1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Memory"
18
19 #include "Memory.h"
20
21 #include <android-base/scopeguard.h>
22 #include <android/hardware_buffer.h>
23 #include <cutils/native_handle.h>
24 #include <vndk/hardware_buffer.h>
25
26 #include <algorithm>
27 #include <memory>
28 #include <set>
29 #include <tuple>
30 #include <utility>
31 #include <vector>
32
33 #include "CompilationBuilder.h"
34 #include "CpuExecutor.h"
35 #include "ExecutionBurstController.h"
36 #include "Manager.h"
37 #include "MemoryUtils.h"
38 #include "TypeManager.h"
39 #include "Utils.h"
40
41 namespace android {
42 namespace nn {
43
44 using namespace hal;
45
46 namespace {
47
48 // The validator for a client-managed single-dimensional memory pool with a known size.
49 // The memory may be used for request inputs, request outputs, or model constants.
50 class SizedMemoryValidator : public MemoryValidatorBase {
51 public:
SizedMemoryValidator(uint32_t size)52 SizedMemoryValidator(uint32_t size) : kSize(size) {}
53
validate(const CompilationBuilder *,IOType,uint32_t,const ANeuralNetworksOperandType *,uint32_t offset,uint32_t length) const54 bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*,
55 uint32_t offset, uint32_t length) const override {
56 NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size.";
57 NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied.";
58 return true;
59 }
60
getMetadata() const61 Metadata getMetadata() const override { return {.logicalSize = kSize}; }
updateMetadata(const Metadata & metadata)62 bool updateMetadata(const Metadata& metadata) override {
63 return metadata.logicalSize == 0 || metadata.logicalSize == kSize;
64 }
65
66 private:
67 const uint32_t kSize;
68 };
69
70 // The validator for an AHardwareBuffer with Non-BLOB format.
71 // We require the memory only used for request inputs or request outputs,
72 // with both offset and length set to zero.
73 class AHardwareBufferNonBlobValidator : public MemoryValidatorBase {
74 public:
75 AHardwareBufferNonBlobValidator() = default;
76
validate(const CompilationBuilder * compilation,IOType,uint32_t,const ANeuralNetworksOperandType *,uint32_t offset,uint32_t length) const77 bool validate(const CompilationBuilder* compilation, IOType, uint32_t,
78 const ANeuralNetworksOperandType*, uint32_t offset,
79 uint32_t length) const override {
80 NN_RET_CHECK(compilation != nullptr)
81 << "cannot use Non-BLOB AHardwareBuffer as model constant";
82 NN_RET_CHECK(offset == 0 && length == 0)
83 << "non-zero offset (" << offset << ") and/or length (" << length
84 << ") for Non-BLOB format AHardwareBuffer.";
85 return true;
86 }
87
getMetadata() const88 Metadata getMetadata() const override { return {}; }
updateMetadata(const Metadata &)89 bool updateMetadata(const Metadata&) override { return true; }
90 };
91
92 // The validator for a memory created from ANNMemory_createFromDesc.
93 // We require the memory only used as one of the pre-specified roles,
94 // with both offset and length set to zero.
95 class DeviceMemoryValidator : public MemoryValidatorBase {
96 public:
DeviceMemoryValidator(std::set<CompilationRole> roles,Operand operand,std::vector<uint32_t> dimensions)97 DeviceMemoryValidator(std::set<CompilationRole> roles, Operand operand,
98 std::vector<uint32_t> dimensions)
99 : kCompilationRoles(std::move(roles)),
100 kOperand(std::move(operand)),
101 kInitialDimensions(std::move(dimensions)),
102 mUpdatedDimensions(kInitialDimensions) {}
103
validate(const CompilationBuilder * compilation,IOType ioType,uint32_t index,const ANeuralNetworksOperandType * type,uint32_t offset,uint32_t length) const104 bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index,
105 const ANeuralNetworksOperandType* type, uint32_t offset,
106 uint32_t length) const override {
107 NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0)
108 << "invalid compilation role.";
109 NN_RET_CHECK(offset == 0 && length == 0)
110 << "non-zero offset and/or length for driver-allocated memory.";
111 if (type) {
112 const bool isTensor = TypeManager::get()->isTensorType(kOperand.type);
113 NN_RET_CHECK(isTensor || type->dimensionCount == 0)
114 << "invalid dimensions for scalar memory.";
115 std::vector<uint32_t> dimensions(type->dimensions,
116 type->dimensions + type->dimensionCount);
117 // We only check against kInitialDimensions here.
