += brightnessBuckets[bucket];
309         if (accumulated > majoritySampleNum) break;
310     }
311 
312     return bucket / 255.0f;
313 }
314 
sampleBuffer(const sp<GraphicBuffer> & buffer,const Point & leftTop,const std::vector<RegionSamplingThread::Descriptor> & descriptors,uint32_t orientation)315 std::vector<float> RegionSamplingThread::sampleBuffer(
316         const sp<GraphicBuffer>& buffer, const Point& leftTop,
317         const std::vector<RegionSamplingThread::Descriptor>& descriptors, uint32_t orientation) {
318     void* data_raw = nullptr;
319     buffer->lock(GRALLOC_USAGE_SW_READ_OFTEN, &data_raw);
320     std::shared_ptr<uint32_t> data(reinterpret_cast<uint32_t*>(data_raw),
321                                    [&buffer](auto) { buffer->unlock(); });
322     if (!data) return {};
323 
324     const int32_t width = buffer->getWidth();
325     const int32_t height = buffer->getHeight();
326     const int32_t stride = buffer->getStride();
327     std::vector<float> lumas(descriptors.size());
328     std::transform(descriptors.begin(), descriptors.end(), lumas.begin(),
329                    [&](auto const& descriptor) {
330                        return sampleArea(data.get(), width, height, stride, orientation,
331                                          descriptor.area - leftTop);
332                    });
333     return lumas;
334 }
335 
captureSample()336 void RegionSamplingThread::captureSample() {
337     ATRACE_CALL();
338     std::lock_guard lock(mSamplingMutex);
339 
340     if (mDescriptors.empty()) {
341         return;
342     }
343 
344     const auto device = mFlinger.getDefaultDisplayDevice();
345     const auto display = device->getCompositionDisplay();
346     const auto state = display->getState();
347     const auto orientation = static_cast<ui::Transform::orientation_flags>(state.orientation);
348 
349     std::vector<RegionSamplingThread::Descriptor> descriptors;
350     Region sampleRegion;
351     for (const auto& [listener, descriptor] : mDescriptors) {
352         sampleRegion.orSelf(descriptor.area);
353         descriptors.emplace_back(descriptor);
354     }
355 
356     const Rect sampledArea = sampleRegion.bounds();
357 
358     auto dx = 0;
359     auto dy = 0;
360     switch (orientation) {
361         case ui::Transform::ROT_90:
362             dx = device->getWidth();
363             break;
364         case ui::Transform::ROT_180:
365             dx = device->getWidth();
366             dy = device->getHeight();
367             break;
368         case ui::Transform::ROT_270:
369             dy = device->getHeight();
370             break;
371         default:
372             break;
373     }
374 
375     ui::Transform t(orientation);
376     auto screencapRegion = t.transform(sampleRegion);
377     screencapRegion = screencapRegion.translate(dx, dy);
378     DisplayRenderArea renderArea(device, screencapRegion.bounds(), sampledArea.getWidth(),
379                                  sampledArea.getHeight(), ui::Dataspace::V0_SRGB, orientation);
380 
381     std::unordered_set<sp<IRegionSamplingListener>, SpHash<IRegionSamplingListener>> listeners;
382 
383     auto traverseLayers = [&](const LayerVector::Visitor& visitor) {
384         bool stopLayerFound = false;
385         auto filterVisitor = [&](Layer* layer) {
386             // We don't want to capture any layers beyond the stop layer
387             if (stopLayerFound) return;
388 
389             // Likewise if we just found a stop layer, set the flag and abort
390             for (const auto& [area, stopLayer, listener] : descriptors) {
391                 if (layer == stopLayer.promote().get()) {
392                     stopLayerFound = true;
393                     return;
394                 }
395             }
396 
397             // Compute the layer's position on the screen
398             const Rect bounds = Rect(layer->getBounds());
399             const ui::Transform transform = layer->getTransform();
400             constexpr bool roundOutwards = true;
401             Rect transformed = transform.transform(bounds, roundOutwards);
402 
403             // If this layer doesn't intersect with the larger sampledArea, skip capturing it
404             Rect ignore;
405             if (!transformed.intersect(sampledArea, &ignore)) return;
406 
407             // If the layer doesn't intersect a sampling area, skip capturing it
408             bool intersectsAnyArea = false;
409             for (const auto& [area, stopLayer, listener] : descriptors) {
410                 if (transformed.intersect(area, &ignore)) {
411                     intersectsAnyArea = true;
412                     listeners.insert(listener);
413                 }
414             }
415             if (!intersectsAnyArea) return;
416 
417             ALOGV("Traversing [%s] [%d, %d, %d, %d]", layer->getName().string(), bounds.left,
418                   bounds.top, bounds.right, bounds.bottom);
419             visitor(layer);
420         };
421         mFlinger.traverseLayersInDisplay(device, filterVisitor);
422     };
423 
424     sp<GraphicBuffer> buffer = nullptr;
425     if (mCachedBuffer && mCachedBuffer->getWidth() == sampledArea.getWidth() &&
426         mCachedBuffer->getHeight() == sampledArea.getHeight()) {
427         buffer = mCachedBuffer;
428     } else {
429         const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER;
430         buffer = new GraphicBuffer(sampledArea.getWidth(), sampledArea.getHeight(),
431                                    PIXEL_FORMAT_RGBA_8888, 1, usage, "RegionSamplingThread");
432     }
433 
434     bool ignored;
435     mFlinger.captureScreenCommon(renderArea, traverseLayers, buffer, false, ignored);
436 
437     std::vector<Descriptor> activeDescriptors;
438     for (const auto& descriptor : descriptors) {
439         if (listeners.count(descriptor.listener) != 0) {
440             activeDescriptors.emplace_back(descriptor);
441         }
442     }
443 
444     ALOGV("Sampling %zu descriptors", activeDescriptors.size());
445     std::vector<float> lumas =
446             sampleBuffer(buffer, sampledArea.leftTop(), activeDescriptors, orientation);
447     if (lumas.size() != activeDescriptors.size()) {
448         ALOGW("collected %zu median luma values for %zu descriptors", lumas.size(),
449               activeDescriptors.size());
450         return;
451     }
452 
453     for (size_t d = 0; d < activeDescriptors.size(); ++d) {
454         activeDescriptors[d].listener->onSampleCollected(lumas[d]);
455     }
456 
457     // Extend the lifetime of mCachedBuffer from the previous frame to here to ensure that:
458     // 1) The region sampling thread is the last owner of the buffer, and the freeing of the buffer
459     // happens in this thread, as opposed to the main thread.
460     // 2) The listener(s) receive their notifications prior to freeing the buffer.
461     mCachedBuffer = buffer;
462     ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::noWorkNeeded));
463 }
464 
465 // NO_THREAD_SAFETY_ANALYSIS is because std::unique_lock presently lacks thread safety annotations.
threadMain()466 void RegionSamplingThread::threadMain() NO_THREAD_SAFETY_ANALYSIS {
467     std::unique_lock<std::mutex> lock(mThreadControlMutex);
468     while (mRunning) {
469         if (mSampleRequested) {
470             mSampleRequested = false;
471             lock.unlock();
472             captureSample();
473             lock.lock();
474         }
475         mCondition.wait(lock, [this]() REQUIRES(mThreadControlMutex) {
476             return mSampleRequested || !mRunning;
477         });
478     }
479 }
480 
481 } // namespace android
482