1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "InputHub" 18 //#define LOG_NDEBUG 0 19 20 #include "InputHub.h" 21 22 #include <dirent.h> 23 #include <errno.h> 24 #include <fcntl.h> 25 #include <string.h> 26 #include <sys/capability.h> 27 #include <sys/epoll.h> 28 #include <sys/eventfd.h> 29 #include <sys/inotify.h> 30 #include <sys/ioctl.h> 31 #include <sys/stat.h> 32 #include <sys/types.h> 33 #include <sys/utsname.h> 34 #include <unistd.h> 35 36 #include <vector> 37 38 #include <android/input.h> 39 #include <hardware_legacy/power.h> 40 #include <linux/input.h> 41 42 #include <utils/Log.h> 43 44 #include "BitUtils.h" 45 46 namespace android { 47 48 static const char WAKE_LOCK_ID[] = "KeyEvents"; 49 static const int NO_TIMEOUT = -1; 50 static const int EPOLL_MAX_EVENTS = 16; 51 static const int INPUT_MAX_EVENTS = 128; 52 53 static constexpr bool testBit(int bit, const uint8_t arr[]) { 54 return arr[bit / 8] & (1 << (bit % 8)); 55 } 56 57 static constexpr size_t sizeofBitArray(size_t bits) { 58 return (bits + 7) / 8; 59 } 60 61 static void getLinuxRelease(int* major, int* minor) { 62 struct utsname info; 63 if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) { 64 *major = 0, *minor = 0; 65 ALOGE("Could not get linux version: %s", strerror(errno)); 66 } 67 } 68 69 class EvdevDeviceNode : public InputDeviceNode { 70 public: 71 static EvdevDeviceNode* openDeviceNode(const std::string& path); 72 73 virtual ~EvdevDeviceNode() { 74 ALOGV("closing %s (fd=%d)", mPath.c_str(), mFd); 75 if (mFd >= 0) { 76 ::close(mFd); 77 } 78 } 79 80 virtual int getFd() const { return mFd; } 81 virtual const std::string& getPath() const override { return mPath; } 82 virtual const std::string& getName() const override { return mName; } 83 virtual const std::string& getLocation() const override { return mLocation; } 84 virtual const std::string& getUniqueId() const override { return mUniqueId; } 85 86 virtual uint16_t getBusType() const override { return mBusType; } 87 virtual uint16_t getVendorId() const override { return mVendorId; } 88 virtual uint16_t getProductId() const override { return mProductId; } 89 virtual uint16_t getVersion() const override { return mVersion; } 90 91 virtual bool hasKey(int32_t key) const override; 92 virtual bool hasKeyInRange(int32_t start, int32_t end) const override; 93 virtual bool hasRelativeAxis(int32_t axis) const override; 94 virtual bool hasAbsoluteAxis(int32_t axis) const override; 95 virtual bool hasSwitch(int32_t sw) const override; 96 virtual bool hasForceFeedback(int32_t ff) const override; 97 virtual bool hasInputProperty(int property) const override; 98 99 virtual int32_t getKeyState(int32_t key) const override; 100 virtual int32_t getSwitchState(int32_t sw) const override; 101 virtual const AbsoluteAxisInfo* getAbsoluteAxisInfo(int32_t axis) const override; 102 virtual status_t getAbsoluteAxisValue(int32_t axis, int32_t* outValue) const override; 103 104 virtual void vibrate(nsecs_t duration) override; 105 virtual void cancelVibrate() override; 106 107 virtual void disableDriverKeyRepeat() override; 108 109 private: 110 EvdevDeviceNode(const std::string& path, int fd) : 111 mFd(fd), mPath(path) {} 112 113 status_t queryProperties(); 114 void queryAxisInfo(); 115 116 int mFd; 117 std::string mPath; 118 119 std::string mName; 120 std::string mLocation; 121 std::string mUniqueId; 122 123 uint16_t mBusType; 124 uint16_t mVendorId; 125 uint16_t mProductId; 126 uint16_t mVersion; 127 128 uint8_t mKeyBitmask[KEY_CNT / 8]; 129 uint8_t mAbsBitmask[ABS_CNT / 8]; 130 uint8_t mRelBitmask[REL_CNT / 8]; 131 uint8_t mSwBitmask[SW_CNT / 8]; 132 uint8_t mLedBitmask[LED_CNT / 8]; 133 uint8_t mFfBitmask[FF_CNT / 8]; 134 uint8_t mPropBitmask[INPUT_PROP_CNT / 8]; 135 136 std::unordered_map<uint32_t, std::unique_ptr<AbsoluteAxisInfo>> mAbsInfo; 137 138 bool mFfEffectPlaying = false; 139 int16_t mFfEffectId = -1; 140 }; 141 142 EvdevDeviceNode* EvdevDeviceNode::openDeviceNode(const std::string& path) { 143 auto fd = TEMP_FAILURE_RETRY(::open(path.c_str(), O_RDONLY | O_NONBLOCK | O_CLOEXEC)); 144 if (fd < 0) { 145 ALOGE("could not open evdev device %s. err=%d", path.c_str(), errno); 146 return nullptr; 147 } 148 149 // Tell the kernel that we want to use the monotonic clock for reporting 150 // timestamps associated with input events. This is important because the 151 // input system uses the timestamps extensively and assumes they were 152 // recorded using the monotonic clock. 153 // 154 // The EVIOCSCLOCKID ioctl was introduced in Linux 3.4. 155 int clockId = CLOCK_MONOTONIC; 156 if (TEMP_FAILURE_RETRY(ioctl(fd, EVIOCSCLOCKID, &clockId)) < 0) { 157 ALOGW("Could not set input clock id to CLOCK_MONOTONIC. errno=%d", errno); 158 } 159 160 auto node = new EvdevDeviceNode(path, fd); 161 status_t ret = node->queryProperties(); 162 if (ret != OK) { 163 ALOGE("could not open evdev device %s: failed to read properties. errno=%d", 164 path.c_str(), ret); 165 delete node; 166 return nullptr; 167 } 168 return node; 169 } 170 171 status_t EvdevDeviceNode::queryProperties() { 172 char buffer[80]; 173 174 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGNAME(sizeof(buffer) - 1), buffer)) < 1) { 175 ALOGV("could not get device name for %s.", mPath.c_str()); 176 } else { 177 buffer[sizeof(buffer) - 1] = '\0'; 178 mName = buffer; 179 } 180 181 int driverVersion; 182 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGVERSION, &driverVersion))) { 183 ALOGE("could not get driver version for %s. err=%d", mPath.c_str(), errno); 184 return -errno; 185 } 186 187 struct input_id inputId; 188 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGID, &inputId))) { 189 ALOGE("could not get device input id for %s. err=%d", mPath.c_str(), errno); 190 return -errno; 191 } 192 mBusType = inputId.bustype; 193 mVendorId = inputId.vendor; 194 mProductId = inputId.product; 195 mVersion = inputId.version; 196 197 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGPHYS(sizeof(buffer) - 1), buffer)) < 1) { 198 ALOGV("could not get location for %s.", mPath.c_str()); 199 } else { 200 buffer[sizeof(buffer) - 1] = '\0'; 201 mLocation = buffer; 202 } 203 204 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGUNIQ(sizeof(buffer) - 1), buffer)) < 1) { 205 ALOGV("could not get unique id for %s.", mPath.c_str()); 206 } else { 207 buffer[sizeof(buffer) - 1] = '\0'; 208 mUniqueId = buffer; 209 } 210 211 ALOGV("add device %s", mPath.c_str()); 212 ALOGV(" bus: %04x\n" 213 " vendor: %04x\n" 214 " product: %04x\n" 215 " version: %04x\n", 216 mBusType, mVendorId, mProductId, mVersion); 217 ALOGV(" name: \"%s\"\n" 218 " location: \"%s\"\n" 219 " unique_id: \"%s\"\n" 220 " descriptor: (TODO)\n" 221 " driver: v%d.%d.%d", 222 mName.c_str(), mLocation.c_str(), mUniqueId.c_str(), 223 driverVersion >> 16, (driverVersion >> 8) & 0xff, (driverVersion >> 16) & 0xff); 224 225 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_KEY, sizeof(mKeyBitmask)), mKeyBitmask)); 226 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_ABS, sizeof(mAbsBitmask)), mAbsBitmask)); 227 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_REL, sizeof(mRelBitmask)), mRelBitmask)); 228 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_SW, sizeof(mSwBitmask)), mSwBitmask)); 229 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_LED, sizeof(mLedBitmask)), mLedBitmask)); 230 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGBIT(EV_FF, sizeof(mFfBitmask)), mFfBitmask)); 