118 // For input memories, mUpdatedDimensions will be checked in validateInputDimensions
119 // at the beginning of a computation.
120 const auto combined = combineDimensions(dimensions, kInitialDimensions);
121 NN_RET_CHECK(combined.has_value())
122 << "incompatible dimensions between request and memory. (request: "
123 << toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")";
124 }
125 return true;
126 }
127
validateInputDimensions(const std::vector<uint32_t> & dimensions) const128 bool validateInputDimensions(const std::vector<uint32_t>& dimensions) const override {
129 NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input";
130 NN_RET_CHECK(dimensions == mUpdatedDimensions)
131 << "incompatible input dimensions between request and memory. (request: "
132 << toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")";
133 return true;
134 }
135
getMetadata() const136 Metadata getMetadata() const override {
137 return {.logicalSize = TypeManager::get()->getSizeOfData(kOperand.type, mUpdatedDimensions),
138 .dimensions = mUpdatedDimensions,
139 .operand = kOperand};
140 }
141
updateMetadata(const Metadata & metadata)142 bool updateMetadata(const Metadata& metadata) override {
143 NN_RET_CHECK(!metadata.operand.has_value() ||
144 (metadata.operand->type == kOperand.type &&
145 metadata.operand->scale == kOperand.scale &&
146 metadata.operand->zeroPoint == kOperand.zeroPoint &&
147 metadata.operand->extraParams == kOperand.extraParams));
148
149 NN_RET_CHECK(metadata.dimensions.empty() ||
150 TypeManager::get()->isTensorType(kOperand.type));
151 auto combined = combineDimensions(metadata.dimensions, kInitialDimensions);
152 NN_RET_CHECK(combined.has_value());
153 NN_RET_CHECK(metadata.logicalSize == 0 ||
154 metadata.logicalSize ==
155 TypeManager::get()->getSizeOfData(kOperand.type, combined.value()));
156 mUpdatedDimensions = std::move(combined.value());
157 return true;
158 }
159
createdWithUnknownShape() const160 bool createdWithUnknownShape() const override {
161 return TypeManager::get()->getSizeOfData(kOperand.type, kInitialDimensions) == 0;
162 }
163
setInitialized(bool initialized)164 void setInitialized(bool initialized) override { mInitialized = initialized; }
isInitialized() const165 bool isInitialized() const override { return mInitialized; }
166
167 private:
168 const std::set<CompilationRole> kCompilationRoles;
169
170 // Keep track of the data type, scale, zero point, and extra parameters of the target operand.
171 // Other fields will be ignored, including dimensions, lifetime, location, etc.
172 const Operand kOperand;
173
174 // The dimensions of the memory when the memory object is created.
175 // May have unknown dimensions or rank.
176 const std::vector<uint32_t> kInitialDimensions;
177
178 // The updated dimensions after a successful execution or memory copying.
