1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. Oracle designates this 9 * particular file as subject to the "Classpath" exception as provided 10 * by Oracle in the LICENSE file that accompanied this code. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 */ 26 27 package java.net; 28 29 import java.io.IOException; 30 import java.io.InvalidObjectException; 31 import java.io.ObjectInputStream; 32 import java.io.ObjectOutputStream; 33 import java.io.Serializable; 34 import java.nio.ByteBuffer; 35 import java.nio.CharBuffer; 36 import java.nio.charset.CharsetDecoder; 37 import java.nio.charset.CoderResult; 38 import java.nio.charset.CodingErrorAction; 39 import java.nio.charset.CharacterCodingException; 40 import java.text.Normalizer; 41 import sun.nio.cs.ThreadLocalCoders; 42 43 import java.lang.Character; // for javadoc 44 import java.lang.NullPointerException; // for javadoc 45 46 47 /** 48 * Represents a Uniform Resource Identifier (URI) reference. 49 * 50 * <p> Aside from some minor deviations noted below, an instance of this 51 * class represents a URI reference as defined by 52 * <a href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC 2396: Uniform 53 * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a 54 * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC 2732: Format for 55 * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format 56 * also supports scope_ids. The syntax and usage of scope_ids is described 57 * <a href="Inet6Address.html#scoped">here</a>. 58 * This class provides constructors for creating URI instances from 59 * their components or by parsing their string forms, methods for accessing the 60 * various components of an instance, and methods for normalizing, resolving, 61 * and relativizing URI instances. Instances of this class are immutable. 62 * 63 * 64 * <h3> URI syntax and components </h3> 65 * 66 * At the highest level a URI reference (hereinafter simply "URI") in string 67 * form has the syntax 68 * 69 * <blockquote> 70 * [<i>scheme</i><b>{@code :}</b>]<i>scheme-specific-part</i>[<b>{@code #}</b><i>fragment</i>] 71 * </blockquote> 72 * 73 * where square brackets [...] delineate optional components and the characters 74 * <b>{@code :}</b> and <b>{@code #}</b> stand for themselves. 75 * 76 * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is 77 * said to be <i>relative</i>. URIs are also classified according to whether 78 * they are <i>opaque</i> or <i>hierarchical</i>. 79 * 80 * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does 81 * not begin with a slash character ({@code '/'}). Opaque URIs are not 82 * subject to further parsing. Some examples of opaque URIs are: 83 * 84 * <blockquote><table cellpadding=0 cellspacing=0 summary="layout"> 85 * <tr><td>{@code mailto:java-net@java.sun.com}<td></tr> 86 * <tr><td>{@code news:comp.lang.java}<td></tr> 87 * <tr><td>{@code urn:isbn:096139210x}</td></tr> 88 * </table></blockquote> 89 * 90 * <p> A <i>hierarchical</i> URI is either an absolute URI whose 91 * scheme-specific part begins with a slash character, or a relative URI, that 92 * is, a URI that does not specify a scheme. Some examples of hierarchical 93 * URIs are: 94 * 95 * <blockquote> 96 * {@code http://java.sun.com/j2se/1.3/}<br> 97 * {@code docs/guide/collections/designfaq.html#28}<br> 98 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java}<br> 99 * {@code file:///~/calendar} 100 * </blockquote> 101 * 102 * <p> A hierarchical URI is subject to further parsing according to the syntax 103 * 104 * <blockquote> 105 * [<i>scheme</i><b>{@code :}</b>][<b>{@code //}</b><i>authority</i>][<i>path</i>][<b>{@code ?}</b><i>query</i>][<b>{@code #}</b><i>fragment</i>] 106 * </blockquote> 107 * 108 * where the characters <b>{@code :}</b>, <b>{@code /}</b>, 109 * <b>{@code ?}</b>, and <b>{@code #}</b> stand for themselves. The 110 * scheme-specific part of a hierarchical URI consists of the characters 111 * between the scheme and fragment components. 112 * 113 * <p> The authority component of a hierarchical URI is, if specified, either 114 * <i>server-based</i> or <i>registry-based</i>. A server-based authority 115 * parses according to the familiar syntax 116 * 117 * <blockquote> 118 * [<i>user-info</i><b>{@code @}</b>]<i>host</i>[<b>{@code :}</b><i>port</i>] 119 * </blockquote> 120 * 121 * where the characters <b>{@code @}</b> and <b>{@code :}</b> stand for 122 * themselves. Nearly all URI schemes currently in use are server-based. An 123 * authority component that does not parse in this way is considered to be 124 * registry-based. 125 * 126 * <p> The path component of a hierarchical URI is itself said to be absolute 127 * if it begins with a slash character ({@code '/'}); otherwise it is 128 * relative. The path of a hierarchical URI that is either absolute or 129 * specifies an authority is always absolute. 130 * 131 * <p> All told, then, a URI instance has the following nine components: 132 * 133 * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment"> 134 * <tr><th><i>Component</i></th><th><i>Type</i></th></tr> 135 * <tr><td>scheme</td><td>{@code String}</td></tr> 136 * <tr><td>scheme-specific-part </td><td>{@code String}</td></tr> 137 * <tr><td>authority</td><td>{@code String}</td></tr> 138 * <tr><td>user-info</td><td>{@code String}</td></tr> 139 * <tr><td>host</td><td>{@code String}</td></tr> 140 * <tr><td>port</td><td>{@code int}</td></tr> 141 * <tr><td>path</td><td>{@code String}</td></tr> 142 * <tr><td>query</td><td>{@code String}</td></tr> 143 * <tr><td>fragment</td><td>{@code String}</td></tr> 144 * </table></blockquote> 145 * 146 * In a given instance any particular component is either <i>undefined</i> or 147 * <i>defined</i> with a distinct value. Undefined string components are 148 * represented by {@code null}, while undefined integer components are 149 * represented by {@code -1}. A string component may be defined to have the 150 * empty string as its value; this is not equivalent to that component being 151 * undefined. 152 * 153 * <p> Whether a particular component is or is not defined in an instance 154 * depends upon the type of the URI being represented. An absolute URI has a 155 * scheme component. An opaque URI has a scheme, a scheme-specific part, and 156 * possibly a fragment, but has no other components. A hierarchical URI always 157 * has a path (though it may be empty) and a scheme-specific-part (which at 158 * least contains the path), and may have any of the other components. If the 159 * authority component is present and is server-based then the host component 160 * will be defined and the user-information and port components may be defined. 161 * 162 * 163 * <h4> Operations on URI instances </h4> 164 * 165 * The key operations supported by this class are those of 166 * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>. 167 * 168 * <p> <i>Normalization</i> is the process of removing unnecessary {@code "."} 169 * and {@code ".."} segments from the path component of a hierarchical URI. 170 * Each {@code "."} segment is simply removed. A {@code ".."} segment is 171 * removed only if it is preceded by a non-{@code ".."} segment. 172 * Normalization has no effect upon opaque URIs. 173 * 174 * <p> <i>Resolution</i> is the process of resolving one URI against another, 175 * <i>base</i> URI. The resulting URI is constructed from components of both 176 * URIs in the manner specified by RFC 2396, taking components from the 177 * base URI for those not specified in the original. For hierarchical URIs, 178 * the path of the original is resolved against the path of the base and then 179 * normalized. The result, for example, of resolving 180 * 181 * <blockquote> 182 * {@code docs/guide/collections/designfaq.html#28} 183 * 184 * (1) 185 * </blockquote> 186 * 187 * against the base URI {@code http://java.sun.com/j2se/1.3/} is the result 188 * URI 189 * 190 * <blockquote> 191 * {@code http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28} 192 * </blockquote> 193 * 194 * Resolving the relative URI 195 * 196 * <blockquote> 197 * {@code ../../../demo/jfc/SwingSet2/src/SwingSet2.java} (2) 198 * </blockquote> 199 * 200 * against this result yields, in turn, 201 * 202 * <blockquote> 203 * {@code http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java} 204 * </blockquote> 205 * 206 * Resolution of both absolute and relative URIs, and of both absolute and 207 * relative paths in the case of hierarchical URIs, is supported. Resolving 208 * the URI {@code file:///~calendar} against any other URI simply yields the 209 * original URI, since it is absolute. Resolving the relative URI (2) above 210 * against the relative base URI (1) yields the normalized, but still relative, 211 * URI 212 * 213 * <blockquote> 214 * {@code demo/jfc/SwingSet2/src/SwingSet2.java} 215 * </blockquote> 216 * 217 * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any 218 * two normalized URIs <i>u</i> and <i>v</i>, 219 * 220 * <blockquote> 221 * <i>u</i>{@code .relativize(}<i>u</i>{@code .resolve(}<i>v</i>{@code )).equals(}<i>v</i>{@code )} and<br> 222 * <i>u</i>{@code .resolve(}<i>u</i>{@code .relativize(}<i>v</i>{@code )).equals(}<i>v</i>{@code )} .<br> 223 * </blockquote> 224 * 225 * This operation is often useful when constructing a document containing URIs 226 * that must be made relative to the base URI of the document wherever 227 * possible. For example, relativizing the URI 228 * 229 * <blockquote> 230 * {@code http://java.sun.com/j2se/1.3/docs/guide/index.html} 231 * </blockquote> 232 * 233 * against the base URI 234 * 235 * <blockquote> 236 * {@code http://java.sun.com/j2se/1.3} 237 * </blockquote> 238 * 239 * yields the relative URI {@code docs/guide/index.html}. 240 * 241 * 242 * <h4> Character categories </h4> 243 * 244 * RFC 2396 specifies precisely which characters are permitted in the 245 * various components of a URI reference. The following categories, most of 246 * which are taken from that specification, are used below to describe these 247 * constraints: 248 * 249 * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other"> 250 * <tr><th valign=top><i>alpha</i></th> 251 * <td>The US-ASCII alphabetic characters, 252 * {@code 'A'} through {@code 'Z'} 253 * and {@code 'a'} through {@code 'z'}</td></tr> 254 * <tr><th valign=top><i>digit</i></th> 255 * <td>The US-ASCII decimal digit characters, 256 * {@code '0'} through {@code '9'}</td></tr> 257 * <tr><th valign=top><i>alphanum</i></th> 258 * <td>All <i>alpha</i> and <i>digit</i> characters</td></tr> 259 * <tr><th valign=top><i>unreserved</i> </th> 260 * <td>All <i>alphanum</i> characters together with those in the string 261 * {@code "_-!.~'()*"}</td></tr> 262 * <tr><th valign=top><i>punct</i></th> 263 * <td>The characters in the string {@code ",;:$&+="}</td></tr> 264 * <tr><th valign=top><i>reserved</i></th> 265 * <td>All <i>punct</i> characters together with those in the string 266 * {@code "?/[]@"}</td></tr> 267 * <tr><th valign=top><i>escaped</i></th> 268 * <td>Escaped octets, that is, triplets consisting of the percent 269 * character ({@code '%'}) followed by two hexadecimal digits 270 * ({@code '0'}-{@code '9'}, {@code 'A'}-{@code 'F'}, and 271 * {@code 'a'}-{@code 'f'})</td></tr> 272 * <tr><th valign=top><i>other</i></th> 273 * <td>The Unicode characters that are not in the US-ASCII character set, 274 * are not control characters (according to the {@link 275 * java.lang.Character#isISOControl(char) Character.isISOControl} 276 * method), and are not space characters (according to the {@link 277 * java.lang.Character#isSpaceChar(char) Character.isSpaceChar} 278 * method) <i>(<b>Deviation from RFC 2396</b>, which is 279 * limited to US-ASCII)</i></td></tr> 280 * </table></blockquote> 281 * 282 * <p><a name="legal-chars"></a> The set of all legal URI characters consists of 283 * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i> 284 * characters. 285 * 286 * 287 * <h4> Escaped octets, quotation, encoding, and decoding </h4> 288 * 289 * RFC 2396 allows escaped octets to appear in the user-info, path, query, and 290 * fragment components. Escaping serves two purposes in URIs: 291 * 292 * <ul> 293 * 294 * <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to 295 * conform strictly to RFC 2396 by not containing any <i>other</i> 296 * characters. </p></li> 297 * 298 * <li><p> To <i>quote</i> characters that are otherwise illegal in a 299 * component. The user-info, path, query, and fragment components differ 300 * slightly in terms of which characters are considered legal and illegal. 301 * </p></li> 302 * 303 * </ul> 304 * 305 * These purposes are served in this class by three related operations: 306 * 307 * <ul> 308 * 309 * <li><p><a name="encode"></a> A character is <i>encoded</i> by replacing it 310 * with the sequence of escaped octets that represent that character in the 311 * UTF-8 character set. The Euro currency symbol ({@code '\u005Cu20AC'}), 312 * for example, is encoded as {@code "%E2%82%AC"}. <i>(<b>Deviation from 313 * RFC 2396</b>, which does not specify any particular character 314 * set.)</i> </p></li> 315 * 316 * <li><p><a name="quote"></a> An illegal character is <i>quoted</i> simply by 317 * encoding it. The space character, for example, is quoted by replacing it 318 * with {@code "%20"}. UTF-8 contains US-ASCII, hence for US-ASCII 319 * characters this transformation has exactly the effect required by 320 * RFC 2396. </p></li> 321 * 322 * <li><p><a name="decode"></a> 323 * A sequence of escaped octets is <i>decoded</i> by 324 * replacing it with the sequence of characters that it represents in the 325 * UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the 326 * effect of de-quoting any quoted US-ASCII characters as well as that of 327 * decoding any encoded non-US-ASCII characters. If a <a 328 * href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs 329 * when decoding the escaped octets then the erroneous octets are replaced by 330 * {@code '\u005CuFFFD'}, the Unicode replacement character. </p></li> 331 * 332 * </ul> 333 * 334 * These operations are exposed in the constructors and methods of this class 335 * as follows: 336 * 337 * <ul> 338 * 339 * <li><p> The {@linkplain #URI(java.lang.String) single-argument 340 * constructor} requires any illegal characters in its argument to be 341 * quoted and preserves any escaped octets and <i>other</i> characters that 342 * are present. </p></li> 343 * 344 * <li><p> The {@linkplain 345 * #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String) 346 * multi-argument constructors} quote illegal characters as 347 * required by the components in which they appear. The percent character 348 * ({@code '%'}) is always quoted by these constructors. Any <i>other</i> 349 * characters are preserved. </p></li> 350 * 351 * <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath() 352 * getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment() 353 * getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link 354 * #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the 355 * values of their corresponding components in raw form, without interpreting 356 * any escaped octets. The strings returned by these methods may contain 357 * both escaped octets and <i>other</i> characters, and will not contain any 358 * illegal characters. </p></li> 359 * 360 * <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath() 361 * getPath}, {@link #getQuery() getQuery}, {@link #getFragment() 362 * getFragment}, {@link #getAuthority() getAuthority}, and {@link 363 * #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped 364 * octets in their corresponding components. The strings returned by these 365 * methods may contain both <i>other</i> characters and illegal characters, 366 * and will not contain any escaped octets. </p></li> 367 * 368 * <li><p> The {@link #toString() toString} method returns a URI string with 369 * all necessary quotation but which may contain <i>other</i> characters. 