1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <android-base/stringprintf.h>
18 #include <compositionengine/DisplayColorProfile.h>
19 #include <compositionengine/LayerFE.h>
20 #include <compositionengine/LayerFECompositionState.h>
21 #include <compositionengine/Output.h>
22 #include <compositionengine/impl/OutputCompositionState.h>
23 #include <compositionengine/impl/OutputLayer.h>
24 #include <compositionengine/impl/OutputLayerCompositionState.h>
25
26 // TODO(b/129481165): remove the #pragma below and fix conversion issues
27 #pragma clang diagnostic push
28 #pragma clang diagnostic ignored "-Wconversion"
29
30 #include "DisplayHardware/HWComposer.h"
31
32 // TODO(b/129481165): remove the #pragma below and fix conversion issues
33 #pragma clang diagnostic pop // ignored "-Wconversion"
34
35 namespace android::compositionengine {
36
37 OutputLayer::~OutputLayer() = default;
38
39 namespace impl {
40
41 namespace {
42
reduce(const FloatRect & win,const Region & exclude)43 FloatRect reduce(const FloatRect& win, const Region& exclude) {
44 if (CC_LIKELY(exclude.isEmpty())) {
45 return win;
46 }
47 // Convert through Rect (by rounding) for lack of FloatRegion
48 return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
49 }
50
51 } // namespace
52
createOutputLayer(const compositionengine::Output & output,const sp<compositionengine::LayerFE> & layerFE)53 std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output,
54 const sp<compositionengine::LayerFE>& layerFE) {
55 return createOutputLayerTemplated<OutputLayer>(output, layerFE);
56 }
57
58 OutputLayer::~OutputLayer() = default;
59
setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer)60 void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) {
61 auto& state = editState();
62 if (hwcLayer) {
63 state.hwc.emplace(std::move(hwcLayer));
64 } else {
65 state.hwc.reset();
66 }
67 }
68
calculateInitialCrop() const69 Rect OutputLayer::calculateInitialCrop() const {
70 const auto& layerState = *getLayerFE().getCompositionState();
71
72 // apply the projection's clipping to the window crop in
73 // layerstack space, and convert-back to layer space.
74 // if there are no window scaling involved, this operation will map to full
75 // pixels in the buffer.
76
77 FloatRect activeCropFloat =
78 reduce(layerState.geomLayerBounds, layerState.transparentRegionHint);
79
80 const Rect& viewport = getOutput().getState().viewport;
81 const ui::Transform& layerTransform = layerState.geomLayerTransform;
82 const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
83 // Transform to screen space.
84 activeCropFloat = layerTransform.transform(activeCropFloat);
85 activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect());
86 // Back to layer space to work with the content crop.
87 activeCropFloat = inverseLayerTransform.transform(activeCropFloat);
88
89 // This needs to be here as transform.transform(Rect) computes the
90 // transformed rect and then takes the bounding box of the result before
91 // returning. This means
92 // transform.inverse().transform(transform.transform(Rect)) != Rect
93 // in which case we need to make sure the final rect is clipped to the
94 // display bounds.
95 Rect activeCrop{activeCropFloat};
96 if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) {
97 activeCrop.clear();
98 }
99 return activeCrop;
100 }
101
calculateOutputSourceCrop() const102 FloatRect OutputLayer::calculateOutputSourceCrop() const {
103 const auto& layerState = *getLayerFE().getCompositionState();
104 const auto& outputState = getOutput().getState();
105
106 if (!layerState.geomUsesSourceCrop) {
107 return {};
108 }
109
110 // the content crop is the area of the content that gets scaled to the
111 // layer's size. This is in buffer space.
112 FloatRect crop = layerState.geomContentCrop.toFloatRect();
113
114 // In addition there is a WM-specified crop we pull from our drawing state.
115 Rect activeCrop = calculateInitialCrop();
116 const Rect& bufferSize = layerState.geomBufferSize;
117
118 int winWidth = bufferSize.getWidth();
119 int winHeight = bufferSize.getHeight();
120
121 // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1])
122 // if display frame hasn't been set and the parent is an unbounded layer.