179 std::vector<uint32_t> mUpdatedDimensions;
180
181 bool mInitialized = false;
182 };
183
184 } // namespace
185
Memory(hal::hidl_memory memory)186 Memory::Memory(hal::hidl_memory memory)
187 : kHidlMemory(std::move(memory)),
188 mValidator(std::make_unique<SizedMemoryValidator>(kHidlMemory.size())) {}
189
Memory(hal::hidl_memory memory,std::unique_ptr<MemoryValidatorBase> validator)190 Memory::Memory(hal::hidl_memory memory, std::unique_ptr<MemoryValidatorBase> validator)
191 : kHidlMemory(std::move(memory)), mValidator(std::move(validator)) {}
192
Memory(sp<hal::IBuffer> buffer,uint32_t token)193 Memory::Memory(sp<hal::IBuffer> buffer, uint32_t token)
194 : kBuffer(std::move(buffer)), kToken(token) {}
195
~Memory()196 Memory::~Memory() {
197 for (const auto& [ptr, weakBurst] : mUsedBy) {
198 if (const std::shared_ptr<ExecutionBurstController> burst = weakBurst.lock()) {
199 burst->freeMemory(getKey());
200 }
201 }
202 }
203
getMemoryPool() const204 Request::MemoryPool Memory::getMemoryPool() const {
205 Request::MemoryPool pool;
206 if (kToken > 0) {
207 pool.token(kToken);
208 } else {
209 pool.hidlMemory(kHidlMemory);
210 }
211 return pool;
212 }
213
getRunTimePoolInfo() const214 std::optional<RunTimePoolInfo> Memory::getRunTimePoolInfo() const {
215 std::lock_guard<std::mutex> guard(mMutex);
216 if (!mHasCachedRunTimePoolInfo) {
217 mCachedRunTimePoolInfo = RunTimePoolInfo::createFromHidlMemory(kHidlMemory);
218 mHasCachedRunTimePoolInfo = true;
219 }
220 return mCachedRunTimePoolInfo;
221 }
222
getKey() const223 intptr_t Memory::getKey() const {
224 return reinterpret_cast<intptr_t>(this);
225 }
226
usedBy(const std::shared_ptr<ExecutionBurstController> & burst) const227 void Memory::usedBy(const std::shared_ptr<ExecutionBurstController>& burst) const {
228 std::lock_guard<std::mutex> guard(mMutex);
229 mUsedBy.emplace(burst.get(), burst);
230 }
231
copyHidlMemories(const std::optional<RunTimePoolInfo> & src,const std::optional<RunTimePoolInfo> & dst)232 static int copyHidlMemories(const std::optional<RunTimePoolInfo>& src,
233 const std::optional<RunTimePoolInfo>& dst) {
234 if (!src.has_value() || !dst.has_value()) {
235 LOG(ERROR) << "ANeuralNetworksMemory_copy -- unable to map memory";
236 return ANEURALNETWORKS_UNMAPPABLE;
237 }
238 if (src->getSize() != dst->getSize()) {
239 LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memory size";
240 return ANEURALNETWORKS_BAD_DATA;
241 }
242 CHECK(src->getBuffer() != nullptr);
243 CHECK(dst->getBuffer() != nullptr);
244 std::copy(src->getBuffer(), src->getBuffer() + src->getSize(), dst->getBuffer());
245 dst->flush();
246 return ANEURALNETWORKS_NO_ERROR;
247 }
248
copyIBufferToHidlMemory(const sp<IBuffer> & src,const hidl_memory & dst)249 int copyIBufferToHidlMemory(const sp<IBuffer>& src, const hidl_memory& dst) {
250 const auto ret = src->copyTo(dst);
251 if (!ret.isOk()) {
252 LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description();
253 return ANEURALNETWORKS_OP_FAILED;
254 }
255 return convertErrorStatusToResultCode(static_cast<ErrorStatus>(ret));
256 }
257
copyHidlMemoryToIBuffer(const hidl_memory & src,const sp<IBuffer> & dst,const std::vector<uint32_t> & dimensions)258 int copyHidlMemoryToIBuffer(const hidl_memory& src, const sp<IBuffer>& dst,
259 const std::vector<uint32_t>& dimensions) {
260 const auto ret = dst->copyFrom(src, dimensions);
261 if (!ret.isOk()) {
262 LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.description();
263 return ANEURALNETWORKS_OP_FAILED;
264 }
265 return convertErrorStatusToResultCode(static_cast<ErrorStatus>(ret));
266 }
267
copyIBuffers(const sp<IBuffer> & src,const sp<IBuffer> & dst,const MemoryValidatorBase::Metadata & srcMetadata)268 static int copyIBuffers(const sp<IBuffer>& src, const sp<IBuffer>& dst,
269 const MemoryValidatorBase::Metadata& srcMetadata) {
270 const auto [n, memory] = MemoryRuntimeAHWB::create(srcMetadata.logicalSize);