370 * </p></li> 371 * 372 * <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully 373 * quoted and encoded URI string that does not contain any <i>other</i> 374 * characters. </p></li> 375 * 376 * </ul> 377 * 378 * 379 * <h4> Identities </h4> 380 * 381 * For any URI <i>u</i>, it is always the case that 382 * 383 * <blockquote> 384 * {@code new URI(}<i>u</i>{@code .toString()).equals(}<i>u</i>{@code )} . 385 * </blockquote> 386 * 387 * For any URI <i>u</i> that does not contain redundant syntax such as two 388 * slashes before an empty authority (as in {@code file:///tmp/} ) or a 389 * colon following a host name but no port (as in 390 * {@code http://java.sun.com:} ), and that does not encode characters 391 * except those that must be quoted, the following identities also hold: 392 * <pre> 393 * new URI(<i>u</i>.getScheme(), 394 * <i>u</i>.getSchemeSpecificPart(), 395 * <i>u</i>.getFragment()) 396 * .equals(<i>u</i>)</pre> 397 * in all cases, 398 * <pre> 399 * new URI(<i>u</i>.getScheme(), 400 * <i>u</i>.getUserInfo(), <i>u</i>.getAuthority(), 401 * <i>u</i>.getPath(), <i>u</i>.getQuery(), 402 * <i>u</i>.getFragment()) 403 * .equals(<i>u</i>)</pre> 404 * if <i>u</i> is hierarchical, and 405 * <pre> 406 * new URI(<i>u</i>.getScheme(), 407 * <i>u</i>.getUserInfo(), <i>u</i>.getHost(), <i>u</i>.getPort(), 408 * <i>u</i>.getPath(), <i>u</i>.getQuery(), 409 * <i>u</i>.getFragment()) 410 * .equals(<i>u</i>)</pre> 411 * if <i>u</i> is hierarchical and has either no authority or a server-based 412 * authority. 413 * 414 * 415 * <h4> URIs, URLs, and URNs </h4> 416 * 417 * A URI is a uniform resource <i>identifier</i> while a URL is a uniform 418 * resource <i>locator</i>. Hence every URL is a URI, abstractly speaking, but 419 * not every URI is a URL. This is because there is another subcategory of 420 * URIs, uniform resource <i>names</i> (URNs), which name resources but do not 421 * specify how to locate them. The {@code mailto}, {@code news}, and 422 * {@code isbn} URIs shown above are examples of URNs. 423 * 424 * <p> The conceptual distinction between URIs and URLs is reflected in the 425 * differences between this class and the {@link URL} class. 426 * 427 * <p> An instance of this class represents a URI reference in the syntactic 428 * sense defined by RFC 2396. A URI may be either absolute or relative. 429 * A URI string is parsed according to the generic syntax without regard to the 430 * scheme, if any, that it specifies. No lookup of the host, if any, is 431 * performed, and no scheme-dependent stream handler is constructed. Equality, 432 * hashing, and comparison are defined strictly in terms of the character 433 * content of the instance. In other words, a URI instance is little more than 434 * a structured string that supports the syntactic, scheme-independent 435 * operations of comparison, normalization, resolution, and relativization. 436 * 437 * <p> An instance of the {@link URL} class, by contrast, represents the 438 * syntactic components of a URL together with some of the information required 439 * to access the resource that it describes. A URL must be absolute, that is, 440 * it must always specify a scheme. A URL string is parsed according to its 441 * scheme. A stream handler is always established for a URL, and in fact it is 442 * impossible to create a URL instance for a scheme for which no handler is 443 * available. Equality and hashing depend upon both the scheme and the 444 * Internet address of the host, if any; comparison is not defined. In other 445 * words, a URL is a structured string that supports the syntactic operation of 446 * resolution as well as the network I/O operations of looking up the host and 447 * opening a connection to the specified resource. 448 * 449 * 450 * @author Mark Reinhold 451 * @since 1.4 452 * 453 * @see <a href="http://www.ietf.org/rfc/rfc2279.txt">RFC 2279: UTF-8, a transformation format of ISO 10646</a> 454 * @see <a href="http://www.ietf.org/rfc/rfc2373.txt">RFC 2373: IPv6 Addressing Architecture</a> 455 * @see <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax</a> 456 * @see <a href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732: Format for Literal IPv6 Addresses in URLs</a> 457 */ 458 // Android-changed: Reformat @see links. 459 public final class URI 460 implements Comparable<URI>, Serializable 461 { 462 463 // Note: Comments containing the word "ASSERT" indicate places where a 464 // throw of an InternalError should be replaced by an appropriate assertion 465 // statement once asserts are enabled in the build. 466 467 static final long serialVersionUID = -6052424284110960213L; 468 469 470 // -- Properties and components of this instance -- 471 472 // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>] 473 private transient String scheme; // null ==> relative URI 474 private transient String fragment; 475 476 // Hierarchical URI components: [//<authority>]<path>[?<query>] 477 private transient String authority; // Registry or server 478 479 // Server-based authority: [<userInfo>@]<host>[:<port>] 480 private transient String userInfo; 481 private transient String host; // null ==> registry-based 482 private transient int port = -1; // -1 ==> undefined 483 484 // Remaining components of hierarchical URIs 485 private transient String path; // null ==> opaque 486 private transient String query; 487 488 // The remaining fields may be computed on demand 489 490 private volatile transient String schemeSpecificPart; 491 private volatile transient int hash; // Zero ==> undefined 492 493 private volatile transient String decodedUserInfo = null; 494 private volatile transient String decodedAuthority = null; 495 private volatile transient String decodedPath = null; 496 private volatile transient String decodedQuery = null; 497 private volatile transient String decodedFragment = null; 498 private volatile transient String decodedSchemeSpecificPart = null; 499 500 /** 501 * The string form of this URI. 502 * 503 * @serial 504 */ 505 private volatile String string; // The only serializable field 506 507 508 509 // -- Constructors and factories -- 510 URI()511 private URI() { } // Used internally 512 513 /** 514 * Constructs a URI by parsing the given string. 515 * 516 * <p> This constructor parses the given string exactly as specified by the 517 * grammar in <a 518 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 519 * Appendix A, <b><i>except for the following deviations:</i></b> </p> 520 * 521 * <ul> 522 * 523 * <li><p> An empty authority component is permitted as long as it is 524 * followed by a non-empty path, a query component, or a fragment 525 * component. This allows the parsing of URIs such as 526 * {@code "file:///foo/bar"}, which seems to be the intent of 527 * RFC 2396 although the grammar does not permit it. If the 528 * authority component is empty then the user-information, host, and port 529 * components are undefined. </p></li> 530 * 531 * <li><p> Empty relative paths are permitted; this seems to be the 532 * intent of RFC 2396 although the grammar does not permit it. The 533 * primary consequence of this deviation is that a standalone fragment 534 * such as {@code "#foo"} parses as a relative URI with an empty path 535 * and the given fragment, and can be usefully <a 536 * href="#resolve-frag">resolved</a> against a base URI. 537 * 538 * <li><p> IPv4 addresses in host components are parsed rigorously, as 539 * specified by <a 540 * href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732</a>: Each 541 * element of a dotted-quad address must contain no more than three 542 * decimal digits. Each element is further constrained to have a value 543 * no greater than 255. </p></li> 544 * 545 * <li> <p> Hostnames in host components that comprise only a single 546 * domain label are permitted to start with an <i>alphanum</i> 547 * character. This seems to be the intent of <a 548 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a> 549 * section 3.2.2 although the grammar does not permit it. The 550 * consequence of this deviation is that the authority component of a 551 * hierarchical URI such as {@code s://123}, will parse as a server-based 552 * authority. </p></li> 553 * 554 * <li><p> IPv6 addresses are permitted for the host component. An IPv6 555 * address must be enclosed in square brackets ({@code '['} and 556 * {@code ']'}) as specified by <a 557 * href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732</a>. The 558 * IPv6 address itself must parse according to <a 559 * href="http://www.ietf.org/rfc/rfc2373.txt">RFC 2373</a>. IPv6 560 * addresses are further constrained to describe no more than sixteen 561 * bytes of address information, a constraint implicit in RFC 2373 562 * but not expressible in the grammar. </p></li> 563 * 564 * <li><p> Characters in the <i>other</i> category are permitted wherever 565 * RFC 2396 permits <i>escaped</i> octets, that is, in the 566 * user-information, path, query, and fragment components, as well as in 567 * the authority component if the authority is registry-based. This 568 * allows URIs to contain Unicode characters beyond those in the US-ASCII 569 * character set. </p></li> 570 * 571 * </ul> 572 * 573 * @param str The string to be parsed into a URI 574 * 575 * @throws NullPointerException 576 * If {@code str} is {@code null} 577 * 578 * @throws URISyntaxException 579 * If the given string violates RFC 2396, as augmented 580 * by the above deviations 581 */ URI(String str)582 public URI(String str) throws URISyntaxException { 583 new Parser(str).parse(false); 584 } 585 586 /** 587 * Constructs a hierarchical URI from the given components. 588 * 589 * <p> If a scheme is given then the path, if also given, must either be 590 * empty or begin with a slash character ({@code '/'}). Otherwise a 591 * component of the new URI may be left undefined by passing {@code null} 592 * for the corresponding parameter or, in the case of the {@code port} 593 * parameter, by passing {@code -1}. 594 * 595 * <p> This constructor first builds a URI string from the given components 596 * according to the rules specified in <a 597 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 598 * section 5.2, step 7: </p> 599 * 600 * <ol> 601 * 602 * <li><p> Initially, the result string is empty. </p></li> 603 * 604 * <li><p> If a scheme is given then it is appended to the result, 605 * followed by a colon character ({@code ':'}). </p></li> 606 * 607 * <li><p> If user information, a host, or a port are given then the 608 * string {@code "//"} is appended. </p></li> 609 * 610 * <li><p> If user information is given then it is appended, followed by 611 * a commercial-at character ({@code '@'}). Any character not in the 612 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 613 * categories is <a href="#quote">quoted</a>. </p></li> 614 * 615 * <li><p> If a host is given then it is appended. If the host is a 616 * literal IPv6 address but is not enclosed in square brackets 617 * ({@code '['} and {@code ']'}) then the square brackets are added. 618 * </p></li> 619 * 620 * <li><p> If a port number is given then a colon character 621 * ({@code ':'}) is appended, followed by the port number in decimal. 622 * </p></li> 623 * 624 * <li><p> If a path is given then it is appended. Any character not in 625 * the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 626 * categories, and not equal to the slash character ({@code '/'}) or the 627 * commercial-at character ({@code '@'}), is quoted. </p></li> 628 * 629 * <li><p> If a query is given then a question-mark character 630 * ({@code '?'}) is appended, followed by the query. Any character that 631 * is not a <a href="#legal-chars">legal URI character</a> is quoted. 632 * </p></li> 633 * 634 * <li><p> Finally, if a fragment is given then a hash character 635 * ({@code '#'}) is appended, followed by the fragment. Any character 636 * that is not a legal URI character is quoted. </p></li> 637 * 638 * </ol> 639 * 640 * <p> The resulting URI string is then parsed as if by invoking the {@link 641 * #URI(String)} constructor and then invoking the {@link 642 * #parseServerAuthority()} method upon the result; this may cause a {@link 643 * URISyntaxException} to be thrown. </p> 644 * 645 * @param scheme Scheme name 646 * @param userInfo User name and authorization information 647 * @param host Host name 648 * @param port Port number 649 * @param path Path 650 * @param query Query 651 * @param fragment Fragment 652 * 653 * @throws URISyntaxException 654 * If both a scheme and a path are given but the path is relative, 655 * if the URI string constructed from the given components violates 656 * RFC 2396, or if the authority component of the string is 657 * present but cannot be parsed as a server-based authority 658 */ URI(String scheme, String userInfo, String host, int port, String path, String query, String fragment)659 public URI(String scheme, 660 String userInfo, String host, int port, 661 String path, String query, String fragment) 662 throws URISyntaxException 663 { 664 String s = toString(scheme, null, 665 null, userInfo, host, port, 666 path, query, fragment); 667 checkPath(s, scheme, path); 668 new Parser(s).parse(true); 669 } 670 671 /** 672 * Constructs a hierarchical URI from the given components. 673 * 674 * <p> If a scheme is given then the path, if also given, must either be 675 * empty or begin with a slash character ({@code '/'}). Otherwise a 676 * component of the new URI may be left undefined by passing {@code null} 677 * for the corresponding parameter. 678 * 679 * <p> This constructor first builds a URI string from the given components 680 * according to the rules specified in <a 681 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 682 * section 5.2, step 7: </p> 683 * 684 * <ol> 685 * 686 * <li><p> Initially, the result string is empty. </p></li> 687 * 688 * <li><p> If a scheme is given then it is appended to the result, 689 * followed by a colon character ({@code ':'}). </p></li> 690 * 691 * <li><p> If an authority is given then the string {@code "//"} is 692 * appended, followed by the authority. If the authority contains a 693 * literal IPv6 address then the address must be enclosed in square 694 * brackets ({@code '['} and {@code ']'}). Any character not in the 695 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 696 * categories, and not equal to the commercial-at character 697 * ({@code '@'}), is <a href="#quote">quoted</a>. </p></li> 698 * 699 * <li><p> If a path is given then it is appended. Any character not in 700 * the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 701 * categories, and not equal to the slash character ({@code '/'}) or the 702 * commercial-at character ({@code '@'}), is quoted. </p></li> 703 * 704 * <li><p> If a query is given then a question-mark character 705 * ({@code '?'}) is appended, followed by the query. Any character that 706 * is not a <a href="#legal-chars">legal URI character</a> is quoted. 707 * </p></li> 708 * 709 * <li><p> Finally, if a fragment is given then a hash character 710 * ({@code '#'}) is appended, followed by the fragment. Any character 711 * that is not a legal URI character is quoted. </p></li> 712 * 713 * </ol> 714 * 715 * <p> The resulting URI string is then parsed as if by invoking the {@link 716 * #URI(String)} constructor and then invoking the {@link 717 * #parseServerAuthority()} method upon the result; this may cause a {@link 718 * URISyntaxException} to be thrown. </p> 719 * 720 * @param scheme Scheme name 721 * @param authority Authority 722 * @param path Path 723 * @param query Query 724 * @param fragment Fragment 725 * 726 * @throws URISyntaxException 727 * If both a scheme and a path are given but the path is relative, 728 * if the URI string constructed from the given components violates 729 * RFC 2396, or if the authority component of the string is 730 * present but cannot be parsed as a server-based authority 731 */ URI(String scheme, String authority, String path, String query, String fragment)732 public URI(String scheme, 733 String authority, 734 String path, String query, String fragment) 735 throws URISyntaxException 736 { 737 String s = toString(scheme, null, 738 authority, null, null, -1, 739 path, query, fragment); 740 checkPath(s, scheme, path); 741 new Parser(s).parse(false); 742 } 743 744 /** 745 * Constructs a hierarchical URI from the given components. 