231 TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGPROP(sizeof(mPropBitmask)), mPropBitmask)); 232 233 queryAxisInfo(); 234 235 return OK; 236 } 237 238 void EvdevDeviceNode::queryAxisInfo() { 239 for (int32_t axis = 0; axis < ABS_MAX; ++axis) { 240 if (testBit(axis, mAbsBitmask)) { 241 struct input_absinfo info; 242 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGABS(axis), &info))) { 243 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 244 axis, mPath.c_str(), mFd, errno); 245 continue; 246 } 247 248 mAbsInfo[axis] = std::unique_ptr<AbsoluteAxisInfo>(new AbsoluteAxisInfo{ 249 .minValue = info.minimum, 250 .maxValue = info.maximum, 251 .flat = info.flat, 252 .fuzz = info.fuzz, 253 .resolution = info.resolution 254 }); 255 } 256 } 257 } 258 259 bool EvdevDeviceNode::hasKey(int32_t key) const { 260 if (key >= 0 && key <= KEY_MAX) { 261 return testBit(key, mKeyBitmask); 262 } 263 return false; 264 } 265 266 bool EvdevDeviceNode::hasKeyInRange(int32_t startKey, int32_t endKey) const { 267 return testBitInRange(mKeyBitmask, startKey, endKey); 268 } 269 270 bool EvdevDeviceNode::hasRelativeAxis(int axis) const { 271 if (axis >= 0 && axis <= REL_MAX) { 272 return testBit(axis, mRelBitmask); 273 } 274 return false; 275 } 276 277 bool EvdevDeviceNode::hasAbsoluteAxis(int axis) const { 278 if (axis >= 0 && axis <= ABS_MAX) { 279 return getAbsoluteAxisInfo(axis) != nullptr; 280 } 281 return false; 282 } 283 284 const AbsoluteAxisInfo* EvdevDeviceNode::getAbsoluteAxisInfo(int32_t axis) const { 285 if (axis < 0 || axis > ABS_MAX) { 286 return nullptr; 287 } 288 289 const auto absInfo = mAbsInfo.find(axis); 290 if (absInfo != mAbsInfo.end()) { 291 return absInfo->second.get(); 292 } 293 return nullptr; 294 } 295 296 bool EvdevDeviceNode::hasSwitch(int32_t sw) const { 297 if (sw >= 0 && sw <= SW_MAX) { 298 return testBit(sw, mSwBitmask); 299 } 300 return false; 301 } 302 303 bool EvdevDeviceNode::hasForceFeedback(int32_t ff) const { 304 if (ff >= 0 && ff <= FF_MAX) { 305 return testBit(ff, mFfBitmask); 306 } 307 return false; 308 } 309 310 bool EvdevDeviceNode::hasInputProperty(int property) const { 311 if (property >= 0 && property <= INPUT_PROP_MAX) { 312 return testBit(property, mPropBitmask); 313 } 314 return false; 315 } 316 317 int32_t EvdevDeviceNode::getKeyState(int32_t key) const { 318 if (key >= 0 && key <= KEY_MAX) { 319 if (testBit(key, mKeyBitmask)) { 320 uint8_t keyState[sizeofBitArray(KEY_CNT)]; 321 memset(keyState, 0, sizeof(keyState)); 322 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGKEY(sizeof(keyState)), keyState)) >= 0) { 323 return testBit(key, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 324 } 325 } 326 } 327 return AKEY_STATE_UNKNOWN; 328 } 329 330 int32_t EvdevDeviceNode::getSwitchState(int32_t sw) const { 331 if (sw >= 0 && sw <= SW_MAX) { 332 if (testBit(sw, mSwBitmask)) { 333 uint8_t swState[sizeofBitArray(SW_CNT)]; 334 memset(swState, 0, sizeof(swState)); 335 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGSW(sizeof(swState)), swState)) >= 0) { 336 return testBit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 337 } 338 } 339 } 340 return AKEY_STATE_UNKNOWN; 341 } 342 343 status_t EvdevDeviceNode::getAbsoluteAxisValue(int32_t axis, int32_t* outValue) const { 344 *outValue = 0; 345 346 if (axis >= 0 && axis <= ABS_MAX) { 347 if (testBit(axis, mAbsBitmask)) { 348 struct input_absinfo info; 349 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCGABS(axis), &info))) { 350 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 351 axis, mPath.c_str(), mFd, errno); 352 return -errno; 353 } 354 355 *outValue = info.value; 356 return OK; 357 } 358 } 359 return -1; 360 } 361 362 void EvdevDeviceNode::vibrate(nsecs_t