271 NN_RETURN_IF_ERROR(n);
272 const hidl_memory& hidlMemory = memory->getHidlMemory();
273 if (!hidlMemory.valid()) return ANEURALNETWORKS_OUT_OF_MEMORY;
274 NN_RETURN_IF_ERROR(copyIBufferToHidlMemory(src, hidlMemory));
275 NN_RETURN_IF_ERROR(copyHidlMemoryToIBuffer(hidlMemory, dst, srcMetadata.dimensions));
276 return ANEURALNETWORKS_NO_ERROR;
277 }
278
copyInternal(const Memory & src,const Memory & dst)279 static int copyInternal(const Memory& src, const Memory& dst) {
280 if (&src == &dst) return ANEURALNETWORKS_NO_ERROR;
281
282 if (!src.getValidator().isInitialized()) {
283 LOG(ERROR) << "ANeuralNetworksMemory_copy -- uninitialized source memory";
284 return ANEURALNETWORKS_BAD_DATA;
285 }
286
287 const auto srcMetadata = src.getValidator().getMetadata();
288 if (!dst.getValidator().updateMetadata(srcMetadata)) {
289 LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memories";
290 return ANEURALNETWORKS_BAD_DATA;
291 }
292
293 bool srcHasHidlMemory = src.getHidlMemory().valid();
294 bool dstHasHidlMemory = dst.getHidlMemory().valid();
295 bool srcHasIBuffer = src.getIBuffer() != nullptr;
296 bool dstHasIBuffer = dst.getIBuffer() != nullptr;
297 if (srcHasIBuffer && dstHasIBuffer) {
298 return copyIBuffers(src.getIBuffer(), dst.getIBuffer(), srcMetadata);
299 } else if (srcHasHidlMemory && dstHasHidlMemory) {
300 return copyHidlMemories(src.getRunTimePoolInfo(), dst.getRunTimePoolInfo());
301 } else if (srcHasHidlMemory && dstHasIBuffer) {
302 return copyHidlMemoryToIBuffer(src.getHidlMemory(), dst.getIBuffer(),
303 srcMetadata.dimensions);
304 } else if (srcHasIBuffer && dstHasHidlMemory) {
305 return copyIBufferToHidlMemory(src.getIBuffer(), dst.getHidlMemory());
306 }
307 return ANEURALNETWORKS_OP_FAILED;
308 }
309
copy(const Memory & src,const Memory & dst)310 int Memory::copy(const Memory& src, const Memory& dst) {
311 int n = copyInternal(src, dst);
312 dst.getValidator().setInitialized(n == ANEURALNETWORKS_NO_ERROR);
313 return n;
314 }
315
badState(const char * name) const316 bool MemoryBuilder::badState(const char* name) const {
317 if (mFinished) {
318 LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished";
319 return true;
320 }
321 return false;
322 }
323
addRole(const CompilationBuilder & compilation,IOType ioType,uint32_t index,float freq)324 int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index,
325 float freq) {
326 const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole";
327 if (badState(tag)) {
328 return ANEURALNETWORKS_BAD_STATE;
329 }
330 if (mRoles.count({&compilation, ioType, index}) > 0) {
331 LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
332 << " -- the same operand is specified twice.";
333 return ANEURALNETWORKS_BAD_DATA;
334 }
335
336 std::vector<std::tuple<const PreparedModel*, IOType, uint32_t>> roles;
337 auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) {
338 roles.emplace_back(preparedModel, type, index);
339 };
340 if (ioType == IOType::INPUT) {
341 if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
342 return ANEURALNETWORKS_BAD_DATA;
343 }
344 } else {
345 if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
346 return ANEURALNETWORKS_BAD_DATA;
347 }
348 }
349
350 const ModelBuilder* model = compilation.getModel();
351 CHECK(model != nullptr);
352 Operand operand;
353 if (ioType == IOType::INPUT) {
354 if (index >= model->inputCount()) {
355 LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range.";
356 return ANEURALNETWORKS_BAD_DATA;
357 }
358 operand = model->getInputOperand(index);
359 } else {
360 if (index >= model->outputCount()) {
361 LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range.";
362 return ANEURALNETWORKS_BAD_DATA;
363 }
364 operand = model->getOutputOperand(index);
365 }
366 if (mOperand.has_value()) {
367 if (operand.type != mOperand->type || operand.scale != mOperand->scale ||
368 operand.zeroPoint != mOperand->zeroPoint ||