746 * 747 * <p> A component may be left undefined by passing {@code null}. 748 * 749 * <p> This convenience constructor works as if by invoking the 750 * seven-argument constructor as follows: 751 * 752 * <blockquote> 753 * {@code new} {@link #URI(String, String, String, int, String, String, String) 754 * URI}{@code (scheme, null, host, -1, path, null, fragment);} 755 * </blockquote> 756 * 757 * @param scheme Scheme name 758 * @param host Host name 759 * @param path Path 760 * @param fragment Fragment 761 * 762 * @throws URISyntaxException 763 * If the URI string constructed from the given components 764 * violates RFC 2396 765 */ URI(String scheme, String host, String path, String fragment)766 public URI(String scheme, String host, String path, String fragment) 767 throws URISyntaxException 768 { 769 this(scheme, null, host, -1, path, null, fragment); 770 } 771 772 /** 773 * Constructs a URI from the given components. 774 * 775 * <p> A component may be left undefined by passing {@code null}. 776 * 777 * <p> This constructor first builds a URI in string form using the given 778 * components as follows: </p> 779 * 780 * <ol> 781 * 782 * <li><p> Initially, the result string is empty. </p></li> 783 * 784 * <li><p> If a scheme is given then it is appended to the result, 785 * followed by a colon character ({@code ':'}). </p></li> 786 * 787 * <li><p> If a scheme-specific part is given then it is appended. Any 788 * character that is not a <a href="#legal-chars">legal URI character</a> 789 * is <a href="#quote">quoted</a>. </p></li> 790 * 791 * <li><p> Finally, if a fragment is given then a hash character 792 * ({@code '#'}) is appended to the string, followed by the fragment. 793 * Any character that is not a legal URI character is quoted. </p></li> 794 * 795 * </ol> 796 * 797 * <p> The resulting URI string is then parsed in order to create the new 798 * URI instance as if by invoking the {@link #URI(String)} constructor; 799 * this may cause a {@link URISyntaxException} to be thrown. </p> 800 * 801 * @param scheme Scheme name 802 * @param ssp Scheme-specific part 803 * @param fragment Fragment 804 * 805 * @throws URISyntaxException 806 * If the URI string constructed from the given components 807 * violates RFC 2396 808 */ URI(String scheme, String ssp, String fragment)809 public URI(String scheme, String ssp, String fragment) 810 throws URISyntaxException 811 { 812 new Parser(toString(scheme, ssp, 813 null, null, null, -1, 814 null, null, fragment)) 815 .parse(false); 816 } 817 818 /** 819 * Creates a URI by parsing the given string. 820 * 821 * <p> This convenience factory method works as if by invoking the {@link 822 * #URI(String)} constructor; any {@link URISyntaxException} thrown by the 823 * constructor is caught and wrapped in a new {@link 824 * IllegalArgumentException} object, which is then thrown. 825 * 826 * <p> This method is provided for use in situations where it is known that 827 * the given string is a legal URI, for example for URI constants declared 828 * within in a program, and so it would be considered a programming error 829 * for the string not to parse as such. The constructors, which throw 830 * {@link URISyntaxException} directly, should be used situations where a 831 * URI is being constructed from user input or from some other source that 832 * may be prone to errors. </p> 833 * 834 * @param str The string to be parsed into a URI 835 * @return The new URI 836 * 837 * @throws NullPointerException 838 * If {@code str} is {@code null} 839 * 840 * @throws IllegalArgumentException 841 * If the given string violates RFC 2396 842 */ create(String str)843 public static URI create(String str) { 844 try { 845 return new URI(str); 846 } catch (URISyntaxException x) { 847 throw new IllegalArgumentException(x.getMessage(), x); 848 } 849 } 850 851 852 // -- Operations -- 853 854 /** 855 * Attempts to parse this URI's authority component, if defined, into 856 * user-information, host, and port components. 857 * 858 * <p> If this URI's authority component has already been recognized as 859 * being server-based then it will already have been parsed into 860 * user-information, host, and port components. In this case, or if this 861 * URI has no authority component, this method simply returns this URI. 862 * 863 * <p> Otherwise this method attempts once more to parse the authority 864 * component into user-information, host, and port components, and throws 865 * an exception describing why the authority component could not be parsed 866 * in that way. 867 * 868 * <p> This method is provided because the generic URI syntax specified in 869 * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a> 870 * cannot always distinguish a malformed server-based authority from a 871 * legitimate registry-based authority. It must therefore treat some 872 * instances of the former as instances of the latter. The authority 873 * component in the URI string {@code "//foo:bar"}, for example, is not a 874 * legal server-based authority but it is legal as a registry-based 875 * authority. 876 * 877 * <p> In many common situations, for example when working URIs that are 878 * known to be either URNs or URLs, the hierarchical URIs being used will 879 * always be server-based. They therefore must either be parsed as such or 880 * treated as an error. In these cases a statement such as 881 * 882 * <blockquote> 883 * {@code URI }<i>u</i>{@code = new URI(str).parseServerAuthority();} 884 * </blockquote> 885 * 886 * <p> can be used to ensure that <i>u</i> always refers to a URI that, if 887 * it has an authority component, has a server-based authority with proper 888 * user-information, host, and port components. Invoking this method also 889 * ensures that if the authority could not be parsed in that way then an 890 * appropriate diagnostic message can be issued based upon the exception 891 * that is thrown. </p> 892 * 893 * @return A URI whose authority field has been parsed 894 * as a server-based authority 895 * 896 * @throws URISyntaxException 897 * If the authority component of this URI is defined 898 * but cannot be parsed as a server-based authority 899 * according to RFC 2396 900 */ parseServerAuthority()901 public URI parseServerAuthority() 902 throws URISyntaxException 903 { 904 // We could be clever and cache the error message and index from the 905 // exception thrown during the original parse, but that would require 906 // either more fields or a more-obscure representation. 907 if ((host != null) || (authority == null)) 908 return this; 909 defineString(); 910 new Parser(string).parse(true); 911 return this; 912 } 913 914 /** 915 * Normalizes this URI's path. 916 * 917 * <p> If this URI is opaque, or if its path is already in normal form, 918 * then this URI is returned. Otherwise a new URI is constructed that is 919 * identical to this URI except that its path is computed by normalizing 920 * this URI's path in a manner consistent with <a 921 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 922 * section 5.2, step 6, sub-steps c through f; that is: 923 * </p> 924 * 925 * <ol> 926 * 927 * <li><p> All {@code "."} segments are removed. </p></li> 928 * 929 * <li><p> If a {@code ".."} segment is preceded by a non-{@code ".."} 930 * segment then both of these segments are removed. This step is 931 * repeated until it is no longer applicable. </p></li> 932 * 933 * <li><p> If the path is relative, and if its first segment contains a 934 * colon character ({@code ':'}), then a {@code "."} segment is 935 * prepended. This prevents a relative URI with a path such as 936 * {@code "a:b/c/d"} from later being re-parsed as an opaque URI with a 937 * scheme of {@code "a"} and a scheme-specific part of {@code "b/c/d"}. 938 * <b><i>(Deviation from RFC 2396)</i></b> </p></li> 939 * 940 * </ol> 941 * 942 * <p> A normalized path will begin with one or more {@code ".."} segments 943 * if there were insufficient non-{@code ".."} segments preceding them to 944 * allow their removal. A normalized path will begin with a {@code "."} 945 * segment if one was inserted by step 3 above. Otherwise, a normalized 946 * path will not contain any {@code "."} or {@code ".."} segments. </p> 947 * 948 * @return A URI equivalent to this URI, 949 * but whose path is in normal form 950 */ normalize()951 public URI normalize() { 952 return normalize(this); 953 } 954 955 /** 956 * Resolves the given URI against this URI. 957 * 958 * <p> If the given URI is already absolute, or if this URI is opaque, then 959 * the given URI is returned. 960 * 961 * <p><a name="resolve-frag"></a> If the given URI's fragment component is 962 * defined, its path component is empty, and its scheme, authority, and 963 * query components are undefined, then a URI with the given fragment but 964 * with all other components equal to those of this URI is returned. This 965 * allows a URI representing a standalone fragment reference, such as 966 * {@code "#foo"}, to be usefully resolved against a base URI. 967 * 968 * <p> Otherwise this method constructs a new hierarchical URI in a manner 969 * consistent with <a 970 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 971 * section 5.2; that is: </p> 972 * 973 * <ol> 974 * 975 * <li><p> A new URI is constructed with this URI's scheme and the given 976 * URI's query and fragment components. </p></li> 977 * 978 * <li><p> If the given URI has an authority component then the new URI's 979 * authority and path are taken from the given URI. </p></li> 980 * 981 * <li><p> Otherwise the new URI's authority component is copied from 982 * this URI, and its path is computed as follows: </p> 983 * 984 * <ol> 985 * 986 * <li><p> If the given URI's path is absolute then the new URI's path 987 * is taken from the given URI. </p></li> 988 * 989 * <li><p> Otherwise the given URI's path is relative, and so the new 990 * URI's path is computed by resolving the path of the given URI 991 * against the path of this URI. This is done by concatenating all but 992 * the last segment of this URI's path, if any, with the given URI's 993 * path and then normalizing the result as if by invoking the {@link 994 * #normalize() normalize} method. </p></li> 995 * 996 * </ol></li> 997 * 998 * </ol> 999 * 1000 * <p> The result of this method is absolute if, and only if, either this 1001 * URI is absolute or the given URI is absolute. </p> 1002 * 1003 * @param uri The URI to be resolved against this URI 1004 * @return The resulting URI 1005 * 1006 * @throws NullPointerException 1007 * If {@code uri} is {@code null} 1008 */ resolve(URI uri)1009 public URI resolve(URI uri) { 1010 return resolve(this, uri); 1011 } 1012 1013 /** 1014 * Constructs a new URI by parsing the given string and then resolving it 1015 * against this URI. 1016 * 1017 * <p> This convenience method works as if invoking it were equivalent to 1018 * evaluating the expression {@link #resolve(java.net.URI) 1019 * resolve}{@code (URI.}{@link #create(String) create}{@code (str))}. </p> 1020 * 1021 * @param str The string to be parsed into a URI 1022 * @return The resulting URI 1023 * 1024 * @throws NullPointerException 1025 * If {@code str} is {@code null} 1026 * 1027 * @throws IllegalArgumentException 1028 * If the given string violates RFC 2396 1029 */ resolve(String str)1030 public URI resolve(String str) { 1031 return resolve(URI.create(str)); 1032 } 1033 1034 /** 1035 * Relativizes the given URI against this URI. 1036 * 1037 * <p> The relativization of the given URI against this URI is computed as 1038 * follows: </p> 1039 * 1040 * <ol> 1041 * 1042 * <li><p> If either this URI or the given URI are opaque, or if the 1043 * scheme and authority components of the two URIs are not identical, or 1044 * if the path of this URI is not a prefix of the path of the given URI, 1045 * then the given URI is returned. </p></li> 1046 * 1047 * <li><p> Otherwise a new relative hierarchical URI is constructed with 1048 * query and fragment components taken from the given URI and with a path 1049 * component computed by removing this URI's path from the beginning of 1050 * the given URI's path. </p></li> 1051 * 1052 * </ol> 1053 * 1054 * @param uri The URI to be relativized against this URI 1055 * @return The resulting URI 1056 * 1057 * @throws NullPointerException 1058 * If {@code uri} is {@code null} 1059 */ relativize(URI uri)1060 public URI relativize(URI uri) { 1061 return relativize(this, uri); 1062 } 1063 1064 /** 1065 * Constructs a URL from this URI. 1066 * 1067 * <p> This convenience method works as if invoking it were equivalent to 1068 * evaluating the expression {@code new URL(this.toString())} after 1069 * first checking that this URI is absolute. </p> 1070 * 1071 * @return A URL constructed from this URI 1072 * 1073 * @throws IllegalArgumentException 1074 * If this URL is not absolute 1075 * 1076 * @throws MalformedURLException 1077 * If a protocol handler for the URL could not be found, 1078 * or if some other error occurred while constructing the URL 1079 */ toURL()1080 public URL toURL() 1081 throws MalformedURLException { 1082 if (!isAbsolute()) 1083 throw new IllegalArgumentException("URI is not absolute"); 1084 return new URL(toString()); 1085 } 1086 1087 // -- Component access methods -- 1088 1089 /** 1090 * Returns the scheme component of this URI. 1091 * 1092 * <p> The scheme component of a URI, if defined, only contains characters 1093 * in the <i>alphanum</i> category and in the string {@code "-.+"}. A 1094 * scheme always starts with an <i>alpha</i> character. <p> 1095 * 1096 * The scheme component of a URI cannot contain escaped octets, hence this 1097 * method does not perform any decoding. 1098 * 1099 * @return The scheme component of this URI, 1100 * or {@code null} if the scheme is undefined 1101 */ getScheme()1102 public String getScheme() { 1103 return scheme; 1104 } 1105 1106 /** 1107 * Tells whether or not this URI is absolute. 1108 * 1109 * <p> A URI is absolute if, and only if, it has a scheme component. </p> 1110 * 1111 * @return {@code true} if, and only if, this URI is absolute 1112 */ isAbsolute()1113 public boolean isAbsolute() { 1114 return scheme != null; 1115 } 1116 1117 /** 1118 * Tells whether or not this URI is opaque. 1119 * 1120 * <p> A URI is opaque if, and only if, it is absolute and its 1121 * scheme-specific part does not begin with a slash character ('/'). 1122 * An opaque URI has a scheme, a scheme-specific part, and possibly 1123 * a fragment; all other components are undefined. </p> 1124 * 1125 * @return {@code true} if, and only if, this URI is opaque 1126 */ isOpaque()1127 public boolean isOpaque() { 1128 return path == null; 1129 } 1130 1131 /** 1132 * Returns the raw scheme-specific part of this URI. The scheme-specific 1133 * part is never undefined, though it may be empty. 