123 if (winWidth < 0 && winHeight < 0) {
124 return crop;
125 }
126
127 // Transform the window crop to match the buffer coordinate system,
128 // which means using the inverse of the current transform set on the
129 // SurfaceFlingerConsumer.
130 uint32_t invTransform = layerState.geomBufferTransform;
131 if (layerState.geomBufferUsesDisplayInverseTransform) {
132 /*
133 * the code below applies the primary display's inverse transform to the
134 * buffer
135 */
136 uint32_t invTransformOrient = outputState.orientation;
137 // calculate the inverse transform
138 if (invTransformOrient & HAL_TRANSFORM_ROT_90) {
139 invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
140 }
141 // and apply to the current transform
142 invTransform =
143 (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation();
144 }
145
146 if (invTransform & HAL_TRANSFORM_ROT_90) {
147 // If the activeCrop has been rotate the ends are rotated but not
148 // the space itself so when transforming ends back we can't rely on
149 // a modification of the axes of rotation. To account for this we
150 // need to reorient the inverse rotation in terms of the current
151 // axes of rotation.
152 bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0;
153 bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0;
154 if (isHFlipped == isVFlipped) {
155 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
156 }
157 std::swap(winWidth, winHeight);
158 }
159 const Rect winCrop =
160 activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight());
161
162 // below, crop is intersected with winCrop expressed in crop's coordinate space
163 const float xScale = crop.getWidth() / float(winWidth);
164 const float yScale = crop.getHeight() / float(winHeight);
165
166 const float insetLeft = winCrop.left * xScale;
167 const float insetTop = winCrop.top * yScale;
168 const float insetRight = (winWidth - winCrop.right) * xScale;
169 const float insetBottom = (winHeight - winCrop.bottom) * yScale;
170
171 crop.left += insetLeft;
172 crop.top += insetTop;
173 crop.right -= insetRight;
174 crop.bottom -= insetBottom;
175
176 return crop;
177 }
178
calculateOutputDisplayFrame() const179 Rect OutputLayer::calculateOutputDisplayFrame() const {
180 const auto& layerState = *getLayerFE().getCompositionState();
181 const auto& outputState = getOutput().getState();
182
183 // apply the layer's transform, followed by the display's global transform
184 // here we're guaranteed that the layer's transform preserves rects
185 Region activeTransparentRegion = layerState.transparentRegionHint;
186 const ui::Transform& layerTransform = layerState.geomLayerTransform;
187 const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
188 const Rect& bufferSize = layerState.geomBufferSize;
189 Rect activeCrop = layerState.geomCrop;
190 if (!activeCrop.isEmpty() && bufferSize.isValid()) {
191 activeCrop = layerTransform.transform(activeCrop);
192 if (!activeCrop.intersect(outputState.viewport, &activeCrop)) {
193 activeCrop.clear();
194 }
195 activeCrop = inverseLayerTransform.transform(activeCrop, true);
196 // This needs to be here as transform.transform(Rect) computes the
197 // transformed rect and then takes the bounding box of the result before
198 // returning. This means
199 // transform.inverse().transform(transform.transform(Rect)) != Rect
200 // in which case we need to make sure the final rect is clipped to the
201 // display bounds.
202 if (!activeCrop.intersect(bufferSize, &activeCrop)) {
203 activeCrop.clear();
204 }
205 // mark regions outside the crop as transparent
206 activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top));
207 activeTransparentRegion.orSelf(
208 Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight()));
209 activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
210 activeTransparentRegion.orSelf(
211 Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom));
212 }
213
214 // reduce uses a FloatRect to provide more accuracy during the
215 // transformation. We then round upon constructing 'frame'.