duration) { 363 ff_effect effect{}; 364 effect.type = FF_RUMBLE; 365 effect.id = mFfEffectId; 366 effect.u.rumble.strong_magnitude = 0xc000; 367 effect.u.rumble.weak_magnitude = 0xc000; 368 effect.replay.length = (duration + 999'999LL) / 1'000'000LL; 369 effect.replay.delay = 0; 370 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCSFF, &effect))) { 371 ALOGW("Could not upload force feedback effect to device %s due to error %d.", 372 mPath.c_str(), errno); 373 return; 374 } 375 mFfEffectId = effect.id; 376 377 struct input_event ev{}; 378 ev.type = EV_FF; 379 ev.code = mFfEffectId; 380 ev.value = 1; 381 size_t written = TEMP_FAILURE_RETRY(write(mFd, &ev, sizeof(ev))); 382 if (written != sizeof(ev)) { 383 ALOGW("Could not start force feedback effect on device %s due to error %d.", 384 mPath.c_str(), errno); 385 return; 386 } 387 mFfEffectPlaying = true; 388 } 389 390 void EvdevDeviceNode::cancelVibrate() { 391 if (mFfEffectPlaying) { 392 mFfEffectPlaying = false; 393 394 struct input_event ev{}; 395 ev.type = EV_FF; 396 ev.code = mFfEffectId; 397 ev.value = 0; 398 size_t written = TEMP_FAILURE_RETRY(write(mFd, &ev, sizeof(ev))); 399 if (written != sizeof(ev)) { 400 ALOGW("Could not stop force feedback effect on device %s due to error %d.", 401 mPath.c_str(), errno); 402 return; 403 } 404 } 405 } 406 407 void EvdevDeviceNode::disableDriverKeyRepeat() { 408 unsigned int repeatRate[] = {0, 0}; 409 if (TEMP_FAILURE_RETRY(ioctl(mFd, EVIOCSREP, repeatRate))) { 410 ALOGW("Unable to disable kernel key repeat for %s due to error %d.", 411 mPath.c_str(), errno); 412 } 413 } 414 415 InputHub::InputHub(const std::shared_ptr<InputCallbackInterface>& cb) : 416 mInputCallback(cb) { 417 // Determine the type of suspend blocking we can do on this device. There 418 // are 3 options, in decreasing order of preference: 419 // 1) EPOLLWAKEUP: introduced in Linux kernel 3.5, this flag can be set on 420 // an epoll event to indicate that a wake lock should be held from the 421 // time an fd has data until the next epoll_wait (or the epoll fd is 422 // closed). 423 // 2) EVIOCSSUSPENDBLOCK: introduced into the Android kernel's evdev 424 // driver, this ioctl blocks suspend while the event queue for the fd is 425 // not empty. This was never accepted into the mainline kernel, and it was 426 // replaced by EPOLLWAKEUP. 427 // 3) explicit wake locks: use acquire_wake_lock to manage suspend 428 // blocking explicitly in the InputHub code. 429 // 430 // (1) can be checked by simply observing the Linux kernel version. (2) 431 // requires an fd from an evdev node, which cannot be done in the InputHub 432 // constructor. So we assume (3) unless (1) is true, and we can verify 433 // whether (2) is true once we have an evdev fd (and we're not in (1)). 434 int major, minor; 435 getLinuxRelease(&major, &minor); 436 if (major > 3 || (major == 3 && minor >= 5)) { 437 ALOGI("Using EPOLLWAKEUP to block suspend while processing input events."); 438 mWakeupMechanism = WakeMechanism::EPOLL_WAKEUP; 439 mNeedToCheckSuspendBlockIoctl = false; 440 } 441 if (manageWakeLocks()) { 442 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 443 } 444 445 // epoll_create argument is ignored, but it must be > 0. 