1134 * 1135 * <p> The scheme-specific part of a URI only contains legal URI 1136 * characters. </p> 1137 * 1138 * @return The raw scheme-specific part of this URI 1139 * (never {@code null}) 1140 */ getRawSchemeSpecificPart()1141 public String getRawSchemeSpecificPart() { 1142 defineSchemeSpecificPart(); 1143 return schemeSpecificPart; 1144 } 1145 1146 /** 1147 * Returns the decoded scheme-specific part of this URI. 1148 * 1149 * <p> The string returned by this method is equal to that returned by the 1150 * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method 1151 * except that all sequences of escaped octets are <a 1152 * href="#decode">decoded</a>. </p> 1153 * 1154 * @return The decoded scheme-specific part of this URI 1155 * (never {@code null}) 1156 */ getSchemeSpecificPart()1157 public String getSchemeSpecificPart() { 1158 if (decodedSchemeSpecificPart == null) 1159 decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart()); 1160 return decodedSchemeSpecificPart; 1161 } 1162 1163 /** 1164 * Returns the raw authority component of this URI. 1165 * 1166 * <p> The authority component of a URI, if defined, only contains the 1167 * commercial-at character ({@code '@'}) and characters in the 1168 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i> 1169 * categories. If the authority is server-based then it is further 1170 * constrained to have valid user-information, host, and port 1171 * components. </p> 1172 * 1173 * @return The raw authority component of this URI, 1174 * or {@code null} if the authority is undefined 1175 */ getRawAuthority()1176 public String getRawAuthority() { 1177 return authority; 1178 } 1179 1180 /** 1181 * Returns the decoded authority component of this URI. 1182 * 1183 * <p> The string returned by this method is equal to that returned by the 1184 * {@link #getRawAuthority() getRawAuthority} method except that all 1185 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1186 * 1187 * @return The decoded authority component of this URI, 1188 * or {@code null} if the authority is undefined 1189 */ getAuthority()1190 public String getAuthority() { 1191 if (decodedAuthority == null) 1192 decodedAuthority = decode(authority); 1193 return decodedAuthority; 1194 } 1195 1196 /** 1197 * Returns the raw user-information component of this URI. 1198 * 1199 * <p> The user-information component of a URI, if defined, only contains 1200 * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and 1201 * <i>other</i> categories. </p> 1202 * 1203 * @return The raw user-information component of this URI, 1204 * or {@code null} if the user information is undefined 1205 */ getRawUserInfo()1206 public String getRawUserInfo() { 1207 return userInfo; 1208 } 1209 1210 /** 1211 * Returns the decoded user-information component of this URI. 1212 * 1213 * <p> The string returned by this method is equal to that returned by the 1214 * {@link #getRawUserInfo() getRawUserInfo} method except that all 1215 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1216 * 1217 * @return The decoded user-information component of this URI, 1218 * or {@code null} if the user information is undefined 1219 */ getUserInfo()1220 public String getUserInfo() { 1221 if ((decodedUserInfo == null) && (userInfo != null)) 1222 decodedUserInfo = decode(userInfo); 1223 return decodedUserInfo; 1224 } 1225 1226 /** 1227 * Returns the host component of this URI. 1228 * 1229 * <p> The host component of a URI, if defined, will have one of the 1230 * following forms: </p> 1231 * 1232 * <ul> 1233 * 1234 * <li><p> A domain name consisting of one or more <i>labels</i> 1235 * separated by period characters ({@code '.'}), optionally followed by 1236 * a period character. Each label consists of <i>alphanum</i> characters 1237 * as well as hyphen characters ({@code '-'}), though hyphens never 1238 * occur as the first or last characters in a label. The rightmost 1239 * label of a domain name consisting of two or more labels, begins 1240 * with an <i>alpha</i> character. </li> 1241 * 1242 * <li><p> A dotted-quad IPv4 address of the form 1243 * <i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +.}<i>digit</i>{@code +}, 1244 * where no <i>digit</i> sequence is longer than three characters and no 1245 * sequence has a value larger than 255. </p></li> 1246 * 1247 * <li><p> An IPv6 address enclosed in square brackets ({@code '['} and 1248 * {@code ']'}) and consisting of hexadecimal digits, colon characters 1249 * ({@code ':'}), and possibly an embedded IPv4 address. The full 1250 * syntax of IPv6 addresses is specified in <a 1251 * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC 2373: IPv6 1252 * Addressing Architecture</i></a>. </p></li> 1253 * 1254 * </ul> 1255 * 1256 * The host component of a URI cannot contain escaped octets, hence this 1257 * method does not perform any decoding. 1258 * 1259 * @return The host component of this URI, 1260 * or {@code null} if the host is undefined 1261 */ getHost()1262 public String getHost() { 1263 return host; 1264 } 1265 1266 /** 1267 * Returns the port number of this URI. 1268 * 1269 * <p> The port component of a URI, if defined, is a non-negative 1270 * integer. </p> 1271 * 1272 * @return The port component of this URI, 1273 * or {@code -1} if the port is undefined 1274 */ getPort()1275 public int getPort() { 1276 return port; 1277 } 1278 1279 /** 1280 * Returns the raw path component of this URI. 1281 * 1282 * <p> The path component of a URI, if defined, only contains the slash 1283 * character ({@code '/'}), the commercial-at character ({@code '@'}), 1284 * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, 1285 * and <i>other</i> categories. </p> 1286 * 1287 * @return The path component of this URI, 1288 * or {@code null} if the path is undefined 1289 */ getRawPath()1290 public String getRawPath() { 1291 return path; 1292 } 1293 1294 /** 1295 * Returns the decoded path component of this URI. 1296 * 1297 * <p> The string returned by this method is equal to that returned by the 1298 * {@link #getRawPath() getRawPath} method except that all sequences of 1299 * escaped octets are <a href="#decode">decoded</a>. </p> 1300 * 1301 * @return The decoded path component of this URI, 1302 * or {@code null} if the path is undefined 1303 */ getPath()1304 public String getPath() { 1305 if ((decodedPath == null) && (path != null)) 1306 decodedPath = decode(path); 1307 return decodedPath; 1308 } 1309 1310 /** 1311 * Returns the raw query component of this URI. 1312 * 1313 * <p> The query component of a URI, if defined, only contains legal URI 1314 * characters. </p> 1315 * 1316 * @return The raw query component of this URI, 1317 * or {@code null} if the query is undefined 1318 */ getRawQuery()1319 public String getRawQuery() { 1320 return query; 1321 } 1322 1323 /** 1324 * Returns the decoded query component of this URI. 1325 * 1326 * <p> The string returned by this method is equal to that returned by the 1327 * {@link #getRawQuery() getRawQuery} method except that all sequences of 1328 * escaped octets are <a href="#decode">decoded</a>. </p> 1329 * 1330 * @return The decoded query component of this URI, 1331 * or {@code null} if the query is undefined 1332 */ getQuery()1333 public String getQuery() { 1334 if ((decodedQuery == null) && (query != null)) 1335 decodedQuery = decode(query); 1336 return decodedQuery; 1337 } 1338 1339 /** 1340 * Returns the raw fragment component of this URI. 1341 * 1342 * <p> The fragment component of a URI, if defined, only contains legal URI 1343 * characters. </p> 1344 * 1345 * @return The raw fragment component of this URI, 1346 * or {@code null} if the fragment is undefined 1347 */ getRawFragment()1348 public String getRawFragment() { 1349 return fragment; 1350 } 1351 1352 /** 1353 * Returns the decoded fragment component of this URI. 1354 * 1355 * <p> The string returned by this method is equal to that returned by the 1356 * {@link #getRawFragment() getRawFragment} method except that all 1357 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1358 * 1359 * @return The decoded fragment component of this URI, 1360 * or {@code null} if the fragment is undefined 1361 */ getFragment()1362 public String getFragment() { 1363 if ((decodedFragment == null) && (fragment != null)) 1364 decodedFragment = decode(fragment); 1365 return decodedFragment; 1366 } 1367 1368 1369 // -- Equality, comparison, hash code, toString, and serialization -- 1370 1371 /** 1372 * Tests this URI for equality with another object. 1373 * 1374 * <p> If the given object is not a URI then this method immediately 1375 * returns {@code false}. 1376 * 1377 * <p> For two URIs to be considered equal requires that either both are 1378 * opaque or both are hierarchical. Their schemes must either both be 1379 * undefined or else be equal without regard to case. Their fragments 1380 * must either both be undefined or else be equal. 1381 * 1382 * <p> For two opaque URIs to be considered equal, their scheme-specific 1383 * parts must be equal. 1384 * 1385 * <p> For two hierarchical URIs to be considered equal, their paths must 1386 * be equal and their queries must either both be undefined or else be 1387 * equal. Their authorities must either both be undefined, or both be 1388 * registry-based, or both be server-based. If their authorities are 1389 * defined and are registry-based, then they must be equal. If their 1390 * authorities are defined and are server-based, then their hosts must be 1391 * equal without regard to case, their port numbers must be equal, and 1392 * their user-information components must be equal. 1393 * 1394 * <p> When testing the user-information, path, query, fragment, authority, 1395 * or scheme-specific parts of two URIs for equality, the raw forms rather 1396 * than the encoded forms of these components are compared and the 1397 * hexadecimal digits of escaped octets are compared without regard to 1398 * case. 1399 * 1400 * <p> This method satisfies the general contract of the {@link 1401 * java.lang.Object#equals(Object) Object.equals} method. </p> 1402 * 1403 * @param ob The object to which this object is to be compared 1404 * 1405 * @return {@code true} if, and only if, the given object is a URI that 1406 * is identical to this URI 1407 */ equals(Object ob)1408 public boolean equals(Object ob) { 1409 if (ob == this) 1410 return true; 1411 if (!(ob instanceof URI)) 1412 return false; 1413 URI that = (URI)ob; 1414 if (this.isOpaque() != that.isOpaque()) return false; 1415 if (!equalIgnoringCase(this.scheme, that.scheme)) return false; 1416 if (!equal(this.fragment, that.fragment)) return false; 1417 1418 // Opaque 1419 if (this.isOpaque()) 1420 return equal(this.schemeSpecificPart, that.schemeSpecificPart); 1421 1422 // Hierarchical 1423 if (!equal(this.path, that.path)) return false; 1424 if (!equal(this.query, that.query)) return false; 1425 1426 // Authorities 1427 if (this.authority == that.authority) return true; 1428 if (this.host != null) { 1429 // Server-based 1430 if (!equal(this.userInfo, that.userInfo)) return false; 1431 if (!equalIgnoringCase(this.host, that.host)) return false; 1432 if (this.port != that.port) return false; 1433 } else if (this.authority != null) { 1434 // Registry-based 1435 if (!equal(this.authority, that.authority)) return false; 1436 } else if (this.authority != that.authority) { 1437 return false; 1438 } 1439 1440 return true; 1441 } 1442 1443 /** 1444 * Returns a hash-code value for this URI. The hash code is based upon all 1445 * of the URI's components, and satisfies the general contract of the 1446 * {@link java.lang.Object#hashCode() Object.hashCode} method. 1447 * 1448 * @return A hash-code value for this URI 1449 */ hashCode()1450 public int hashCode() { 1451 if (hash != 0) 1452 return hash; 1453 int h = hashIgnoringCase(0, scheme); 1454 h = hash(h, fragment); 1455 if (isOpaque()) { 1456 h = hash(h, schemeSpecificPart); 1457 } else { 1458 h = hash(h, path); 1459 h = hash(h, query); 1460 if (host != null) { 1461 h = hash(h, userInfo); 1462 h = hashIgnoringCase(h, host); 1463 h += 1949 * port; 1464 } else { 1465 h = hash(h, authority); 1466 } 1467 } 1468 hash = h; 1469 return h; 1470 } 1471 1472 /** 1473 * Compares this URI to another object, which must be a URI. 1474 * 1475 * <p> When comparing corresponding components of two URIs, if one 1476 * component is undefined but the other is defined then the first is 1477 * considered to be less than the second. Unless otherwise noted, string 1478 * components are ordered according to their natural, case-sensitive 1479 * ordering as defined by the {@link java.lang.String#compareTo(Object) 1480 * String.compareTo} method. String components that are subject to 1481 * encoding are compared by comparing their raw forms rather than their 1482 * encoded forms. 1483 * 1484 * <p> The ordering of URIs is defined as follows: </p> 1485 * 1486 * <ul> 1487 * 1488 * <li><p> Two URIs with different schemes are ordered according the 1489 * ordering of their schemes, without regard to case. </p></li> 1490 * 1491 * <li><p> A hierarchical URI is considered to be less than an opaque URI 1492 * with an identical scheme. </p></li> 1493 * 1494 * <li><p> Two opaque URIs with identical schemes are ordered according 1495 * to the ordering of their scheme-specific parts. </p></li> 1496 * 1497 * <li><p> Two opaque URIs with identical schemes and scheme-specific 1498 * parts are ordered according to the ordering of their 1499 * fragments. </p></li> 1500 * 1501 * <li><p> Two hierarchical URIs with identical schemes are ordered 1502 * according to the ordering of their authority components: </p> 1503 * 1504 * <ul> 1505 * 1506 * <li><p> If both authority components are server-based then the URIs 1507 * are ordered according to their user-information components; if these 1508 * components are identical then the URIs are ordered according to the 1509 * ordering of their hosts, without regard to case; if the hosts are 1510 * identical then the URIs are ordered according to the ordering of 1511 * their ports. </p></li> 1512 * 1513 * <li><p> If one or both authority components are registry-based then 1514 * the URIs are ordered according to the ordering of their authority 1515 * components. </p></li> 1516 * 1517 * </ul></li> 1518 * 1519 * <li><p> Finally, two hierarchical URIs with identical schemes and 1520 * authority components are ordered according to the ordering of their 1521 * paths; if their paths are identical then they are ordered according to 1522 * the ordering of their queries; if the queries are identical then they 1523 * are ordered according to the order of their fragments. </p></li> 1524 * 1525 * </ul> 1526 * 1527 * <p> This method satisfies the general contract of the {@link 1528 * java.lang.Comparable#compareTo(Object) Comparable.compareTo} 1529 * method. </p> 1530 * 1531 * @param that 1532 * The object to which this URI is to be compared 1533 * 1534 * @return A negative integer, zero, or a positive integer as this URI is 1535 * less than, equal to, or greater than the given URI 1536 * 1537 * @throws ClassCastException 1538 * If the given object is not a URI 1539 */ compareTo(URI that)1540 public int compareTo(URI that) { 1541 int c; 1542 1543 if ((c = compareIgnoringCase(this.scheme, that.scheme)) != 0) 1544 return c; 1545 1546 if (this.isOpaque()) { 1547 if (that.isOpaque()) { 1548 // Both opaque 1549 if ((c = compare(this.schemeSpecificPart, 1550 that.schemeSpecificPart)) != 0) 1551 return c; 1552 return compare(this.fragment, that.fragment); 1553 } 1554 return +1; // Opaque > hierarchical 1555 } else if (that.isOpaque()) { 1556 return -1; // Hierarchical < opaque 1557 } 1558 1559 // Hierarchical 1560 if ((this.host != null) && (that.host != null)) { 1561 // Both server-based 1562 if ((c = compare(this.userInfo, that.userInfo)) != 0) 1563 return c; 1564 if ((c = compareIgnoringCase(this.host, that.host)) != 0) 1565 return c; 1566 if ((c = this.port - that.port) != 0) 1567 return c; 1568 } else { 1569 // If one or both authorities are registry-based then we simply 1570 // compare them in the usual, case-sensitive way. If one is 1571 // registry-based and one is server-based then the strings are 1572 // guaranteed to be unequal, hence the comparison will never return 1573 // zero and the compareTo and equals methods will remain 1574 // consistent. 