369 operand.extraParams != mOperand->extraParams) {
370 LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
371 << " -- incompatible operand metadata.";
372 return ANEURALNETWORKS_BAD_DATA;
373 }
374 }
375 if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) {
376 LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
377 return ANEURALNETWORKS_BAD_DATA;
378 }
379 auto combined = combineDimensions(mDesc.dimensions, operand.dimensions);
380 if (!combined.has_value()) {
381 LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
382 return ANEURALNETWORKS_BAD_DATA;
383 }
384
385 if (freq > 1.0f || freq <= 0.0f) {
386 LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << freq;
387 return ANEURALNETWORKS_BAD_DATA;
388 }
389
390 mRoles.emplace(&compilation, ioType, index);
391 for (const auto [preparedModel, type, ind] : roles) {
392 uint32_t modelIndex = mDesc.preparedModels.add(preparedModel);
393 BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .frequency = freq};
394 if (type == IOType::INPUT) {
395 mDesc.inputRoles.push_back(role);
396 } else {
397 mDesc.outputRoles.push_back(role);
398 }
399 }
400 mOperand = std::move(operand);
401 mDesc.dimensions = std::move(combined.value());
402 return ANEURALNETWORKS_NO_ERROR;
403 }
404
setDimensions(const std::vector<uint32_t> & dimensions)405 int MemoryBuilder::setDimensions(const std::vector<uint32_t>& dimensions) {
406 if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE;
407 if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) &&
408 !dimensions.empty()) {
409 LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for "
410 "scalars.";
411 return ANEURALNETWORKS_BAD_DATA;
412 }
413 auto combined = combineDimensions(mDesc.dimensions, dimensions);
414 if (!combined.has_value()) {
415 LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions.";
416 return ANEURALNETWORKS_BAD_DATA;
417 }
418 mDesc.dimensions = std::move(combined.value());
419 return ANEURALNETWORKS_NO_ERROR;
420 }
421
logMemoryDescriptorToInfo(const MemoryDescriptor & desc,const Operand & operand)422 static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) {
423 LOG(INFO) << "MemoryDescriptor start";
424 LOG(INFO) << " Data type: " << toString(operand.type);
425 LOG(INFO) << " Scale: " << toString(operand.scale);
426 LOG(INFO) << " Zero point: " << toString(operand.zeroPoint);
427 LOG(INFO) << " Extra params: " << toString(operand.extraParams);
428 LOG(INFO) << " Dimensions: " << toString(desc.dimensions);
429 LOG(INFO) << " Prepared models [" << desc.preparedModels.size() << "]:";
430 for (const auto* preparedModel : desc.preparedModels) {
431 LOG(INFO) << " service = " << preparedModel->getDevice()->getName();
432 }
433 LOG(INFO) << " Input roles [" << desc.inputRoles.size() << "]:";
434 for (const auto& usage : desc.inputRoles) {
435 LOG(INFO) << " " << toString(usage);
436 }
437 LOG(INFO) << " Output roles [" << desc.outputRoles.size() << "]:";
438 for (const auto& usage : desc.outputRoles) {
439 LOG(INFO) << " " << toString(usage);
440 }
441 LOG(INFO) << "MemoryDescriptor end";
442 }
443
getDevices(const MemoryDescriptor & desc)444 static std::set<const Device*> getDevices(const MemoryDescriptor& desc) {
445 std::set<const Device*> devices;
446 for (const auto* preparedModel : desc.preparedModels) {
447 const auto* device = preparedModel->getDevice();
448 devices.insert(device);
449 }
450 return devices;
451 }
452
finish()453 int MemoryBuilder::finish() {
454 if (badState("finish")) return ANEURALNETWORKS_BAD_STATE;
455 if (mRoles.empty()) {
456 LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified.";
457 return ANEURALNETWORKS_BAD_DATA;
458 }
459 CHECK(mOperand.has_value());
460 if (VLOG_IS_ON(MEMORY)) {
461 logMemoryDescriptorToInfo(mDesc, mOperand.value());
462 }
463 std::set<const Device*> devices = getDevices(mDesc);
464 if (devices.empty()) {
465 // This can happen with interpreted control flow.