216 Rect frame{
217 layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))};
218 if (!frame.intersect(outputState.viewport, &frame)) {
219 frame.clear();
220 }
221 const ui::Transform displayTransform{outputState.transform};
222
223 return displayTransform.transform(frame);
224 }
225
calculateOutputRelativeBufferTransform(uint32_t internalDisplayRotationFlags) const226 uint32_t OutputLayer::calculateOutputRelativeBufferTransform(
227 uint32_t internalDisplayRotationFlags) const {
228 const auto& layerState = *getLayerFE().getCompositionState();
229 const auto& outputState = getOutput().getState();
230
231 /*
232 * Transformations are applied in this order:
233 * 1) buffer orientation/flip/mirror
234 * 2) state transformation (window manager)
235 * 3) layer orientation (screen orientation)
236 * (NOTE: the matrices are multiplied in reverse order)
237 */
238 const ui::Transform& layerTransform = layerState.geomLayerTransform;
239 const ui::Transform displayTransform{outputState.transform};
240 const ui::Transform bufferTransform{layerState.geomBufferTransform};
241 ui::Transform transform(displayTransform * layerTransform * bufferTransform);
242
243 if (layerState.geomBufferUsesDisplayInverseTransform) {
244 /*
245 * We must apply the internal display's inverse transform to the buffer
246 * transform, and not the one for the output this layer is on.
247 */
248 uint32_t invTransform = internalDisplayRotationFlags;
249
250 // calculate the inverse transform
251 if (invTransform & HAL_TRANSFORM_ROT_90) {
252 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
253 }
254
255 /*
256 * Here we cancel out the orientation component of the WM transform.
257 * The scaling and translate components are already included in our bounds
258 * computation so it's enough to just omit it in the composition.
259 * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why.
260 */
261 transform = ui::Transform(invTransform) * displayTransform * bufferTransform;
262 }
263
264 // this gives us only the "orientation" component of the transform
265 return transform.getOrientation();
266 }
267
updateCompositionState(bool includeGeometry,bool forceClientComposition,ui::Transform::RotationFlags internalDisplayRotationFlags)268 void OutputLayer::updateCompositionState(
269 bool includeGeometry, bool forceClientComposition,
270 ui::Transform::RotationFlags internalDisplayRotationFlags) {
271 const auto* layerFEState = getLayerFE().getCompositionState();
272 if (!layerFEState) {
273 return;
274 }
275
276 const auto& outputState = getOutput().getState();
277 const auto& profile = *getOutput().getDisplayColorProfile();
278 auto& state = editState();
279
280 if (includeGeometry) {
281 // Clear the forceClientComposition flag before it is set for any
282 // reason. Note that since it can be set by some checks below when
283 // updating the geometry state, we only clear it when updating the
284 // geometry since those conditions for forcing client composition won't
285 // go away otherwise.
286 state.forceClientComposition = false;
287
288 state.displayFrame = calculateOutputDisplayFrame();
289 state.sourceCrop = calculateOutputSourceCrop();
290 state.bufferTransform = static_cast<Hwc2::Transform>(
291 calculateOutputRelativeBufferTransform(internalDisplayRotationFlags));
292
293 if ((layerFEState->isSecure && !outputState.isSecure) ||
294 (state.bufferTransform & ui::Transform::ROT_INVALID)) {
295 state.forceClientComposition = true;
296 }
297 }
298
299 // Determine the output dependent dataspace for this layer. If it is
300 // colorspace agnostic, it just uses the dataspace chosen for the output to
301 // avoid the need for color conversion.
302 state.dataspace = layerFEState->isColorspaceAgnostic &&
303 outputState.targetDataspace != ui::Dataspace::UNKNOWN
304 ? outputState.targetDataspace
305 : layerFEState->dataspace;
306
307 // These are evaluated every frame as they can potentially change at any
308 // time.
309 if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) ||
310 forceClientComposition) {
311 state.forceClientComposition = true;
312 }
313 }
314
writeStateToHWC(bool includeGeometry)315 void OutputLayer::writeStateToHWC(bool includeGeometry) {
316 const auto& state = getState();
317 // Skip doing this if there is no HWC interface
318 if (!state.hwc) {
319 return;
320 }
321
322 auto& hwcLayer = (*state.hwc).hwcLayer;
323 if (!hwcLayer) {
324 ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s",
325 getLayerFE().getDebugName(), getOutput().getName().c_str());
326 return;
327 }
328
329 const auto* outputIndependentState = getLayerFE().getCompositionState();
330 if (!outputIndependentState) {
331 return;
332 }
333
334 auto requestedCompositionType = outputIndependentState->compositionType;
335
336 if (includeGeometry) {
337 writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType);
338 writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState);
339 }
340
341 writeOutputDependentPerFrameStateToHWC(hwcLayer.get());
342 writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState);
343
344 writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType);
345
346 // Always set the layer color after setting the composition type.