1575 if ((c = compare(this.authority, that.authority)) != 0) return c; 1576 } 1577 1578 if ((c = compare(this.path, that.path)) != 0) return c; 1579 if ((c = compare(this.query, that.query)) != 0) return c; 1580 return compare(this.fragment, that.fragment); 1581 } 1582 1583 /** 1584 * Returns the content of this URI as a string. 1585 * 1586 * <p> If this URI was created by invoking one of the constructors in this 1587 * class then a string equivalent to the original input string, or to the 1588 * string computed from the originally-given components, as appropriate, is 1589 * returned. Otherwise this URI was created by normalization, resolution, 1590 * or relativization, and so a string is constructed from this URI's 1591 * components according to the rules specified in <a 1592 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 1593 * section 5.2, step 7. </p> 1594 * 1595 * @return The string form of this URI 1596 */ toString()1597 public String toString() { 1598 defineString(); 1599 return string; 1600 } 1601 1602 /** 1603 * Returns the content of this URI as a US-ASCII string. 1604 * 1605 * <p> If this URI does not contain any characters in the <i>other</i> 1606 * category then an invocation of this method will return the same value as 1607 * an invocation of the {@link #toString() toString} method. Otherwise 1608 * this method works as if by invoking that method and then <a 1609 * href="#encode">encoding</a> the result. </p> 1610 * 1611 * @return The string form of this URI, encoded as needed 1612 * so that it only contains characters in the US-ASCII 1613 * charset 1614 */ toASCIIString()1615 public String toASCIIString() { 1616 defineString(); 1617 return encode(string); 1618 } 1619 1620 1621 // -- Serialization support -- 1622 1623 /** 1624 * Saves the content of this URI to the given serial stream. 1625 * 1626 * <p> The only serializable field of a URI instance is its {@code string} 1627 * field. That field is given a value, if it does not have one already, 1628 * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()} 1629 * method of the given object-output stream is invoked. </p> 1630 * 1631 * @param os The object-output stream to which this object 1632 * is to be written 1633 */ writeObject(ObjectOutputStream os)1634 private void writeObject(ObjectOutputStream os) 1635 throws IOException 1636 { 1637 defineString(); 1638 os.defaultWriteObject(); // Writes the string field only 1639 } 1640 1641 /** 1642 * Reconstitutes a URI from the given serial stream. 1643 * 1644 * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is 1645 * invoked to read the value of the {@code string} field. The result is 1646 * then parsed in the usual way. 1647 * 1648 * @param is The object-input stream from which this object 1649 * is being read 1650 */ readObject(ObjectInputStream is)1651 private void readObject(ObjectInputStream is) 1652 throws ClassNotFoundException, IOException 1653 { 1654 port = -1; // Argh 1655 is.defaultReadObject(); 1656 try { 1657 new Parser(string).parse(false); 1658 } catch (URISyntaxException x) { 1659 IOException y = new InvalidObjectException("Invalid URI"); 1660 y.initCause(x); 1661 throw y; 1662 } 1663 } 1664 1665 1666 // -- End of public methods -- 1667 1668 1669 // -- Utility methods for string-field comparison and hashing -- 1670 1671 // These methods return appropriate values for null string arguments, 1672 // thereby simplifying the equals, hashCode, and compareTo methods. 1673 // 1674 // The case-ignoring methods should only be applied to strings whose 1675 // characters are all known to be US-ASCII. Because of this restriction, 1676 // these methods are faster than the similar methods in the String class. 1677 1678 // US-ASCII only toLower(char c)1679 private static int toLower(char c) { 1680 if ((c >= 'A') && (c <= 'Z')) 1681 return c + ('a' - 'A'); 1682 return c; 1683 } 1684 1685 // US-ASCII only toUpper(char c)1686 private static int toUpper(char c) { 1687 if ((c >= 'a') && (c <= 'z')) 1688 return c - ('a' - 'A'); 1689 return c; 1690 } 1691 equal(String s, String t)1692 private static boolean equal(String s, String t) { 1693 if (s == t) return true; 1694 if ((s != null) && (t != null)) { 1695 if (s.length() != t.length()) 1696 return false; 1697 if (s.indexOf('%') < 0) 1698 return s.equals(t); 1699 int n = s.length(); 1700 for (int i = 0; i < n;) { 1701 char c = s.charAt(i); 1702 char d = t.charAt(i); 1703 if (c != '%') { 1704 if (c != d) 1705 return false; 1706 i++; 1707 continue; 1708 } 1709 if (d != '%') 1710 return false; 1711 i++; 1712 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1713 return false; 1714 i++; 1715 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1716 return false; 1717 i++; 1718 } 1719 return true; 1720 } 1721 return false; 1722 } 1723 1724 // US-ASCII only equalIgnoringCase(String s, String t)1725 private static boolean equalIgnoringCase(String s, String t) { 1726 if (s == t) return true; 1727 if ((s != null) && (t != null)) { 1728 int n = s.length(); 1729 if (t.length() != n) 1730 return false; 1731 for (int i = 0; i < n; i++) { 1732 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1733 return false; 1734 } 1735 return true; 1736 } 1737 return false; 1738 } 1739 hash(int hash, String s)1740 private static int hash(int hash, String s) { 1741 if (s == null) return hash; 1742 return s.indexOf('%') < 0 ? hash * 127 + s.hashCode() 1743 : normalizedHash(hash, s); 1744 } 1745 1746 normalizedHash(int hash, String s)1747 private static int normalizedHash(int hash, String s) { 1748 int h = 0; 1749 for (int index = 0; index < s.length(); index++) { 1750 char ch = s.charAt(index); 1751 h = 31 * h + ch; 1752 if (ch == '%') { 1753 /* 1754 * Process the next two encoded characters 1755 */ 1756 for (int i = index + 1; i < index + 3; i++) 1757 h = 31 * h + toUpper(s.charAt(i)); 1758 index += 2; 1759 } 1760 } 1761 return hash * 127 + h; 1762 } 1763 1764 // US-ASCII only hashIgnoringCase(int hash, String s)1765 private static int hashIgnoringCase(int hash, String s) { 1766 if (s == null) return hash; 1767 int h = hash; 1768 int n = s.length(); 1769 for (int i = 0; i < n; i++) 1770 h = 31 * h + toLower(s.charAt(i)); 1771 return h; 1772 } 1773 compare(String s, String t)1774 private static int compare(String s, String t) { 1775 if (s == t) return 0; 1776 if (s != null) { 1777 if (t != null) 1778 return s.compareTo(t); 1779 else 1780 return +1; 1781 } else { 1782 return -1; 1783 } 1784 } 1785 1786 // US-ASCII only compareIgnoringCase(String s, String t)1787 private static int compareIgnoringCase(String s, String t) { 1788 if (s == t) return 0; 1789 if (s != null) { 1790 if (t != null) { 1791 int sn = s.length(); 1792 int tn = t.length(); 1793 int n = sn < tn ? sn : tn; 1794 for (int i = 0; i < n; i++) { 1795 int c = toLower(s.charAt(i)) - toLower(t.charAt(i)); 1796 if (c != 0) 1797 return c; 1798 } 1799 return sn - tn; 1800 } 1801 return +1; 1802 } else { 1803 return -1; 1804 } 1805 } 1806 1807 1808 // -- String construction -- 1809 1810 // If a scheme is given then the path, if given, must be absolute 1811 // 1812 private static void checkPath(String s, String scheme, String path) 1813 throws URISyntaxException 1814 { 1815 if (scheme != null) { 1816 if ((path != null) 1817 && ((path.length() > 0) && (path.charAt(0) != '/'))) 1818 throw new URISyntaxException(s, 1819 "Relative path in absolute URI"); 1820 } 1821 } 1822 1823 private void appendAuthority(StringBuffer sb, 1824 String authority, 1825 String userInfo, 1826 String host, 1827 int port) 1828 { 1829 if (host != null) { 1830 sb.append("//"); 1831 if (userInfo != null) { 1832 sb.append(quote(userInfo, L_USERINFO, H_USERINFO)); 1833 sb.append('@'); 1834 } 1835 boolean needBrackets = ((host.indexOf(':') >= 0) 1836 && !host.startsWith("[") 1837 && !host.endsWith("]")); 1838 if (needBrackets) sb.append('['); 1839 sb.append(host); 1840 if (needBrackets) sb.append(']'); 1841 if (port != -1) { 1842 sb.append(':'); 1843 sb.append(port); 1844 } 1845 } else if (authority != null) { 1846 sb.append("//"); 1847 if (authority.startsWith("[")) { 1848 // authority should (but may not) contain an embedded IPv6 address 1849 int end = authority.indexOf("]"); 1850 String doquote = authority, dontquote = ""; 1851 if (end != -1 && authority.indexOf(":") != -1) { 1852 // the authority contains an IPv6 address 1853 if (end == authority.length()) { 1854 dontquote = authority; 1855 doquote = ""; 1856 } else { 1857 dontquote = authority.substring(0 , end + 1); 1858 doquote = authority.substring(end + 1); 1859 } 1860 } 1861 sb.append(dontquote); 1862 sb.append(quote(doquote, 1863 L_REG_NAME | L_SERVER, 1864 H_REG_NAME | H_SERVER)); 1865 } else { 1866 sb.append(quote(authority, 1867 L_REG_NAME | L_SERVER, 1868 H_REG_NAME | H_SERVER)); 1869 } 1870 } 1871 } 1872 appendSchemeSpecificPart(StringBuffer sb, String opaquePart, String authority, String userInfo, String host, int port, String path, String query)1873 private void appendSchemeSpecificPart(StringBuffer sb, 1874 String opaquePart, 1875 String authority, 1876 String userInfo, 1877 String host, 1878 int port, 1879 String path, 1880 String query) 1881 { 1882 if (opaquePart != null) { 1883 /* check if SSP begins with an IPv6 address 1884 * because we must not quote a literal IPv6 address 1885 */ 1886 if (opaquePart.startsWith("//[")) { 1887 int end = opaquePart.indexOf("]"); 1888 if (end != -1 && opaquePart.indexOf(":")!=-1) { 1889 String doquote, dontquote; 1890 if (end == opaquePart.length()) { 1891 dontquote = opaquePart; 1892 doquote = ""; 1893 } else { 1894 dontquote = opaquePart.substring(0,end+1); 1895 doquote = opaquePart.substring(end+1); 1896 } 1897 sb.append (dontquote); 1898 sb.append(quote(doquote, L_URIC, H_URIC)); 1899 } 1900 } else { 1901 sb.append(quote(opaquePart, L_URIC, H_URIC)); 1902 } 1903 } else { 1904 appendAuthority(sb, authority, userInfo, host, port); 1905 if (path != null) 1906 sb.append(quote(path, L_PATH, H_PATH)); 1907 if (query != null) { 1908 sb.append('?'); 1909 sb.append(quote(query, L_URIC, H_URIC)); 1910 } 1911 } 1912 } 1913 appendFragment(StringBuffer sb, String fragment)1914 private void appendFragment(StringBuffer sb, String fragment) { 1915 if (fragment != null) { 1916 sb.append('#'); 1917 sb.append(quote(fragment, L_URIC, H_URIC)); 1918 } 1919 } 1920 toString(String scheme, String opaquePart, String authority, String userInfo, String host, int port, String path, String query, String fragment)1921 private String toString(String scheme, 1922 String opaquePart, 1923 String authority, 1924 String userInfo, 1925 String host, 1926 int port, 1927 String path, 1928 String query, 1929 String fragment) 1930 { 1931 StringBuffer sb = new StringBuffer(); 1932 if (scheme != null) { 1933 sb.append(scheme); 1934 sb.append(':'); 1935 } 1936 appendSchemeSpecificPart(sb, opaquePart, 1937 authority, userInfo, host, port, 1938 path, query); 1939 appendFragment(sb, fragment); 1940 return sb.toString(); 1941 } 1942 defineSchemeSpecificPart()1943 private void defineSchemeSpecificPart() { 1944 if (schemeSpecificPart != null) return; 1945 StringBuffer sb = new StringBuffer(); 1946 appendSchemeSpecificPart(sb, null, getAuthority(), getUserInfo(), 1947 host, port, getPath(), getQuery()); 1948 if (sb.length() == 0) return; 1949 schemeSpecificPart = sb.toString(); 1950 } 1951 defineString()1952 private void defineString() { 1953 if (string != null) return; 1954 1955 StringBuffer sb = new StringBuffer(); 1956 if (scheme != null) { 1957 sb.append(scheme); 1958 sb.append(':'); 1959 } 1960 if (isOpaque()) { 1961 sb.append(schemeSpecificPart); 1962 } else { 1963 if (host != null) { 1964 sb.append("//"); 1965 if (userInfo != null) { 1966 sb.append(userInfo); 1967 sb.append('@'); 1968 } 1969 boolean needBrackets = ((host.indexOf(':') >= 0) 1970 && !host.startsWith("[") 1971 && !host.endsWith("]")); 1972 if (needBrackets) sb.append('['); 1973 sb.append(host); 1974 if (needBrackets) sb.append(']'); 1975 if (port != -1) { 1976 sb.append(':'); 1977 sb.append(port); 1978 } 1979 } else if (authority != null) { 1980 sb.append("//"); 1981 sb.append(authority); 1982 } 1983 if (path != null) 1984 sb.append(path); 1985 if (query != null) { 1986 sb.append('?'); 1987 sb.append(query); 1988 } 1989 } 1990 if (fragment != null) { 1991 sb.append('#'); 1992 sb.append(fragment); 1993 } 1994 string = sb.toString(); 1995 } 1996 1997 1998 // -- Normalization, resolution, and relativization -- 1999 2000 // RFC2396 5.2 (6) resolvePath(String base, String child, boolean absolute)2001 private static String resolvePath(String base, String child, 2002 boolean absolute) 2003 { 2004 int i = base.lastIndexOf('/'); 2005 int cn = child.length(); 2006 String path = ""; 2007 2008 if (cn == 0) { 2009 // 5.2 (6a) 2010 if (i >= 0) 2011 path = base.substring(0, i + 1); 2012 } else { 2013 StringBuffer sb = new StringBuffer(base.length() + cn); 2014 // 5.2 (6a) 2015 if (i >= 0) 2016 sb.append(base.substring(0, i + 1)); 2017 // 5.2 (6b) 2018 sb.append(child); 2019 path = sb.toString(); 2020 } 2021 2022 // 5.2 (6c-f) 2023 // Android-changed: App compat. Remove leading dots when resolving path. http://b/25897693 2024 // String np = normalize(path); 2025 String np = normalize(path, true); 2026 2027 // 5.2 (6g): If the result is absolute but the path begins with "../", 2028 // then we simply leave the path as-is 2029 2030 return np; 2031 } 2032 2033 // RFC2396 5.2 resolve(URI base, URI child)2034 private static URI resolve(URI base, URI child) { 2035 // check if child if opaque first so that NPE is thrown 2036 // if child is null. 2037 if (child.isOpaque() || base.isOpaque()) 2038 return child; 2039 2040 // 5.2 (2): Reference to current document (lone fragment) 2041 if ((child.scheme == null) && (child.authority == null) 2042 && child.path.equals("") && (child.fragment != null) 2043 && (child.query == null)) { 2044 if ((base.fragment != null) 2045 && child.fragment.equals(base.fragment)) { 2046 return base; 2047 } 2048 URI ru = new URI(); 2049 ru.scheme = base.scheme; 2050 ru.authority = base.authority; 2051 ru.userInfo = base.userInfo; 2052 ru.host = base.host; 2053 ru.port = base.port; 2054 ru.path = base.path; 2055 ru.fragment = child.fragment; 2056 ru.query = base.query; 2057 return ru; 2058 } 2059 2060 // 5.2 (3): Child is absolute 2061 if (child.scheme != null) 2062 return child; 2063 2064 URI ru = new URI(); // Resolved URI 2065 ru.scheme = base.scheme; 2066 ru.query = child.query; 2067 ru.fragment = child.fragment; 2068 2069 // 5.2 (4): Authority 2070 if (child.authority == null) { 2071 ru.authority = base.authority; 2072 ru.host = base.host; 2073 ru.userInfo = base.userInfo; 2074 ru.port = base.port; 2075 2076 // BEGIN Android-changed: App Compat. Handle null and empty path using RFC 3986 logic 2077 // http://b/25897693 2078 if (child.path == null || child.path.isEmpty()) { 2079 // This is an additional path from RFC 3986 RI, which fixes following RFC 2396 2080 // "normal" examples: 2081 // Base: http://a/b/c/d;p?q 2082 // "?y" = "http://a/b/c/d;p?y" 2083 // "" = "http://a/b/c/d;p?q" 2084 // http://b/25897693 2085 ru.path = base.path; 2086 ru.query = child.query != null ? child.query : base.query; 2087 // END Android-changed: App Compat. Handle null and empty path using RFC 3986 logic 2088 } else if ((child.path.length() > 0) && (child.path.charAt(0) == '/')) { 2089 // 5.2 (5): Child path is absolute 2090 // 2091 // Android-changed: App Compat. Remove leading dots in path. 2092 // There is an additional step from RFC 3986 RI, requiring to remove dots for 2093 // absolute path as well. 2094 // http://b/25897693 2095 // ru.path = child.path; 2096 ru.path = normalize(child.path, true); 2097 } else { 2098 // 5.2 (6): Resolve relative path 2099 ru.path = resolvePath(base.path, child.path, base.isAbsolute()); 2100 } 2101 } else { 2102 ru.authority = child.authority; 2103 ru.host = child.host; 2104 ru.userInfo = child.userInfo; 2105 ru.host = child.host; 2106 ru.port = child.port; 2107 ru.path = child.path; 2108 } 2109 2110 // 5.2 (7): Recombine (nothing to do here) 2111 return ru; 2112 } 2113 2114 // If the given URI's path is normal then return the URI; 2115 // o.w., return a new URI containing the normalized path. 2116 // normalize(URI u)2117 private static URI normalize(URI u) { 2118 if (u.isOpaque() || (u.path == null) || (u.path.length() == 0)) 2119 return u; 2120 2121 String np = normalize(u.path); 2122 if (np == u.path) 2123 return u; 2124 2125 URI v = new URI(); 2126 v.scheme = u.scheme; 2127 v.fragment = u.fragment; 2128 v.authority = u.authority; 2129 v.userInfo = u.userInfo; 2130 v.host = u.host; 2131 v.port = u.port; 2132 v.path = np; 2133 v.query = u.query; 2134 return v; 2135 } 2136 2137 // If both URIs are hierarchical, their scheme and authority components are 2138 // identical, and the base path is a prefix of the child's path, then 2139 // return a relative URI that, when resolved against the base, yields the 2140 // child; otherwise, return the child. 