466 mAllocator = nullptr;
467 } else if (devices.size() == 1) {
468 mAllocator = *devices.begin();
469 VLOG(MEMORY) << "Using " << mAllocator->getName() << " as allocator.";
470 } else {
471 LOG(INFO) << "MemoryBuilder::finish -- cannot handle multiple devices.";
472 mAllocator = nullptr;
473 }
474 mSupportsAhwb = std::all_of(devices.begin(), devices.end(), [](const auto* device) {
475 return device->getFeatureLevel() >= __ANDROID_API_R__;
476 });
477 mShouldFallback = std::none_of(mRoles.begin(), mRoles.end(), [](const auto& role) {
478 const auto* cb = std::get<const CompilationBuilder*>(role);
479 return cb->createdWithExplicitDeviceList();
480 });
481 const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
482 mShouldFallback &= (size != 0);
483 mFinished = true;
484 return ANEURALNETWORKS_NO_ERROR;
485 }
486
allocate() const487 std::pair<int, std::unique_ptr<Memory>> MemoryBuilder::allocate() const {
488 if (!mFinished) {
489 LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor";
490 return {ANEURALNETWORKS_BAD_STATE, nullptr};
491 }
492
493 int n = ANEURALNETWORKS_OP_FAILED;
494 std::unique_ptr<Memory> memory;
495 CHECK(mOperand.has_value());
496
497 // Try allocate the memory on device.
498 if (mAllocator != nullptr) {
499 std::tie(n, memory) = mAllocator->allocate(mDesc, mOperand->type);
500 }
501
502 // If failed, fallback to ashmem or BLOB mode AHWB.
503 if (n != ANEURALNETWORKS_NO_ERROR && mShouldFallback) {
504 const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
505 if (mSupportsAhwb) {
506 VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to BLOB mode AHWB.";
507 std::tie(n, memory) = MemoryRuntimeAHWB::create(size);
508 } else {
509 VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem.";
510 std::tie(n, memory) = MemoryAshmem::create(size);
511 }
512 }
513
514 if (n == ANEURALNETWORKS_NO_ERROR) {
515 CHECK(memory != nullptr);
516 auto validator =
517 std::make_unique<DeviceMemoryValidator>(mRoles, mOperand.value(), mDesc.dimensions);
518 memory->setValidator(std::move(validator));
519 }
520 return {n, std::move(memory)};
521 }
522
create(uint32_t size)523 std::pair<int, std::unique_ptr<MemoryAshmem>> MemoryAshmem::create(uint32_t size) {
524 hidl_memory hidlMemory = allocateSharedMemory(size);
525 sp<IMemory> mapped = mapMemory(hidlMemory);
526 if (mapped == nullptr || mapped->getPointer() == nullptr) {
527 LOG(ERROR) << "Memory::create failed";
528 return {ANEURALNETWORKS_OUT_OF_MEMORY, nullptr};
529 }
530 return {ANEURALNETWORKS_NO_ERROR,
531 std::make_unique<MemoryAshmem>(std::move(mapped), std::move(hidlMemory))};
532 }
533
getPointer() const534 uint8_t* MemoryAshmem::getPointer() const {
535 return static_cast<uint8_t*>(static_cast<void*>(kMappedMemory->getPointer()));
536 }
537
MemoryAshmem(sp<IMemory> mapped,hidl_memory memory)538 MemoryAshmem::MemoryAshmem(sp<IMemory> mapped, hidl_memory memory)
539 : Memory(std::move(memory)), kMappedMemory(std::move(mapped)) {}
540
create(size_t size,int prot,int fd,size_t offset)541 std::pair<int, std::unique_ptr<MemoryFd>> MemoryFd::create(size_t size, int prot, int fd,
542 size_t offset) {
543 if (size == 0 || fd < 0) {
544 LOG(ERROR) << "Invalid size or fd";
545 return {ANEURALNETWORKS_BAD_DATA, nullptr};
546 }
547
548 // Duplicate the file descriptor so MemoryFd owns its own version.