347 writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState);
348 }
349
writeOutputDependentGeometryStateToHWC(HWC2::Layer * hwcLayer,hal::Composition requestedCompositionType)350 void OutputLayer::writeOutputDependentGeometryStateToHWC(
351 HWC2::Layer* hwcLayer, hal::Composition requestedCompositionType) {
352 const auto& outputDependentState = getState();
353
354 if (auto error = hwcLayer->setDisplayFrame(outputDependentState.displayFrame);
355 error != hal::Error::NONE) {
356 ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
357 getLayerFE().getDebugName(), outputDependentState.displayFrame.left,
358 outputDependentState.displayFrame.top, outputDependentState.displayFrame.right,
359 outputDependentState.displayFrame.bottom, to_string(error).c_str(),
360 static_cast<int32_t>(error));
361 }
362
363 if (auto error = hwcLayer->setSourceCrop(outputDependentState.sourceCrop);
364 error != hal::Error::NONE) {
365 ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
366 "%s (%d)",
367 getLayerFE().getDebugName(), outputDependentState.sourceCrop.left,
368 outputDependentState.sourceCrop.top, outputDependentState.sourceCrop.right,
369 outputDependentState.sourceCrop.bottom, to_string(error).c_str(),
370 static_cast<int32_t>(error));
371 }
372
373 if (auto error = hwcLayer->setZOrder(outputDependentState.z); error != hal::Error::NONE) {
374 ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(),
375 outputDependentState.z, to_string(error).c_str(), static_cast<int32_t>(error));
376 }
377
378 // Solid-color layers should always use an identity transform.
379 const auto bufferTransform = requestedCompositionType != hal::Composition::SOLID_COLOR
380 ? outputDependentState.bufferTransform
381 : static_cast<hal::Transform>(0);
382 if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform));
383 error != hal::Error::NONE) {
384 ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(),
385 toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(),
386 static_cast<int32_t>(error));
387 }
388 }
389
writeOutputIndependentGeometryStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)390 void OutputLayer::writeOutputIndependentGeometryStateToHWC(
391 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) {
392 if (auto error = hwcLayer->setBlendMode(outputIndependentState.blendMode);
393 error != hal::Error::NONE) {
394 ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(),
395 toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(),
396 static_cast<int32_t>(error));
397 }
398
399 if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha);
400 error != hal::Error::NONE) {
401 ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(),
402 outputIndependentState.alpha, to_string(error).c_str(), static_cast<int32_t>(error));
403 }
404
405 if (auto error = hwcLayer->setInfo(static_cast<uint32_t>(outputIndependentState.type),
406 static_cast<uint32_t>(outputIndependentState.appId));
407 error != hal::Error::NONE) {
408 ALOGE("[%s] Failed to set info %s (%d)", getLayerFE().getDebugName(),
409 to_string(error).c_str(), static_cast<int32_t>(error));
410 }
411
412 for (const auto& [name, entry] : outputIndependentState.metadata) {
413 if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value);
414 error != hal::Error::NONE) {
415 ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(),
416 name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
417 }
418 }
419 }
420
writeOutputDependentPerFrameStateToHWC(HWC2::Layer * hwcLayer)421 void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) {
422 const auto& outputDependentState = getState();
423
424 // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry
425 // state and should not change every frame.