2141 // relativize(URI base, URI child)2142 private static URI relativize(URI base, URI child) { 2143 // check if child if opaque first so that NPE is thrown 2144 // if child is null. 2145 if (child.isOpaque() || base.isOpaque()) 2146 return child; 2147 if (!equalIgnoringCase(base.scheme, child.scheme) 2148 || !equal(base.authority, child.authority)) 2149 return child; 2150 2151 String bp = normalize(base.path); 2152 String cp = normalize(child.path); 2153 if (!bp.equals(cp)) { 2154 // Android-changed: App Compat. Interpret ambiguous base path as a file, not a directory 2155 // Upstream would append '/' to bp if not present, interpreting it as a directory; thus, 2156 // /a/b/c relative to /a/b would become /c, whereas Android would relativize to /b/c. 2157 // The spec is pretty vague about this but the Android behavior is kept because several 2158 // tests enforce it. 2159 // if (!bp.endsWith("/")) 2160 // bp = bp + "/"; 2161 if (bp.indexOf('/') != -1) { 2162 bp = bp.substring(0, bp.lastIndexOf('/') + 1); 2163 } 2164 2165 if (!cp.startsWith(bp)) 2166 return child; 2167 } 2168 2169 URI v = new URI(); 2170 v.path = cp.substring(bp.length()); 2171 v.query = child.query; 2172 v.fragment = child.fragment; 2173 return v; 2174 } 2175 2176 2177 2178 // -- Path normalization -- 2179 2180 // The following algorithm for path normalization avoids the creation of a 2181 // string object for each segment, as well as the use of a string buffer to 2182 // compute the final result, by using a single char array and editing it in 2183 // place. The array is first split into segments, replacing each slash 2184 // with '\0' and creating a segment-index array, each element of which is 2185 // the index of the first char in the corresponding segment. We then walk 2186 // through both arrays, removing ".", "..", and other segments as necessary 2187 // by setting their entries in the index array to -1. Finally, the two 2188 // arrays are used to rejoin the segments and compute the final result. 2189 // 2190 // This code is based upon src/solaris/native/java/io/canonicalize_md.c 2191 2192 2193 // Check the given path to see if it might need normalization. A path 2194 // might need normalization if it contains duplicate slashes, a "." 2195 // segment, or a ".." segment. Return -1 if no further normalization is 2196 // possible, otherwise return the number of segments found. 2197 // 2198 // This method takes a string argument rather than a char array so that 2199 // this test can be performed without invoking path.toCharArray(). 2200 // needsNormalization(String path)2201 static private int needsNormalization(String path) { 2202 boolean normal = true; 2203 int ns = 0; // Number of segments 2204 int end = path.length() - 1; // Index of last char in path 2205 int p = 0; // Index of next char in path 2206 2207 // Skip initial slashes 2208 while (p <= end) { 2209 if (path.charAt(p) != '/') break; 2210 p++; 2211 } 2212 if (p > 1) normal = false; 2213 2214 // Scan segments 2215 while (p <= end) { 2216 2217 // Looking at "." or ".." ? 2218 if ((path.charAt(p) == '.') 2219 && ((p == end) 2220 || ((path.charAt(p + 1) == '/') 2221 || ((path.charAt(p + 1) == '.') 2222 && ((p + 1 == end) 2223 || (path.charAt(p + 2) == '/')))))) { 2224 normal = false; 2225 } 2226 ns++; 2227 2228 // Find beginning of next segment 2229 while (p <= end) { 2230 if (path.charAt(p++) != '/') 2231 continue; 2232 2233 // Skip redundant slashes 2234 while (p <= end) { 2235 if (path.charAt(p) != '/') break; 2236 normal = false; 2237 p++; 2238 } 2239 2240 break; 2241 } 2242 } 2243 2244 return normal ? -1 : ns; 2245 } 2246 2247 2248 // Split the given path into segments, replacing slashes with nulls and 2249 // filling in the given segment-index array. 2250 // 2251 // Preconditions: 2252 // segs.length == Number of segments in path 2253 // 2254 // Postconditions: 2255 // All slashes in path replaced by '\0' 2256 // segs[i] == Index of first char in segment i (0 <= i < segs.length) 2257 // split(char[] path, int[] segs)2258 static private void split(char[] path, int[] segs) { 2259 int end = path.length - 1; // Index of last char in path 2260 int p = 0; // Index of next char in path 2261 int i = 0; // Index of current segment 2262 2263 // Skip initial slashes 2264 while (p <= end) { 2265 if (path[p] != '/') break; 2266 path[p] = '\0'; 2267 p++; 2268 } 2269 2270 while (p <= end) { 2271 2272 // Note start of segment 2273 segs[i++] = p++; 2274 2275 // Find beginning of next segment 2276 while (p <= end) { 2277 if (path[p++] != '/') 2278 continue; 2279 path[p - 1] = '\0'; 2280 2281 // Skip redundant slashes 2282 while (p <= end) { 2283 if (path[p] != '/') break; 2284 path[p++] = '\0'; 2285 } 2286 break; 2287 } 2288 } 2289 2290 if (i != segs.length) 2291 throw new InternalError(); // ASSERT 2292 } 2293 2294 2295 // Join the segments in the given path according to the given segment-index 2296 // array, ignoring those segments whose index entries have been set to -1, 2297 // and inserting slashes as needed. Return the length of the resulting 2298 // path. 2299 // 2300 // Preconditions: 2301 // segs[i] == -1 implies segment i is to be ignored 2302 // path computed by split, as above, with '\0' having replaced '/' 2303 // 2304 // Postconditions: 2305 // path[0] .. path[return value] == Resulting path 2306 // join(char[] path, int[] segs)2307 static private int join(char[] path, int[] segs) { 2308 int ns = segs.length; // Number of segments 2309 int end = path.length - 1; // Index of last char in path 2310 int p = 0; // Index of next path char to write 2311 2312 if (path[p] == '\0') { 2313 // Restore initial slash for absolute paths 2314 path[p++] = '/'; 2315 } 2316 2317 for (int i = 0; i < ns; i++) { 2318 int q = segs[i]; // Current segment 2319 if (q == -1) 2320 // Ignore this segment 2321 continue; 2322 2323 if (p == q) { 2324 // We're already at this segment, so just skip to its end 2325 while ((p <= end) && (path[p] != '\0')) 2326 p++; 2327 if (p <= end) { 2328 // Preserve trailing slash 2329 path[p++] = '/'; 2330 } 2331 } else if (p < q) { 2332 // Copy q down to p 2333 while ((q <= end) && (path[q] != '\0')) 2334 path[p++] = path[q++]; 2335 if (q <= end) { 2336 // Preserve trailing slash 2337 path[p++] = '/'; 2338 } 2339 } else 2340 throw new InternalError(); // ASSERT false 2341 } 2342 2343 return p; 2344 } 2345 2346 2347 // Remove "." segments from the given path, and remove segment pairs 2348 // consisting of a non-".." segment followed by a ".." segment. 2349 // 2350 // Android-changed: App compat. Remove leading dots when resolving path. http://b/25897693 2351 // private static void removeDots(char[] path, int[] segs) { removeDots(char[] path, int[] segs, boolean removeLeading)2352 private static void removeDots(char[] path, int[] segs, boolean removeLeading) { 2353 int ns = segs.length; 2354 int end = path.length - 1; 2355 2356 for (int i = 0; i < ns; i++) { 2357 int dots = 0; // Number of dots found (0, 1, or 2) 2358 2359 // Find next occurrence of "." or ".." 2360 do { 2361 int p = segs[i]; 2362 if (path[p] == '.') { 2363 if (p == end) { 2364 dots = 1; 2365 break; 2366 } else if (path[p + 1] == '\0') { 2367 dots = 1; 2368 break; 2369 } else if ((path[p + 1] == '.') 2370 && ((p + 1 == end) 2371 || (path[p + 2] == '\0'))) { 2372 dots = 2; 2373 break; 2374 } 2375 } 2376 i++; 2377 } while (i < ns); 2378 if ((i > ns) || (dots == 0)) 2379 break; 2380 2381 if (dots == 1) { 2382 // Remove this occurrence of "." 2383 segs[i] = -1; 2384 } else { 2385 // If there is a preceding non-".." segment, remove both that 2386 // segment and this occurrence of ".." 2387 int j; 2388 for (j = i - 1; j >= 0; j--) { 2389 if (segs[j] != -1) break; 2390 } 2391 if (j >= 0) { 2392 int q = segs[j]; 2393 if (!((path[q] == '.') 2394 && (path[q + 1] == '.') 2395 && (path[q + 2] == '\0'))) { 2396 segs[i] = -1; 2397 segs[j] = -1; 2398 } 2399 // Android-added: App compat. Remove leading dots when resolving path. 2400 // This is a leading ".." segment. Per RFC 3986 RI, this should be removed as 2401 // well. This fixes RFC 2396 "abnormal" examples. 2402 // http://b/25897693 2403 } else if (removeLeading) { 2404 segs[i] = -1; 2405 } 2406 } 2407 } 2408 } 2409 2410 2411 // DEVIATION: If the normalized path is relative, and if the first 2412 // segment could be parsed as a scheme name, then prepend a "." segment 2413 // maybeAddLeadingDot(char[] path, int[] segs)2414 private static void maybeAddLeadingDot(char[] path, int[] segs) { 2415 2416 if (path[0] == '\0') 2417 // The path is absolute 2418 return; 2419 2420 int ns = segs.length; 2421 int f = 0; // Index of first segment 2422 while (f < ns) { 2423 if (segs[f] >= 0) 2424 break; 2425 f++; 2426 } 2427 if ((f >= ns) || (f == 0)) 2428 // The path is empty, or else the original first segment survived, 2429 // in which case we already know that no leading "." is needed 2430 return; 2431 2432 int p = segs[f]; 2433 while ((p < path.length) && (path[p] != ':') && (path[p] != '\0')) p++; 2434 if (p >= path.length || path[p] == '\0') 2435 // No colon in first segment, so no "." needed 2436 return; 2437 2438 // At this point we know that the first segment is unused, 2439 // hence we can insert a "." segment at that position 2440 path[0] = '.'; 2441 path[1] = '\0'; 2442 segs[0] = 0; 2443 } 2444 2445 2446 // Normalize the given path string. A normal path string has no empty 2447 // segments (i.e., occurrences of "//"), no segments equal to ".", and no 2448 // segments equal to ".." that are preceded by a segment not equal to "..". 2449 // In contrast to Unix-style pathname normalization, for URI paths we 2450 // always retain trailing slashes. 2451 // normalize(String ps)2452 private static String normalize(String ps) { 2453 // BEGIN Android-changed: App compat. Remove leading dots when resolving path. 2454 // Controlled by the "boolean removeLeading" argument added to normalize(). 2455 return normalize(ps, false); 2456 } 2457 normalize(String ps, boolean removeLeading)2458 private static String normalize(String ps, boolean removeLeading) { 2459 // END Android-changed: App compat. Remove leading dots when resolving path. 2460 // Does this path need normalization? 2461 int ns = needsNormalization(ps); // Number of segments 2462 if (ns < 0) 2463 // Nope -- just return it 2464 return ps; 2465 2466 char[] path = ps.toCharArray(); // Path in char-array form 2467 2468 // Split path into segments 2469 int[] segs = new int[ns]; // Segment-index array 2470 split(path, segs); 2471 2472 // Remove dots 2473 // Android-changed: App compat. Remove leading dots when resolving path. 2474 // removeDots(path, segs); 2475 removeDots(path, segs, removeLeading); 2476 2477 // Prevent scheme-name confusion 2478 maybeAddLeadingDot(path, segs); 2479 2480 // Join the remaining segments and return the result 2481 String s = new String(path, 0, join(path, segs)); 2482 if (s.equals(ps)) { 2483 // string was already normalized 2484 return ps; 2485 } 2486 return s; 2487 } 2488 2489 2490 2491 // -- Character classes for parsing -- 2492 2493 // RFC2396 precisely specifies which characters in the US-ASCII charset are 2494 // permissible in the various components of a URI reference. We here 2495 // define a set of mask pairs to aid in enforcing these restrictions. Each 2496 // mask pair consists of two longs, a low mask and a high mask. Taken 2497 // together they represent a 128-bit mask, where bit i is set iff the 2498 // character with value i is permitted. 2499 // 2500 // This approach is more efficient than sequentially searching arrays of 2501 // permitted characters. It could be made still more efficient by 2502 // precompiling the mask information so that a character's presence in a 2503 // given mask could be determined by a single table lookup. 2504 2505 // Compute the low-order mask for the characters in the given string lowMask(String chars)2506 private static long lowMask(String chars) { 2507 int n = chars.length(); 2508 long m = 0; 2509 for (int i = 0; i < n; i++) { 2510 char c = chars.charAt(i); 2511 if (c < 64) 2512 m |= (1L << c); 2513 } 2514 return m; 2515 } 2516 2517 // Compute the high-order mask for the characters in the given string highMask(String chars)2518 private static long highMask(String chars) { 2519 int n = chars.length(); 2520 long m = 0; 2521 for (int i = 0; i < n; i++) { 2522 char c = chars.charAt(i); 2523 if ((c >= 64) && (c < 128)) 2524 m |= (1L << (c - 64)); 2525 } 2526 return m; 2527 } 2528 2529 // Compute a low-order mask for the characters 2530 // between first and last, inclusive lowMask(char first, char last)2531 private static long lowMask(char first, char last) { 2532 long m = 0; 2533 int f = Math.max(Math.min(first, 63), 0); 2534 int l = Math.max(Math.min(last, 63), 0); 2535 for (int i = f; i <= l; i++) 2536 m |= 1L << i; 2537 return m; 2538 } 2539 2540 // Compute a high-order mask for the characters 2541 // between first and last, inclusive highMask(char first, char last)2542 private static long highMask(char first, char last) { 2543 long m = 0; 2544 int f = Math.max(Math.min(first, 127), 64) - 64; 2545 int l = Math.max(Math.min(last, 127), 64) - 64; 2546 for (int i = f; i <= l; i++) 2547 m |= 1L << i; 2548 return m; 2549 } 2550 2551 // Tell whether the given character is permitted by the given mask pair match(char c, long lowMask, long highMask)2552 private static boolean match(char c, long lowMask, long highMask) { 2553 if (c == 0) // 0 doesn't have a slot in the mask. So, it never matches. 2554 return false; 2555 if (c < 64) 2556 return ((1L << c) & lowMask) != 0; 2557 if (c < 128) 2558 return ((1L << (c - 64)) & highMask) != 0; 2559 return false; 2560 } 2561 2562 // Character-class masks, in reverse order from RFC2396 because 2563 // initializers for static fields cannot make forward references. 2564 2565 // digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 2566 // "8" | "9" 2567 private static final long L_DIGIT = lowMask('0', '9'); 2568 private static final long H_DIGIT = 0L; 2569 2570 // upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | 2571 // "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | 2572 // "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" 2573 private static final long L_UPALPHA = 0L; 2574 private static final long H_UPALPHA = highMask('A', 'Z'); 2575 2576 // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | 2577 // "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | 2578 // "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" 2579 private static final long L_LOWALPHA = 0L; 2580 private static final long H_LOWALPHA = highMask('a', 'z'); 2581 2582 // alpha = lowalpha | upalpha 2583 private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA; 2584 private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA; 2585 2586 // alphanum = alpha | digit 2587 private static final long L_ALPHANUM = L_DIGIT | L_ALPHA; 2588 private static final long H_ALPHANUM = H_DIGIT | H_ALPHA; 2589 2590 // hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | 2591 // "a" | "b" | "c" | "d" | "e" | "f" 2592 private static final long L_HEX = L_DIGIT; 2593 private static final long H_HEX = highMask('A', 'F') | highMask('a', 'f'); 2594 2595 // mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | 2596 // "(" | ")" 2597 private static final long L_MARK = lowMask("-_.!