549 int dupfd = dup(fd);
550 if (dupfd == -1) {
551 LOG(ERROR) << "Failed to dup the fd";
552 // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct
553 // error to return here?
554 return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr};
555 }
556
557 // Create a temporary native handle to own the dupfd.
558 native_handle_t* nativeHandle = native_handle_create(1, 3);
559 if (nativeHandle == nullptr) {
560 LOG(ERROR) << "Failed to create native_handle";
561 // TODO(b/120417090): is ANEURALNETWORKS_UNEXPECTED_NULL the correct
562 // error to return here?
563 return {ANEURALNETWORKS_UNEXPECTED_NULL, nullptr};
564 }
565 nativeHandle->data[0] = dupfd;
566 nativeHandle->data[1] = prot;
567 const uint64_t bits = static_cast<uint64_t>(offset);
568 nativeHandle->data[2] = (int32_t)(uint32_t)(bits & 0xffffffff);
569 nativeHandle->data[3] = (int32_t)(uint32_t)(bits >> 32);
570
571 // Create a hidl_handle which owns the native handle and fd so that we don't
572 // have to manually clean either the native handle or the fd.
573 hardware::hidl_handle hidlHandle;
574 hidlHandle.setTo(nativeHandle, /*shouldOwn=*/true);
575
576 // Push the hidl_handle into a hidl_memory object. The hidl_memory object is
577 // responsible for cleaning the hidl_handle, the native handle, and the fd.
578 hidl_memory hidlMemory = hidl_memory("mmap_fd", std::move(hidlHandle), size);
579
580 return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFd>(std::move(hidlMemory))};
581 }
582
MemoryFd(hidl_memory memory)583 MemoryFd::MemoryFd(hidl_memory memory) : Memory(std::move(memory)) {}
584
create(const AHardwareBuffer & ahwb)585 std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const AHardwareBuffer& ahwb) {
586 AHardwareBuffer_Desc bufferDesc;
587 AHardwareBuffer_describe(&ahwb, &bufferDesc);
588 const native_handle_t* handle = AHardwareBuffer_getNativeHandle(&ahwb);
589 hidl_memory hidlMemory;
590 std::unique_ptr<MemoryValidatorBase> validator;
591 if (bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB) {
592 hidlMemory = hidl_memory("hardware_buffer_blob", handle, bufferDesc.width);
593 validator = std::make_unique<SizedMemoryValidator>(bufferDesc.width);
594 } else {
595 // memory size is not used.