426 if (auto error = hwcLayer->setVisibleRegion(outputDependentState.outputSpaceVisibleRegion);
427 error != hal::Error::NONE) {
428 ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(),
429 to_string(error).c_str(), static_cast<int32_t>(error));
430 outputDependentState.outputSpaceVisibleRegion.dump(LOG_TAG);
431 }
432
433 if (auto error = hwcLayer->setDataspace(outputDependentState.dataspace);
434 error != hal::Error::NONE) {
435 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(),
436 outputDependentState.dataspace, to_string(error).c_str(),
437 static_cast<int32_t>(error));
438 }
439 }
440
writeOutputIndependentPerFrameStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)441 void OutputLayer::writeOutputIndependentPerFrameStateToHWC(
442 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) {
443 switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) {
444 case hal::Error::NONE:
445 break;
446 case hal::Error::UNSUPPORTED:
447 editState().forceClientComposition = true;
448 break;
449 default:
450 ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(),
451 to_string(error).c_str(), static_cast<int32_t>(error));
452 }
453
454 if (auto error = hwcLayer->setSurfaceDamage(outputIndependentState.surfaceDamage);
455 error != hal::Error::NONE) {
456 ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(),
457 to_string(error).c_str(), static_cast<int32_t>(error));
458 outputIndependentState.surfaceDamage.dump(LOG_TAG);
459 }
460
461 // Content-specific per-frame state
462 switch (outputIndependentState.compositionType) {
463 case hal::Composition::SOLID_COLOR:
464 // For compatibility, should be written AFTER the composition type.
465 break;
466 case hal::Composition::SIDEBAND:
467 writeSidebandStateToHWC(hwcLayer, outputIndependentState);
468 break;
469 case hal::Composition::CURSOR:
470 case hal::Composition::DEVICE:
471 writeBufferStateToHWC(hwcLayer, outputIndependentState);
472 break;
473 case hal::Composition::INVALID:
474 case hal::Composition::CLIENT:
475 // Ignored
476 break;
477 }
478 }
479
writeSolidColorStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)480 void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer,
481 const LayerFECompositionState& outputIndependentState) {
482 if (outputIndependentState.compositionType != hal::Composition::SOLID_COLOR) {
483 return;
484 }
485
486 hal::Color color = {static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.r)),
487 static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.g)),
488 static_cast<uint8_t>(std::round(255.0f * outputIndependentState.color.b)),
489 255};
490
491 if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) {
492 ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(),
493 to_string(error).c_str(), static_cast<int32_t>(error));
494 }
495 }
496
writeSidebandStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)497 void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer,
498 const LayerFECompositionState& outputIndependentState) {
499 if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle());
500 error != hal::Error::NONE) {
501 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(),
502 outputIndependentState.sidebandStream->handle(), to_string(error).c_str(),
503 static_cast<int32_t>(error));
504 }
505 }
506
writeBufferStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)507 void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer,
508 const LayerFECompositionState& outputIndependentState) {
509 auto supportedPerFrameMetadata =
510 getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata();
511 if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata,
512 outputIndependentState.hdrMetadata);
513 error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) {
514 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(),
515 to_string(error).c_str(), static_cast<int32_t>(error));
516 }
517
518 uint32_t hwcSlot = 0;
519 sp<GraphicBuffer> hwcBuffer;
520 // We need access to the output-dependent state for the buffer cache there,
521 // though otherwise the buffer is not output-dependent.
522 editState().hwc->hwcBufferCache.getHwcBuffer(outputIndependentState.bufferSlot,
523 outputIndependentState.buffer, &hwcSlot,
524 &hwcBuffer);
525
526 if (auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, outputIndependentState.acquireFence);
527 error != hal::Error::NONE) {
528 ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(),
529 outputIndependentState.buffer->handle, to_string(error).c_str(),
530 static_cast<int32_t>(error));
531 }
532 }
533
writeCompositionTypeToHWC(HWC2::Layer * hwcLayer,hal::Composition requestedCompositionType)534 void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer,
535 hal::Composition requestedCompositionType) {