~*'()"); 2598 private static final long H_MARK = highMask("-_.!~*'()"); 2599 2600 // unreserved = alphanum | mark 2601 private static final long L_UNRESERVED = L_ALPHANUM | L_MARK; 2602 private static final long H_UNRESERVED = H_ALPHANUM | H_MARK; 2603 2604 // reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | 2605 // "$" | "," | "[" | "]" 2606 // Added per RFC2732: "[", "]" 2607 private static final long L_RESERVED = lowMask(";/?:@&=+$,[]"); 2608 private static final long H_RESERVED = highMask(";/?:@&=+$,[]"); 2609 2610 // The zero'th bit is used to indicate that escape pairs and non-US-ASCII 2611 // characters are allowed; this is handled by the scanEscape method below. 2612 private static final long L_ESCAPED = 1L; 2613 private static final long H_ESCAPED = 0L; 2614 2615 // uric = reserved | unreserved | escaped 2616 private static final long L_URIC = L_RESERVED | L_UNRESERVED | L_ESCAPED; 2617 private static final long H_URIC = H_RESERVED | H_UNRESERVED | H_ESCAPED; 2618 2619 // pchar = unreserved | escaped | 2620 // ":" | "@" | "&" | "=" | "+" | "$" | "," 2621 private static final long L_PCHAR 2622 = L_UNRESERVED | L_ESCAPED | lowMask(":@&=+$,"); 2623 private static final long H_PCHAR 2624 = H_UNRESERVED | H_ESCAPED | highMask(":@&=+$,"); 2625 2626 // All valid path characters 2627 private static final long L_PATH = L_PCHAR | lowMask(";/"); 2628 private static final long H_PATH = H_PCHAR | highMask(";/"); 2629 2630 // Dash, for use in domainlabel and toplabel 2631 private static final long L_DASH = lowMask("-"); 2632 private static final long H_DASH = highMask("-"); 2633 2634 // BEGIN Android-added: Allow underscore in hostname. 2635 // UNDERSCORE, for use in domainlabel and toplabel 2636 private static final long L_UNDERSCORE = lowMask("_"); 2637 private static final long H_UNDERSCORE = highMask("_"); 2638 // END Android-added: Allow underscore in hostname. 2639 2640 // Dot, for use in hostnames 2641 private static final long L_DOT = lowMask("."); 2642 private static final long H_DOT = highMask("."); 2643 2644 // userinfo = *( unreserved | escaped | 2645 // ";" | ":" | "&" | "=" | "+" | "$" | "," ) 2646 private static final long L_USERINFO 2647 = L_UNRESERVED | L_ESCAPED | lowMask(";:&=+$,"); 2648 private static final long H_USERINFO 2649 = H_UNRESERVED | H_ESCAPED | highMask(";:&=+$,"); 2650 2651 // reg_name = 1*( unreserved | escaped | "$" | "," | 2652 // ";" | ":" | "@" | "&" | "=" | "+" ) 2653 private static final long L_REG_NAME 2654 = L_UNRESERVED | L_ESCAPED | lowMask("$,;:@&=+"); 2655 private static final long H_REG_NAME 2656 = H_UNRESERVED | H_ESCAPED | highMask("$,;:@&=+"); 2657 2658 // All valid characters for server-based authorities 2659 private static final long L_SERVER 2660 = L_USERINFO | L_ALPHANUM | L_DASH | lowMask(".:@[]"); 2661 private static final long H_SERVER 2662 = H_USERINFO | H_ALPHANUM | H_DASH | highMask(".:@[]"); 2663 2664 // Special case of server authority that represents an IPv6 address 2665 // In this case, a % does not signify an escape sequence 2666 private static final long L_SERVER_PERCENT 2667 = L_SERVER | lowMask("%"); 2668 private static final long H_SERVER_PERCENT 2669 = H_SERVER | highMask("%"); 2670 private static final long L_LEFT_BRACKET = lowMask("["); 2671 private static final long H_LEFT_BRACKET = highMask("["); 2672 2673 // scheme = alpha *( alpha | digit | "+" | "-" | "." ) 2674 private static final long L_SCHEME = L_ALPHA | L_DIGIT | lowMask("+-."); 2675 private static final long H_SCHEME = H_ALPHA | H_DIGIT | highMask("+-."); 2676 2677 // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" | 2678 // "&" | "=" | "+" | "$" | "," 2679 private static final long L_URIC_NO_SLASH 2680 = L_UNRESERVED | L_ESCAPED | lowMask(";?:@&=+$,"); 2681 private static final long H_URIC_NO_SLASH 2682 = H_UNRESERVED | H_ESCAPED | highMask(";?:@&=+$,"); 2683 2684 2685 // -- Escaping and encoding -- 2686 2687 private final static char[] hexDigits = { 2688 '0', '1', '2', '3', '4', '5', '6', '7', 2689 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 2690 }; 2691 appendEscape(StringBuffer sb, byte b)2692 private static void appendEscape(StringBuffer sb, byte b) { 2693 sb.append('%'); 2694 sb.append(hexDigits[(b >> 4) & 0x0f]); 2695 sb.append(hexDigits[(b >> 0) & 0x0f]); 2696 } 2697 appendEncoded(StringBuffer sb, char c)2698 private static void appendEncoded(StringBuffer sb, char c) { 2699 ByteBuffer bb = null; 2700 try { 2701 bb = ThreadLocalCoders.encoderFor("UTF-8") 2702 .encode(CharBuffer.wrap("" + c)); 2703 } catch (CharacterCodingException x) { 2704 assert false; 2705 } 2706 while (bb.hasRemaining()) { 2707 int b = bb.get() & 0xff; 2708 if (b >= 0x80) 2709 appendEscape(sb, (byte)b); 2710 else 2711 sb.append((char)b); 2712 } 2713 } 2714 2715 // Quote any characters in s that are not permitted 2716 // by the given mask pair 2717 // quote(String s, long lowMask, long highMask)2718 private static String quote(String s, long lowMask, long highMask) { 2719 int n = s.length(); 2720 StringBuffer sb = null; 2721 boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0); 2722 for (int i = 0; i < s.length(); i++) { 2723 char c = s.charAt(i); 2724 if (c < '\u0080') { 2725 if (!match(c, lowMask, highMask)) { 2726 if (sb == null) { 2727 sb = new StringBuffer(); 2728 sb.append(s.substring(0, i)); 2729 } 2730 appendEscape(sb, (byte)c); 2731 } else { 2732 if (sb != null) 2733 sb.append(c); 2734 } 2735 } else if (allowNonASCII 2736 && (Character.isSpaceChar(c) 2737 || Character.isISOControl(c))) { 2738 if (sb == null) { 2739 sb = new StringBuffer(); 2740 sb.append(s.substring(0, i)); 2741 } 2742 appendEncoded(sb, c); 2743 } else { 2744 if (sb != null) 2745 sb.append(c); 2746 } 2747 } 2748 return (sb == null) ? s : sb.toString(); 2749 } 2750 2751 // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets, 2752 // assuming that s is otherwise legal 2753 // encode(String s)2754 private static String encode(String s) { 2755 int n = s.length(); 2756 if (n == 0) 2757 return s; 2758 2759 // First check whether we actually need to encode 2760 for (int i = 0;;) { 2761 if (s.charAt(i) >= '\u0080') 2762 break; 2763 if (++i >= n) 2764 return s; 2765 } 2766 2767 String ns = Normalizer.normalize(s, Normalizer.Form.NFC); 2768 ByteBuffer bb = null; 2769 try { 2770 bb = ThreadLocalCoders.encoderFor("UTF-8") 2771 .encode(CharBuffer.wrap(ns)); 2772 } catch (CharacterCodingException x) { 2773 assert false; 2774 } 2775 2776 StringBuffer sb = new StringBuffer(); 2777 while (bb.hasRemaining()) { 2778 int b = bb.get() & 0xff; 2779 if (b >= 0x80) 2780 appendEscape(sb, (byte)b); 2781 else 2782 sb.append((char)b); 2783 } 2784 return sb.toString(); 2785 } 2786 decode(char c)2787 private static int decode(char c) { 2788 if ((c >= '0') && (c <= '9')) 2789 return c - '0'; 2790 if ((c >= 'a') && (c <= 'f')) 2791 return c - 'a' + 10; 2792 if ((c >= 'A') && (c <= 'F')) 2793 return c - 'A' + 10; 2794 assert false; 2795 return -1; 2796 } 2797 decode(char c1, char c2)2798 private static byte decode(char c1, char c2) { 2799 return (byte)( ((decode(c1) & 0xf) << 4) 2800 | ((decode(c2) & 0xf) << 0)); 2801 } 2802 2803 // Evaluates all escapes in s, applying UTF-8 decoding if needed. Assumes 2804 // that escapes are well-formed syntactically, i.e., of the form %XX. If a 2805 // sequence of escaped octets is not valid UTF-8 then the erroneous octets 2806 // are replaced with '\uFFFD'. 2807 // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal 2808 // with a scope_id 2809 // decode(String s)2810 private static String decode(String s) { 2811 if (s == null) 2812 return s; 2813 int n = s.length(); 2814 if (n == 0) 2815 return s; 2816 if (s.indexOf('%') < 0) 2817 return s; 2818 2819 StringBuffer sb = new StringBuffer(n); 2820 ByteBuffer bb = ByteBuffer.allocate(n); 2821 CharBuffer cb = CharBuffer.allocate(n); 2822 CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8") 2823 .onMalformedInput(CodingErrorAction.REPLACE) 2824 .onUnmappableCharacter(CodingErrorAction.REPLACE); 2825 2826 // This is not horribly efficient, but it will do for now 2827 char c = s.charAt(0); 2828 boolean betweenBrackets = false; 2829 2830 for (int i = 0; i < n;) { 2831 assert c == s.charAt(i); // Loop invariant 2832 if (c == '[') { 2833 betweenBrackets = true; 2834 } else if (betweenBrackets && c == ']') { 2835 betweenBrackets = false; 2836 } 2837 if (c != '%' || betweenBrackets) { 2838 sb.append(c); 2839 if (++i >= n) 2840 break; 2841 c = s.charAt(i); 2842 continue; 2843 } 2844 bb.clear(); 2845 int ui = i; 2846 for (;;) { 2847 assert (n - i >= 2); 2848 bb.put(decode(s.charAt(++i), s.charAt(++i))); 2849 if (++i >= n) 2850 break; 2851 c = s.charAt(i); 2852 if (c != '%') 2853 break; 2854 } 2855 bb.flip(); 2856 cb.clear(); 2857 dec.reset(); 2858 CoderResult cr = dec.decode(bb, cb, true); 2859 assert cr.isUnderflow(); 2860 cr = dec.flush(cb); 2861 assert cr.isUnderflow(); 2862 sb.append(cb.flip().toString()); 2863 } 2864 2865 return sb.toString(); 2866 } 2867 2868 2869 // -- Parsing -- 2870 2871 // For convenience we wrap the input URI string in a new instance of the 2872 // following internal class. This saves always having to pass the input 2873 // string as an argument to each internal scan/parse method. 2874 2875 private class Parser { 2876 2877 private String input; // URI input string 2878 private boolean requireServerAuthority = false; 2879 Parser(String s)2880 Parser(String s) { 2881 input = s; 2882 string = s; 2883 } 2884 2885 // -- Methods for throwing URISyntaxException in various ways -- 2886 fail(String reason)2887 private void fail(String reason) throws URISyntaxException { 2888 throw new URISyntaxException(input, reason); 2889 } 2890 fail(String reason, int p)2891 private void fail(String reason, int p) throws URISyntaxException { 2892 throw new URISyntaxException(input, reason, p); 2893 } 2894 failExpecting(String expected, int p)2895 private void failExpecting(String expected, int p) 2896 throws URISyntaxException 2897 { 2898 fail("Expected " + expected, p); 2899 } 2900 failExpecting(String expected, String prior, int p)2901 private void failExpecting(String expected, String prior, int p) 2902 throws URISyntaxException 2903 { 2904 fail("Expected " + expected + " following " + prior, p); 2905 } 2906 2907 2908 // -- Simple access to the input string -- 2909 2910 // Return a substring of the input string 2911 // substring(int start, int end)2912 private String substring(int start, int end) { 2913 return input.substring(start, end); 2914 } 2915 2916 // Return the char at position p, 2917 // assuming that p < input.length() 2918 // charAt(int p)2919 private char charAt(int p) { 2920 return input.charAt(p); 2921 } 2922 2923 // Tells whether start < end and, if so, whether charAt(start) == c 2924 // at(int start, int end, char c)2925 private boolean at(int start, int end, char c) { 2926 return (start < end) && (charAt(start) == c); 2927 } 2928 2929 // Tells whether start + s.length() < end and, if so, 2930 // whether the chars at the start position match s exactly 2931 // at(int start, int end, String s)2932 private boolean at(int start, int end, String s) { 2933 int p = start; 2934 int sn = s.length(); 2935 if (sn > end - p) 2936 return false; 2937 int i = 0; 2938 while (i < sn) { 2939 if (charAt(p++) != s.charAt(i)) { 2940 break; 2941 } 2942 i++; 2943 } 2944 return (i == sn); 2945 } 2946 2947 2948 // -- Scanning -- 2949 2950 // The various scan and parse methods that follow use a uniform 2951 // convention of taking the current start position and end index as 2952 // their first two arguments. The start is inclusive while the end is 2953 // exclusive, just as in the String class, i.e., a start/end pair 2954 // denotes the left-open interval [start, end) of the input string. 2955 // 2956 // These methods never proceed past the end position. They may return 2957 // -1 to indicate outright failure, but more often they simply return 2958 // the position of the first char after the last char scanned. Thus 2959 // a typical idiom is 2960 // 2961 // int p = start; 2962 // int q = scan(p, end, ...); 2963 // if (q > p) 2964 // // We scanned something 2965 // ...; 2966 // else if (q == p) 2967 // // We scanned nothing 2968 // ...; 2969 // else if (q == -1) 2970 // // Something went wrong 2971 // ...; 2972 2973 2974 // Scan a specific char: If the char at the given start position is 2975 // equal to c, return the index of the next char; otherwise, return the 2976 // start position. 2977 // scan(int start, int end, char c)2978 private int scan(int start, int end, char c) { 2979 if ((start < end) && (charAt(start) == c)) 2980 return start + 1; 2981 return start; 2982 } 2983 2984 // Scan forward from the given start position. Stop at the first char 2985 // in the err string (in which case -1 is returned), or the first char 2986 // in the stop string (in which case the index of the preceding char is 2987 // returned), or the end of the input string (in which case the length 2988 // of the input string is returned). May return the start position if 2989 // nothing matches. 2990 // scan(int start, int end, String err, String stop)2991 private int scan(int start, int end, String err, String stop) { 2992 int p = start; 2993 while (p < end) { 2994 char c = charAt(p); 2995 if (err.indexOf(c) >= 0) 2996 return -1; 2997 if (stop.indexOf(c) >= 0) 2998 break; 2999 p++; 3000 } 3001 return p; 3002 } 3003 3004 // Scan a potential escape sequence, starting at the given position, 3005 // with the given first char (i.e., charAt(start) == c). 3006 // 3007 // This method assumes that if escapes are allowed then visible 3008 // non-US-ASCII chars are also allowed. 3009 // scanEscape(int start, int n, char first)3010 private int scanEscape(int start, int n, char first) 3011 throws URISyntaxException 3012 { 3013 int p = start; 3014 char c = first; 3015 if (c == '%') { 3016 // Process escape pair 3017 if ((p + 3 <= n) 3018 && match(charAt(p + 1), L_HEX, H_HEX) 3019 && match(charAt(p + 2), L_HEX, H_HEX)) { 3020 return p + 3; 3021 } 3022 fail("Malformed escape pair", p); 3023 } else if ((c > 128) 3024 && !Character.isSpaceChar(c) 3025 && !Character.isISOControl(c)) { 3026 // Allow unescaped but visible non-US-ASCII chars 3027 return p + 1; 3028 } 3029 return p; 3030 } 3031 3032 // Scan chars that match the given mask pair 3033 // scan(int start, int n, long lowMask, long highMask)3034 private int scan(int start, int n, long lowMask, long highMask) 3035 throws URISyntaxException 3036 { 3037 int p = start; 3038 while (p < n) { 3039 char c = charAt(p); 3040 if (match(c, lowMask, highMask)) { 3041 p++; 3042 continue; 3043 } 3044 if ((lowMask & L_ESCAPED) != 0) { 3045 int q = scanEscape(p, n, c); 3046 if (q > p) { 3047 p = q; 3048 continue; 3049 } 3050 } 3051 break; 3052 } 3053 return p; 3054 } 3055 3056 // Check that each of the chars in [start, end) matches the given mask 3057 // checkChars(int start, int end, long lowMask, long highMask, String what)3058 private void checkChars(int start, int end, 3059 long lowMask, long highMask, 3060 String what) 3061 throws URISyntaxException 3062 { 3063 int p = scan(start, end, lowMask, highMask); 3064 if (p < end) 3065 fail("Illegal character in " + what, p); 3066 } 3067 3068 // Check that the char at position p matches the given mask 3069 // checkChar(int p, long lowMask, long highMask, String what)3070 private void checkChar(int p, 3071 long lowMask, long highMask, 3072 String what) 3073 throws URISyntaxException 3074 { 3075 checkChars(p, p + 1, lowMask, highMask, what); 3076 } 3077 3078 3079 // -- Parsing -- 3080 3081 // [<scheme>:]<scheme-specific-part>[#<fragment>] 3082 // parse(boolean rsa)3083 void parse(boolean rsa) throws URISyntaxException { 3084 requireServerAuthority = rsa; 3085 int ssp; // Start of scheme-specific part 3086 int n = input.length(); 3087 int p = scan(0, n, "/?