446 mEpollFd = epoll_create(1); 447 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); 448 449 mINotifyFd = inotify_init(); 450 LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance. errno=%d", errno); 451 452 struct epoll_event eventItem; 453 memset(&eventItem, 0, sizeof(eventItem)); 454 eventItem.events = EPOLLIN; 455 if (mWakeupMechanism == WakeMechanism::EPOLL_WAKEUP) { 456 eventItem.events |= EPOLLWAKEUP; 457 } 458 eventItem.data.u32 = mINotifyFd; 459 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); 460 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); 461 462 int wakeFds[2]; 463 result = pipe(wakeFds); 464 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); 465 466 mWakeEventFd = eventfd(0, EFD_NONBLOCK); 467 LOG_ALWAYS_FATAL_IF(mWakeEventFd == -1, "Could not create wake event fd. errno=%d", errno); 468 469 eventItem.data.u32 = mWakeEventFd; 470 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, &eventItem); 471 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance. errno=%d", errno); 472 } 473 474 InputHub::~InputHub() { 475 ::close(mEpollFd); 476 ::close(mINotifyFd); 477 ::close(mWakeEventFd); 478 479 if (manageWakeLocks()) { 480 release_wake_lock(WAKE_LOCK_ID); 481 } 482 } 483 484 status_t InputHub::registerDevicePath(const std::string& path) { 485 ALOGV("registering device path %s", path.c_str()); 486 int wd = inotify_add_watch(mINotifyFd, path.c_str(), IN_DELETE | IN_CREATE); 487 if (wd < 0) { 488 ALOGE("Could not add %s to INotify watch. errno=%d", path.c_str(), errno); 489 return -errno; 490 } 491 mWatchedPaths[wd] = path; 492 scanDir(path); 493 return OK; 494 } 495 496 status_t InputHub::unregisterDevicePath(const std::string& path) { 497 int wd = -1; 498 for (const auto& pair : mWatchedPaths) { 499 if (pair.second == path) { 500 wd = pair.first; 501 break; 502 } 503 } 504 505 if (wd == -1) { 506 return BAD_VALUE; 507 } 508 mWatchedPaths.erase(wd); 509 if (inotify_rm_watch(mINotifyFd, wd) != 0) { 510 return -errno; 511 } 512 return OK; 513 } 514 515 status_t InputHub::poll() { 516 bool deviceChange = false; 517 518 if (manageWakeLocks()) { 519 // Mind the wake lock dance! 520 // If we're relying on wake locks, we hold a wake lock at all times 521 // except during epoll_wait(). This works due to some subtle 522 // choreography. When a device driver has pending (unread) events, it 523 // acquires a kernel wake lock. However, once the last pending event 524 // has been read, the device driver will release the kernel wake lock. 525 // To prevent the system from going to sleep when this happens, the 526 // InputHub holds onto its own user wake lock while the client is 527 // processing events. Thus the system can only sleep if there are no 528 // events pending or currently being processed. 529 release_wake_lock(WAKE_LOCK_ID); 530 } 531 532 struct epoll_event pendingEventItems[EPOLL_MAX_EVENTS]; 533 int pollResult = epoll_wait(mEpollFd, pendingEventItems, EPOLL_MAX_EVENTS, NO_TIMEOUT); 534 535 if (manageWakeLocks()) { 536 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 537 } 538 539 if (pollResult == 0) { 540 ALOGW("epoll_wait should not return 0 with no timeout"); 541 return UNKNOWN_ERROR; 542 } 543 if (pollResult < 0) { 544 // An error occurred. Return even if it's EINTR, and let the caller 545 // restart the poll. 546 ALOGE("epoll_wait returned with errno=%d", errno); 547 return -errno; 548 } 549 550 // pollResult > 0: there are events to process 551 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 552 std::vector<int> removedDeviceFds; 553 int inputFd = -1; 554 std::shared_ptr<InputDeviceNode> deviceNode; 555 for (int i = 0; i < pollResult; ++i) { 556 const struct epoll_event& eventItem = pendingEventItems[i]; 557 558 int dataFd = static_cast<int>(eventItem.data.u32); 559 if (dataFd == mINotifyFd) { 560 if (eventItem.events & EPOLLIN) { 561 deviceChange = true; 562 } else { 563 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); 564 } 565 continue; 566 } 567 568 if (dataFd == mWakeEventFd) { 569 if (eventItem.events & EPOLLIN) { 570 ALOGV("awoken after wake()"); 571 uint64_t u; 572 ssize_t nRead = TEMP_FAILURE_RETRY(read(mWakeEventFd, &u, sizeof(uint64_t))); 573 if (nRead != sizeof(uint64_t)) { 574 ALOGW("Could not read event fd; waking anyway."); 575 } 576 } else { 577 ALOGW("Received unexpected epoll event 0x%08x for wake event.", 578 eventItem.events); 579 } 580 continue; 581 } 582 583 // Update the fd and device node when the fd changes. When several 584 // events are read back-to-back with the same fd, this saves many reads 585 // from the hash table. 