596 hidlMemory = hidl_memory("hardware_buffer", handle, 0);
597 validator = std::make_unique<AHardwareBufferNonBlobValidator>();
598 }
599 auto memory = std::make_unique<MemoryAHWB>(std::move(hidlMemory), std::move(validator));
600 return {ANEURALNETWORKS_NO_ERROR, std::move(memory)};
601 };
602
create(uint32_t size)603 std::pair<int, std::unique_ptr<MemoryRuntimeAHWB>> MemoryRuntimeAHWB::create(uint32_t size) {
604 AHardwareBuffer* ahwb = nullptr;
605 const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
606 const AHardwareBuffer_Desc desc = {
607 .width = size,
608 .height = 1,
609 .layers = 1,
610 .format = AHARDWAREBUFFER_FORMAT_BLOB,
611 .usage = usage,
612 .stride = size,
613 };
614 int err = AHardwareBuffer_allocate(&desc, &ahwb);
615 if (err != 0 || ahwb == nullptr) {
616 LOG(ERROR) << "Failed to allocate BLOB mode AHWB.";
617 return {ANEURALNETWORKS_OP_FAILED, nullptr};
618 }
619 auto allocateGuard = base::make_scope_guard([&ahwb]() { AHardwareBuffer_release(ahwb); });
620
621 void* buffer = nullptr;
622 err = AHardwareBuffer_lock(ahwb, usage, -1, nullptr, &buffer);
623 if (err != 0 || buffer == nullptr) {
624 LOG(ERROR) << "Failed to lock BLOB mode AHWB.";
625 return {ANEURALNETWORKS_OP_FAILED, nullptr};
626 }
627 auto lockGuard = base::make_scope_guard([&ahwb]() { AHardwareBuffer_unlock(ahwb, nullptr); });
628
629 const native_handle_t* handle = AHardwareBuffer_getNativeHandle(ahwb);
630 if (handle == nullptr) {
631 LOG(ERROR) << "Failed to retrieve the native handle from the AHWB.";
632 return {ANEURALNETWORKS_OP_FAILED, nullptr};
633 }
634
635 hidl_memory hidlMemory = hidl_memory("hardware_buffer_blob", handle, desc.width);
636 auto memory = std::make_unique<MemoryRuntimeAHWB>(std::move(hidlMemory), ahwb,
637 static_cast<uint8_t*>(buffer));
638 allocateGuard.Disable();
639 lockGuard.Disable();
640 return {ANEURALNETWORKS_NO_ERROR, std::move(memory)};
641 }
642
MemoryRuntimeAHWB(hal::hidl_memory memory,AHardwareBuffer * ahwb,uint8_t * buffer)643 MemoryRuntimeAHWB::MemoryRuntimeAHWB(hal::hidl_memory memory, AHardwareBuffer* ahwb,
644 uint8_t* buffer)
645 : Memory(std::move(memory)), mAhwb(ahwb), mBuffer(buffer) {
646 CHECK(mAhwb != nullptr);
647 CHECK(mBuffer != nullptr);
648 }
649
~MemoryRuntimeAHWB()650 MemoryRuntimeAHWB::~MemoryRuntimeAHWB() {
651 AHardwareBuffer_unlock(mAhwb, nullptr);
652 AHardwareBuffer_release(mAhwb);
653 }
654
create(sp<hal::IBuffer> buffer,uint32_t token)655 std::pair<int, std::unique_ptr<MemoryFromDevice>> MemoryFromDevice::create(sp<hal::IBuffer> buffer,
656 uint32_t token) {
657 if (buffer == nullptr) {
658 LOG(ERROR) << "nullptr IBuffer for device memory.";
659 return {ANEURALNETWORKS_OP_FAILED, nullptr};
660 }
661 if (token <= 0) {
662 LOG(ERROR) << "Invalid token for device memory: " << token;
663 return {ANEURALNETWORKS_OP_FAILED, nullptr};
664 }
665 return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFromDevice>(std::move(buffer), token)};
666 };
667
MemoryFromDevice(sp<hal::IBuffer> buffer,uint32_t token)668 MemoryFromDevice::MemoryFromDevice(sp<hal::IBuffer> buffer, uint32_t token)
669 : Memory(std::move(buffer), token) {}
670
671 } // namespace nn
672 } // namespace android
673