#", ":"); 3088 if ((p >= 0) && at(p, n, ':')) { 3089 if (p == 0) 3090 failExpecting("scheme name", 0); 3091 checkChar(0, L_ALPHA, H_ALPHA, "scheme name"); 3092 checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name"); 3093 scheme = substring(0, p); 3094 p++; // Skip ':' 3095 ssp = p; 3096 if (at(p, n, '/')) { 3097 p = parseHierarchical(p, n); 3098 } else { 3099 int q = scan(p, n, "", "#"); 3100 if (q <= p) 3101 failExpecting("scheme-specific part", p); 3102 checkChars(p, q, L_URIC, H_URIC, "opaque part"); 3103 p = q; 3104 } 3105 } else { 3106 ssp = 0; 3107 p = parseHierarchical(0, n); 3108 } 3109 schemeSpecificPart = substring(ssp, p); 3110 if (at(p, n, '#')) { 3111 checkChars(p + 1, n, L_URIC, H_URIC, "fragment"); 3112 fragment = substring(p + 1, n); 3113 p = n; 3114 } 3115 if (p < n) 3116 fail("end of URI", p); 3117 } 3118 3119 // [//authority]<path>[?<query>] 3120 // 3121 // DEVIATION from RFC2396: We allow an empty authority component as 3122 // long as it's followed by a non-empty path, query component, or 3123 // fragment component. This is so that URIs such as "file:///foo/bar" 3124 // will parse. This seems to be the intent of RFC2396, though the 3125 // grammar does not permit it. If the authority is empty then the 3126 // userInfo, host, and port components are undefined. 3127 // 3128 // DEVIATION from RFC2396: We allow empty relative paths. This seems 3129 // to be the intent of RFC2396, but the grammar does not permit it. 3130 // The primary consequence of this deviation is that "#f" parses as a 3131 // relative URI with an empty path. 3132 // parseHierarchical(int start, int n)3133 private int parseHierarchical(int start, int n) 3134 throws URISyntaxException 3135 { 3136 int p = start; 3137 if (at(p, n, '/') && at(p + 1, n, '/')) { 3138 p += 2; 3139 int q = scan(p, n, "", "/?#"); 3140 if (q > p) { 3141 p = parseAuthority(p, q); 3142 } else if (q < n) { 3143 // DEVIATION: Allow empty authority prior to non-empty 3144 // path, query component or fragment identifier 3145 } else 3146 failExpecting("authority", p); 3147 } 3148 int q = scan(p, n, "", "?#"); // DEVIATION: May be empty 3149 checkChars(p, q, L_PATH, H_PATH, "path"); 3150 path = substring(p, q); 3151 p = q; 3152 if (at(p, n, '?')) { 3153 p++; 3154 q = scan(p, n, "", "#"); 3155 checkChars(p, q, L_URIC, H_URIC, "query"); 3156 query = substring(p, q); 3157 p = q; 3158 } 3159 return p; 3160 } 3161 3162 // authority = server | reg_name 3163 // 3164 // Ambiguity: An authority that is a registry name rather than a server 3165 // might have a prefix that parses as a server. We use the fact that 3166 // the authority component is always followed by '/' or the end of the 3167 // input string to resolve this: If the complete authority did not 3168 // parse as a server then we try to parse it as a registry name. 3169 // parseAuthority(int start, int n)3170 private int parseAuthority(int start, int n) 3171 throws URISyntaxException 3172 { 3173 int p = start; 3174 int q = p; 3175 URISyntaxException ex = null; 3176 3177 boolean serverChars; 3178 boolean regChars; 3179 3180 if (scan(p, n, "", "]") > p) { 3181 // contains a literal IPv6 address, therefore % is allowed 3182 serverChars = (scan(p, n, L_SERVER_PERCENT, H_SERVER_PERCENT) == n); 3183 } else { 3184 serverChars = (scan(p, n, L_SERVER, H_SERVER) == n); 3185 } 3186 regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n); 3187 3188 if (regChars && !serverChars) { 3189 // Must be a registry-based authority 3190 authority = substring(p, n); 3191 return n; 3192 } 3193 3194 if (serverChars) { 3195 // Might be (probably is) a server-based authority, so attempt 3196 // to parse it as such. If the attempt fails, try to treat it 3197 // as a registry-based authority. 3198 try { 3199 q = parseServer(p, n); 3200 if (q < n) 3201 failExpecting("end of authority", q); 3202 authority = substring(p, n); 3203 } catch (URISyntaxException x) { 3204 // Undo results of failed parse 3205 userInfo = null; 3206 host = null; 3207 port = -1; 3208 if (requireServerAuthority) { 3209 // If we're insisting upon a server-based authority, 3210 // then just re-throw the exception 3211 throw x; 3212 } else { 3213 // Save the exception in case it doesn't parse as a 3214 // registry either 3215 ex = x; 3216 q = p; 3217 } 3218 } 3219 } 3220 3221 if (q < n) { 3222 if (regChars) { 3223 // Registry-based authority 3224 authority = substring(p, n); 3225 } else if (ex != null) { 3226 // Re-throw exception; it was probably due to 3227 // a malformed IPv6 address 3228 throw ex; 3229 } else { 3230 fail("Illegal character in authority", q); 3231 } 3232 } 3233 3234 return n; 3235 } 3236 3237 3238 // [<userinfo>@]<host>[:<port>] 3239 // parseServer(int start, int n)3240 private int parseServer(int start, int n) 3241 throws URISyntaxException 3242 { 3243 int p = start; 3244 int q; 3245 3246 // userinfo 3247 q = scan(p, n, "/?#", "@"); 3248 if ((q >= p) && at(q, n, '@')) { 3249 checkChars(p, q, L_USERINFO, H_USERINFO, "user info"); 3250 userInfo = substring(p, q); 3251 p = q + 1; // Skip '@' 3252 } 3253 3254 // hostname, IPv4 address, or IPv6 address 3255 if (at(p, n, '[')) { 3256 // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732 3257 p++; 3258 q = scan(p, n, "/?#", "]"); 3259 if ((q > p) && at(q, n, ']')) { 3260 // look for a "%" scope id 3261 int r = scan (p, q, "", "%"); 3262 if (r > p) { 3263 parseIPv6Reference(p, r); 3264 if (r+1 == q) { 3265 fail ("scope id expected"); 3266 } 3267 checkChars (r+1, q, L_ALPHANUM, H_ALPHANUM, 3268 "scope id"); 3269 } else { 3270 parseIPv6Reference(p, q); 3271 } 3272 host = substring(p-1, q+1); 3273 p = q + 1; 3274 } else { 3275 failExpecting("closing bracket for IPv6 address", q); 3276 } 3277 } else { 3278 q = parseIPv4Address(p, n); 3279 if (q <= p) 3280 q = parseHostname(p, n); 3281 p = q; 3282 } 3283 3284 // port 3285 if (at(p, n, ':')) { 3286 p++; 3287 q = scan(p, n, "", "/"); 3288 if (q > p) { 3289 checkChars(p, q, L_DIGIT, H_DIGIT, "port number"); 3290 try { 3291 port = Integer.parseInt(substring(p, q)); 3292 } catch (NumberFormatException x) { 3293 fail("Malformed port number", p); 3294 } 3295 p = q; 3296 } 3297 } 3298 if (p < n) 3299 failExpecting("port number", p); 3300 3301 return p; 3302 } 3303 3304 // Scan a string of decimal digits whose value fits in a byte 3305 // scanByte(int start, int n)3306 private int scanByte(int start, int n) 3307 throws URISyntaxException 3308 { 3309 int p = start; 3310 int q = scan(p, n, L_DIGIT, H_DIGIT); 3311 if (q <= p) return q; 3312 if (Integer.parseInt(substring(p, q)) > 255) return p; 3313 return q; 3314 } 3315 3316 // Scan an IPv4 address. 3317 // 3318 // If the strict argument is true then we require that the given 3319 // interval contain nothing besides an IPv4 address; if it is false 3320 // then we only require that it start with an IPv4 address. 3321 // 3322 // If the interval does not contain or start with (depending upon the 3323 // strict argument) a legal IPv4 address characters then we return -1 3324 // immediately; otherwise we insist that these characters parse as a 3325 // legal IPv4 address and throw an exception on failure. 3326 // 3327 // We assume that any string of decimal digits and dots must be an IPv4 3328 // address. It won't parse as a hostname anyway, so making that 3329 // assumption here allows more meaningful exceptions to be thrown. 3330 // scanIPv4Address(int start, int n, boolean strict)3331 private int scanIPv4Address(int start, int n, boolean strict) 3332 throws URISyntaxException 3333 { 3334 int p = start; 3335 int q; 3336 int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT); 3337 if ((m <= p) || (strict && (m != n))) 3338 return -1; 3339 for (;;) { 3340 // Per RFC2732: At most three digits per byte 3341 // Further constraint: Each element fits in a byte 3342 if ((q = scanByte(p, m)) <= p) break; p = q; 3343 if ((q = scan(p, m, '.')) <= p) break; p = q; 3344 if ((q = scanByte(p, m)) <= p) break; p = q; 3345 if ((q = scan(p, m, '.')) <= p) break; p = q; 3346 if ((q = scanByte(p, m)) <= p) break; p = q; 3347 if ((q = scan(p, m, '.')) <= p) break; p = q; 3348 if ((q = scanByte(p, m)) <= p) break; p = q; 3349 if (q < m) break; 3350 return q; 3351 } 3352 fail("Malformed IPv4 address", q); 3353 return -1; 3354 } 3355 3356 // Take an IPv4 address: Throw an exception if the given interval 3357 // contains anything except an IPv4 address 3358 // takeIPv4Address(int start, int n, String expected)3359 private int takeIPv4Address(int start, int n, String expected) 3360 throws URISyntaxException 3361 { 3362 int p = scanIPv4Address(start, n, true); 3363 if (p <= start) 3364 failExpecting(expected, start); 3365 return p; 3366 } 3367 3368 // Attempt to parse an IPv4 address, returning -1 on failure but 3369 // allowing the given interval to contain [:<characters>] after 3370 // the IPv4 address. 3371 // parseIPv4Address(int start, int n)3372 private int parseIPv4Address(int start, int n) { 3373 int p; 3374 3375 try { 3376 p = scanIPv4Address(start, n, false); 3377 } catch (URISyntaxException x) { 3378 return -1; 3379 } catch (NumberFormatException nfe) { 3380 return -1; 3381 } 3382 3383 if (p > start && p < n) { 3384 // IPv4 address is followed by something - check that 3385 // it's a ":" as this is the only valid character to 3386 // follow an address. 3387 if (charAt(p) != ':') { 3388 p = -1; 3389 } 3390 } 3391 3392 if (p > start) 3393 host = substring(start, p); 3394 3395 return p; 3396 } 3397 3398 // Android-changed: Allow underscore in hostname. 3399 // Added "_" to the grammars for domainLabel and topLabel. 3400 // hostname = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ] 3401 // domainlabel = alphanum | alphanum *( alphanum | "-" | "_" ) alphanum 3402 // toplabel = alpha | alpha *( alphanum | "-" | "_" ) alphanum 3403 // parseHostname(int start, int n)3404 private int parseHostname(int start, int n) 3405 throws URISyntaxException 3406 { 3407 int p = start; 3408 int q; 3409 int l = -1; // Start of last parsed label 3410 3411 do { 3412 // Android-changed: Allow underscore in hostname. 3413 // RFC 2396 only allows alphanumeric characters and hyphens, but real, 3414 // large Internet hosts in the wild use underscore, so we have to allow it. 3415 // http://code.google.com/p/android/issues/detail?id=37577 3416 // http://b/17579865 3417 // http://b/18016625 3418 // http://b/18023709 3419 3420 // domainlabel = alphanum [ *( alphanum | "-" | "_" ) alphanum ] 3421 q = scan(p, n, L_ALPHANUM, H_ALPHANUM); 3422 if (q <= p) 3423 break; 3424 l = p; 3425 if (q > p) { 3426 p = q; 3427 // Android-changed: Allow underscore in hostname. 3428 // q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM | H_DASH); 3429 q = scan(p, n, L_ALPHANUM | L_DASH | L_UNDERSCORE, H_ALPHANUM | H_DASH | H_UNDERSCORE); 3430 if (q > p) { 3431 if (charAt(q - 1) == '-') 3432 fail("Illegal character in hostname", q - 1); 3433 p = q; 3434 } 3435 } 3436 q = scan(p, n, '.'); 3437 if (q <= p) 3438 break; 3439 p = q; 3440 } while (p < n); 3441 3442 if ((p < n) && !at(p, n, ':')) 3443 fail("Illegal character in hostname", p); 3444 3445 if (l < 0) 3446 failExpecting("hostname", start); 3447 3448 // for a fully qualified hostname check that the rightmost 3449 // label starts with an alpha character. 3450 if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) { 3451 fail("Illegal character in hostname", l); 3452 } 3453 3454 host = substring(start, p); 3455 return p; 3456 } 3457 3458 3459 // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture 3460 // 3461 // Bug: The grammar in RFC2373 Appendix B does not allow addresses of 3462 // the form ::12.34.56.78, which are clearly shown in the examples 3463 // earlier in the document. Here is the original grammar: 3464 // 3465 // IPv6address = hexpart [ ":" IPv4address ] 3466 // hexpart = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ] 3467 // hexseq = hex4 *( ":" hex4) 3468 // hex4 = 1*4HEXDIG 3469 // 3470 // We therefore use the following revised grammar: 3471 // 3472 // IPv6address = hexseq [ ":" IPv4address ] 3473 // | hexseq [ "::" [ hexpost ] ] 3474 // | "::" [ hexpost ] 3475 // hexpost = hexseq | hexseq ":" IPv4address | IPv4address 3476 // hexseq = hex4 *( ":" hex4) 3477 // hex4 = 1*4HEXDIG 3478 // 3479 // This covers all and only the following cases: 3480 // 3481 // hexseq 3482 // hexseq : IPv4address 3483 // hexseq :: 3484 // hexseq :: hexseq 3485 // hexseq :: hexseq : IPv4address 3486 // hexseq :: IPv4address 3487 // :: hexseq 3488 // :: hexseq : IPv4address 3489 // :: IPv4address 3490 // :: 3491 // 3492 // Additionally we constrain the IPv6 address as follows :- 3493 // 3494 // i. IPv6 addresses without compressed zeros should contain 3495 // exactly 16 bytes. 3496 // 3497 // ii. IPv6 addresses with compressed zeros should contain 3498 // less than 16 bytes. 3499 3500 private int ipv6byteCount = 0; 3501 parseIPv6Reference(int start, int n)3502 private int parseIPv6Reference(int start, int n) 3503 throws URISyntaxException 3504 { 3505 int p = start; 3506 int q; 3507 boolean compressedZeros = false; 3508 3509 q = scanHexSeq(p, n); 3510 3511 if (q > p) { 3512 p = q; 3513 if (at(p, n, "::")) { 3514 compressedZeros = true; 3515 p = scanHexPost(p + 2, n); 3516 } else if (at(p, n, ':')) { 3517 p = takeIPv4Address(p + 1, n, "IPv4 address"); 3518 ipv6byteCount += 4; 3519 } 3520 } else if (at(p, n, "::")) { 3521 compressedZeros = true; 3522 p = scanHexPost(p + 2, n); 3523 } 3524 if (p < n) 3525 fail("Malformed IPv6 address", start); 3526 if (ipv6byteCount > 16) 3527 fail("IPv6 address too long", start); 3528 if (!compressedZeros && ipv6byteCount < 16) 3529 fail("IPv6 address too short", start); 3530 if (compressedZeros && ipv6byteCount == 16) 3531 fail("Malformed IPv6 address", start); 3532 3533 return p; 3534 } 3535 scanHexPost(int start, int n)3536 private int scanHexPost(int start, int n) 3537 throws URISyntaxException 3538 { 3539 int p = start; 3540 int q; 3541 3542 if (p == n) 3543 return p; 3544 3545 q = scanHexSeq(p, n); 3546 if (q > p) { 3547 p = q; 3548 if (at(p, n, ':')) { 3549 p++; 3550 p = takeIPv4Address(p, n, "hex digits or IPv4 address"); 3551 ipv6byteCount += 4; 3552 } 3553 } else { 3554 p = takeIPv4Address(p, n, "hex digits or IPv4 address"); 3555 ipv6byteCount += 4; 3556 } 3557 return p; 3558 } 3559 3560 // Scan a hex sequence; return -1 if one could not be scanned 3561 // scanHexSeq(int start, int n)3562 private int scanHexSeq(int start, int n) 3563 throws URISyntaxException 3564 { 3565 int p = start; 3566 int q; 3567 3568 q = scan(p, n, L_HEX, H_HEX); 3569 if (q <= p) 3570 return -1; 3571 if (at(q, n, '.')) // Beginning of IPv4 address 3572 return -1; 3573 if (q > p + 4) 3574 fail("IPv6 hexadecimal digit sequence too long", p); 3575 ipv6byteCount += 2; 3576 p = q; 3577 while (p < n) { 3578 if (!at(p, n, ':')) 3579 break; 3580 if (at(p + 1, n, ':')) 3581 break; // "::" 3582 p++; 3583 q = scan(p, n, L_HEX, H_HEX); 3584 if (q <= p) 3585 failExpecting("digits for an IPv6 address", p); 3586 if (at(q, n, '.')) { // Beginning of IPv4 address 3587 p--; 3588 break; 3589 } 3590 if (q > p + 4) 3591 fail("IPv6 hexadecimal digit sequence too long", p); 3592 ipv6byteCount += 2; 3593 p = q; 3594 } 3595 3596 return p; 3597 } 3598 3599 } 3600 3601 } 3602