586 if (inputFd != dataFd) { 587 inputFd = dataFd; 588 deviceNode = mDeviceNodes[inputFd]; 589 } 590 if (deviceNode == nullptr) { 591 ALOGE("could not find device node for fd %d", inputFd); 592 continue; 593 } 594 if (eventItem.events & EPOLLIN) { 595 struct input_event ievs[INPUT_MAX_EVENTS]; 596 for (;;) { 597 ssize_t readSize = TEMP_FAILURE_RETRY(read(inputFd, ievs, sizeof(ievs))); 598 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { 599 ALOGW("could not get event, removed? (fd: %d, size: %zd errno: %d)", 600 inputFd, readSize, errno); 601 602 removedDeviceFds.push_back(inputFd); 603 break; 604 } else if (readSize < 0) { 605 if (errno != EAGAIN && errno != EINTR) { 606 ALOGW("could not get event. errno=%d", errno); 607 } 608 break; 609 } else if (readSize % sizeof(input_event) != 0) { 610 ALOGE("could not get event. wrong size=%zd", readSize); 611 break; 612 } else { 613 size_t count = static_cast<size_t>(readSize) / sizeof(struct input_event); 614 for (size_t i = 0; i < count; ++i) { 615 auto& iev = ievs[i]; 616 auto when = s2ns(iev.time.tv_sec) + us2ns(iev.time.tv_usec); 617 InputEvent inputEvent = { when, iev.type, iev.code, iev.value }; 618 mInputCallback->onInputEvent(deviceNode, inputEvent, now); 619 } 620 } 621 } 622 } else if (eventItem.events & EPOLLHUP) { 623 ALOGI("Removing device fd %d due to epoll hangup event.", inputFd); 624 removedDeviceFds.push_back(inputFd); 625 } else { 626 ALOGW("Received unexpected epoll event 0x%08x for device fd %d", 627 eventItem.events, inputFd); 628 } 629 } 630 631 if (removedDeviceFds.size()) { 632 for (auto deviceFd : removedDeviceFds) { 633 auto deviceNode = mDeviceNodes[deviceFd]; 634 if (deviceNode != nullptr) { 635 status_t ret = closeNodeByFd(deviceFd); 636 if (ret != OK) { 637 ALOGW("Could not close device with fd %d. errno=%d", deviceFd, ret); 638 } else { 639 mInputCallback->onDeviceRemoved(deviceNode); 640 } 641 } 642 } 643 } 644 645 if (deviceChange) { 646 readNotify(); 647 } 648 649 return OK; 650 } 651 652 status_t InputHub::wake() { 653 ALOGV("wake() called"); 654 655 uint64_t u = 1; 656 ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &u, sizeof(uint64_t))); 657 658 if (nWrite != sizeof(uint64_t) && errno != EAGAIN) { 659 ALOGW("Could not write wake signal, errno=%d", errno); 660 return -errno; 661 } 662 return OK; 663 } 664 665 void InputHub::dump(String8& dump) { 666 // TODO 667 } 668 669 status_t InputHub::readNotify() { 670 char event_buf[512]; 671 struct inotify_event* event; 672 673 ssize_t res = TEMP_FAILURE_RETRY(read(mINotifyFd, event_buf, sizeof(event_buf))); 674 if (res < static_cast<int>(sizeof(*event))) { 675 ALOGW("could not get inotify event, %s\n", strerror(errno)); 676 return -errno; 677 } 678 679 size_t event_pos = 0; 680 while (res >= static_cast<int>(sizeof(*event))) { 681 event = reinterpret_cast<struct inotify_event*>(event_buf + event_pos); 682 if (event->len) { 683 std::string path = mWatchedPaths[event->wd]; 684 path.append("/").append(event->name); 685 ALOGV("inotify event for path %s", path.c_str()); 686 687 if (event->mask & IN_CREATE) { 688 auto deviceNode = openNode(path); 689 if (deviceNode == nullptr) { 690 ALOGE("could not open device node %s. err=%zd", path.c_str(), res); 691 } else { 692 mInputCallback->onDeviceAdded(deviceNode); 693 } 694 } else { 695 auto deviceNode = findNodeByPath(path); 696 if (deviceNode != nullptr) { 697 status_t ret = closeNode(deviceNode.get()); 698 if (ret != OK) { 699 ALOGW("Could not close device %s. errno=%d", path.c_str(), ret); 700 } else { 701 mInputCallback->onDeviceRemoved(deviceNode); 702 } 703 } else { 704 ALOGW("could not find device node for %s", path.c_str()); 705 } 706 } 707 } 708 int event_size = sizeof(*event) + event->len; 709 res -= event_size; 710 event_pos += event_size; 711 } 712 713 return OK; 714 } 715 716 status_t InputHub::scanDir(const std::string& path) { 717 auto dir = ::opendir(path.c_str()); 718 if (dir == nullptr) { 719 ALOGE("could not open device path %s to scan for devices. err=%d", path.c_str(), errno); 720 return -errno; 721 } 722 723 while (auto dirent = readdir(dir)) { 724 if (strcmp(dirent->d_name, ".") == 0 || 725 strcmp(dirent->d_name, "..") == 0) { 726 continue; 727 } 728 std::string filename = path + "/" + dirent->d_name; 729 auto node = openNode(filename); 730 if (node == nullptr) { 731 ALOGE("could not open device node %s", filename.c_str()); 732 } else { 733 mInputCallback->onDeviceAdded(node); 734 } 735 } 736 ::closedir(dir); 737 return OK; 738 } 739 740 std::shared_ptr<InputDeviceNode> InputHub::openNode(const std::string& path) { 741 ALOGV("opening %s...", path.c_str()); 742 auto evdevNode = std::shared_ptr<EvdevDeviceNode>(EvdevDeviceNode::openDeviceNode(path)); 743 if (evdevNode == nullptr) { 744 return nullptr; 745 } 746 747 auto fd = evdevNode->getFd(); 748 ALOGV("opened %s with fd %d", path.c_str(), fd); 749 mDeviceNodes[fd] = evdevNode; 750 struct epoll_event eventItem{}; 751 eventItem.events = EPOLLIN; 752 if (mWakeupMechanism == WakeMechanism::EPOLL_WAKEUP) { 753 eventItem.events |= EPOLLWAKEUP; 754 } 755 eventItem.data.u32 = fd; 756 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { 757 ALOGE("Could not add device fd to epoll instance. errno=%d", errno); 758 return nullptr; 759 } 760 761 if (mNeedToCheckSuspendBlockIoctl) { 762 #ifndef EVIOCSSUSPENDBLOCK 763 // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels 764 // will use an epoll flag instead, so as long as we want to support this 765 // feature, we need to be prepared to define the ioctl ourselves. 766 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) 767 #endif 768 if (TEMP_FAILURE_RETRY(ioctl(fd, EVIOCSSUSPENDBLOCK, 1))) { 769 // no wake mechanism, continue using explicit wake locks 770 ALOGI("Using explicit wakelocks to block suspend while processing input events."); 771 } else { 772 mWakeupMechanism = WakeMechanism::LEGACY_EVDEV_SUSPENDBLOCK_IOCTL; 773 // release any held wakelocks since we won't need them anymore 774 release_wake_lock(WAKE_LOCK_ID); 775 ALOGI("Using EVIOCSSUSPENDBLOCK to block suspend while processing input events."); 776 } 777 mNeedToCheckSuspendBlockIoctl = false; 778 } 779 780 return evdevNode; 781 } 782 783 status_t InputHub::closeNode(const InputDeviceNode* node) { 784 for (const auto& pair : mDeviceNodes) { 785 if (pair.second.get() == node) { 786 return closeNodeByFd(pair.first); 787 } 788 } 789 return BAD_VALUE; 790 } 791 792 status_t InputHub::closeNodeByFd(int fd) { 793 status_t ret = OK; 794 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, NULL)) { 795 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); 796 ret = -errno; 797 } 798 mDeviceNodes.erase(fd); 799 ::close(fd); 800 return ret; 801 } 802 803 std::shared_ptr<InputDeviceNode> InputHub::findNodeByPath(const std::string& path) { 804 for (const auto& pair : mDeviceNodes) { 805 if (pair.second->getPath() == path) return pair.second; 806 } 807 return nullptr; 808 } 809 810 bool InputHub::manageWakeLocks() const { 811 return mWakeupMechanism != WakeMechanism::EPOLL_WAKEUP; 812 } 813 814 } // namespace android 815