536 auto& outputDependentState = editState();
537
538 // If we are forcing client composition, we need to tell the HWC
539 if (outputDependentState.forceClientComposition) {
540 requestedCompositionType = hal::Composition::CLIENT;
541 }
542
543 // Set the requested composition type with the HWC whenever it changes
544 if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType) {
545 outputDependentState.hwc->hwcCompositionType = requestedCompositionType;
546
547 if (auto error = hwcLayer->setCompositionType(requestedCompositionType);
548 error != hal::Error::NONE) {
549 ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(),
550 toString(requestedCompositionType).c_str(), to_string(error).c_str(),
551 static_cast<int32_t>(error));
552 }
553 }
554 }
555
writeCursorPositionToHWC() const556 void OutputLayer::writeCursorPositionToHWC() const {
557 // Skip doing this if there is no HWC interface
558 auto hwcLayer = getHwcLayer();
559 if (!hwcLayer) {
560 return;
561 }
562
563 const auto* layerFEState = getLayerFE().getCompositionState();
564 if (!layerFEState) {
565 return;
566 }
567
568 const auto& outputState = getOutput().getState();
569
570 Rect frame = layerFEState->cursorFrame;
571 frame.intersect(outputState.viewport, &frame);
572 Rect position = outputState.transform.transform(frame);
573
574 if (auto error = hwcLayer->setCursorPosition(position.left, position.top);
575 error != hal::Error::NONE) {
576 ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)",
577 getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(),
578 static_cast<int32_t>(error));
579 }
580 }
581
getHwcLayer() const582 HWC2::Layer* OutputLayer::getHwcLayer() const {
583 const auto& state = getState();
584 return state.hwc ? state.hwc->hwcLayer.get() : nullptr;
585 }
586
requiresClientComposition() const587 bool OutputLayer::requiresClientComposition() const {
588 const auto& state = getState();
589 return !state.hwc || state.hwc->hwcCompositionType == hal::Composition::CLIENT;
590 }
591
isHardwareCursor() const592 bool OutputLayer::isHardwareCursor() const {
593 const auto& state = getState();
594 return state.hwc && state.hwc->hwcCompositionType == hal::Composition::CURSOR;
595 }
596
detectDisallowedCompositionTypeChange(hal::Composition from,hal::Composition to) const597 void OutputLayer::detectDisallowedCompositionTypeChange(hal::Composition from,
598 hal::Composition to) const {
599 bool result = false;
600 switch (from) {
601 case hal::Composition::INVALID:
602 case hal::Composition::CLIENT:
603 result = false;
604 break;
605
606 case hal::Composition::DEVICE:
607 case hal::Composition::SOLID_COLOR:
608 result = (to == hal::Composition::CLIENT);
609 break;
610
611 case hal::Composition::CURSOR:
612 case hal::Composition::SIDEBAND:
613 result = (to == hal::Composition::CLIENT || to == hal::Composition::DEVICE);
614 break;
615 }
616
617 if (!result) {
618 ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)",
619 getLayerFE().getDebugName(), toString(from).c_str(), static_cast<int>(from),
620 toString(to).c_str(), static_cast<int>(to));
621 }
622 }
623
applyDeviceCompositionTypeChange(hal::Composition compositionType)624 void OutputLayer::applyDeviceCompositionTypeChange(hal::Composition compositionType) {
625 auto& state = editState();
626 LOG_FATAL_IF(!state.hwc);
627 auto& hwcState = *state.hwc;
628
629 detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType);
630
631 hwcState.hwcCompositionType = compositionType;
632 }
633
prepareForDeviceLayerRequests()634 void OutputLayer::prepareForDeviceLayerRequests() {
635 auto& state = editState();
636 state.clearClientTarget = false;
637 }
638
applyDeviceLayerRequest(hal::LayerRequest request)639 void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) {
640 auto& state = editState();
641 switch (request) {
642 case hal::LayerRequest::CLEAR_CLIENT_TARGET:
643 state.clearClientTarget = true;
644 break;
645
646 default:
647 ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(),
648 toString(request).c_str(), static_cast<int>(request));
649 break;
650 }
651 }
652
needsFiltering() const653 bool OutputLayer::needsFiltering() const {
654 const auto& state = getState();
655 const auto& displayFrame = state.displayFrame;
656 const auto& sourceCrop = state.sourceCrop;
657 return sourceCrop.getHeight() != displayFrame.getHeight() ||
658 sourceCrop.getWidth() != displayFrame.getWidth();
659 }
660
dump(std::string & out) const661 void OutputLayer::dump(std::string& out) const {
662 using android::base::StringAppendF;
663
664 StringAppendF(&out, " - Output Layer %p(%s)\n", this, getLayerFE().getDebugName());
665 dumpState(out);
666 }
667
668 } // namespace impl
669 } // namespace android::compositionengine
670