1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20
21 //#define LOG_NDEBUG 0
22 #undef LOG_TAG
23 #define LOG_TAG "BufferLayer"
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include "BufferLayer.h"
27
28 #include <compositionengine/CompositionEngine.h>
29 #include <compositionengine/LayerFECompositionState.h>
30 #include <compositionengine/OutputLayer.h>
31 #include <compositionengine/impl/OutputLayerCompositionState.h>
32 #include <cutils/compiler.h>
33 #include <cutils/native_handle.h>
34 #include <cutils/properties.h>
35 #include <gui/BufferItem.h>
36 #include <gui/BufferQueue.h>
37 #include <gui/GLConsumer.h>
38 #include <gui/LayerDebugInfo.h>
39 #include <gui/Surface.h>
40 #include <renderengine/RenderEngine.h>
41 #include <ui/DebugUtils.h>
42 #include <utils/Errors.h>
43 #include <utils/Log.h>
44 #include <utils/NativeHandle.h>
45 #include <utils/StopWatch.h>
46 #include <utils/Trace.h>
47
48 #include <cmath>
49 #include <cstdlib>
50 #include <mutex>
51 #include <sstream>
52
53 #include "Colorizer.h"
54 #include "DisplayDevice.h"
55 #include "FrameTracer/FrameTracer.h"
56 #include "LayerRejecter.h"
57 #include "TimeStats/TimeStats.h"
58
59 namespace android {
60
61 static constexpr float defaultMaxMasteringLuminance = 1000.0;
62 static constexpr float defaultMaxContentLuminance = 1000.0;
63
BufferLayer(const LayerCreationArgs & args)64 BufferLayer::BufferLayer(const LayerCreationArgs& args)
65 : Layer(args),
66 mTextureName(args.textureName),
67 mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} {
68 ALOGV("Creating Layer %s", getDebugName());
69
70 mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
71
72 mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
73 mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
74 }
75
~BufferLayer()76 BufferLayer::~BufferLayer() {
77 if (!isClone()) {
78 // The original layer and the clone layer share the same texture. Therefore, only one of
79 // the layers, in this case the original layer, needs to handle the deletion. The original
80 // layer and the clone should be removed at the same time so there shouldn't be any issue
81 // with the clone layer trying to use the deleted texture.
82 mFlinger->deleteTextureAsync(mTextureName);
83 }
84 const int32_t layerId = getSequence();
85 mFlinger->mTimeStats->onDestroy(layerId);
86 mFlinger->mFrameTracer->onDestroy(layerId);
87 }
88
useSurfaceDamage()89 void BufferLayer::useSurfaceDamage() {
90 if (mFlinger->mForceFullDamage) {
91 surfaceDamageRegion = Region::INVALID_REGION;
92 } else {
93 surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
94 }
95 }
96
useEmptyDamage()97 void BufferLayer::useEmptyDamage() {
98 surfaceDamageRegion.clear();
99 }
100
isOpaque(const Layer::State & s) const101 bool BufferLayer::isOpaque(const Layer::State& s) const {
102 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
103 // layer's opaque flag.
104 if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
105 return false;
106 }
107
108 // if the layer has the opaque flag, then we're always opaque,
109 // otherwise we use the current buffer's format.
110 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
111 }
112
isVisible() const113 bool BufferLayer::isVisible() const {
114 return !isHiddenByPolicy() && getAlpha() > 0.0f &&
115 (mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
116 }
117
isFixedSize() const118 bool BufferLayer::isFixedSize() const {
119 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
120 }
121
usesSourceCrop() const122 bool BufferLayer::usesSourceCrop() const {
123 return true;
124 }
125
inverseOrientation(uint32_t transform)126 static constexpr mat4 inverseOrientation(uint32_t transform) {
127 const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
128 const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
129 const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
130 mat4 tr;
131
132 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
133 tr = tr * rot90;
134 }
135 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
136 tr = tr * flipH;
137 }
138 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
139 tr = tr * flipV;
140 }
141 return inverse(tr);
142 }
143
prepareClientComposition(compositionengine::LayerFE::ClientCompositionTargetSettings & targetSettings)144 std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition(
145 compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
146 ATRACE_CALL();
147
148 std::optional<compositionengine::LayerFE::LayerSettings> result =
149 Layer::prepareClientComposition(targetSettings);
150 if (!result) {
151 return result;
152 }
153
154 if (CC_UNLIKELY(mBufferInfo.mBuffer == 0)) {
155 // the texture has not been created yet, this Layer has
156 // in fact never been drawn into. This happens frequently with
157 // SurfaceView because the WindowManager can't know when the client
158 // has drawn the first time.
159
160 // If there is nothing under us, we paint the screen in black, otherwise
161 // we just skip this update.
162
163 // figure out if there is something below us
164 Region under;
165 bool finished = false;
166 mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
167 if (finished || layer == static_cast<BufferLayer const*>(this)) {
168 finished = true;
169 return;
170 }
171
172 under.orSelf(layer->getScreenBounds());
173 });
174 // if not everything below us is covered, we plug the holes!
175 Region holes(targetSettings.clip.subtract(under));
176 if (!holes.isEmpty()) {
177 targetSettings.clearRegion.orSelf(holes);
178 }
179 return std::nullopt;
180 }
181 bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
182 (isSecure() && !targetSettings.isSecure);
183 compositionengine::LayerFE::LayerSettings& layer = *result;
184 if (blackOutLayer) {
185 prepareClearClientComposition(layer, true /* blackout */);
186 return layer;
187 }
188
189 const State& s(getDrawingState());
190 layer.source.buffer.buffer = mBufferInfo.mBuffer;
191 layer.source.buffer.isOpaque = isOpaque(s);
192 layer.source.buffer.fence = mBufferInfo.mFence;
193 layer.source.buffer.textureName = mTextureName;
194 layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
195 layer.source.buffer.isY410BT2020 = isHdrY410();
196 bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
197 bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
198 layer.source.buffer.maxMasteringLuminance = hasSmpte2086
199 ? mBufferInfo.mHdrMetadata.smpte2086.maxLuminance
200 : defaultMaxMasteringLuminance;
201 layer.source.buffer.maxContentLuminance = hasCta861_3
202 ? mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel
203 : defaultMaxContentLuminance;
204 layer.frameNumber = mCurrentFrameNumber;
205 layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getId() : 0;
206
207 // TODO: we could be more subtle with isFixedSize()
208 const bool useFiltering = targetSettings.needsFiltering || mNeedsFiltering || isFixedSize();
209
210 // Query the texture matrix given our current filtering mode.
211 float textureMatrix[16];
212 getDrawingTransformMatrix(useFiltering, textureMatrix);
213
214 if (getTransformToDisplayInverse()) {
215 /*
216 * the code below applies the primary display's inverse transform to
217 * the texture transform
218 */
219 uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
220 mat4 tr = inverseOrientation(transform);
221
222 /**
223 * TODO(b/36727915): This is basically a hack.
224 *
225 * Ensure that regardless of the parent transformation,
226 * this buffer is always transformed from native display
227 * orientation to display orientation. For example, in the case
228 * of a camera where the buffer remains in native orientation,
229 * we want the pixels to always be upright.
230 */
231 sp<Layer> p = mDrawingParent.promote();
232 if (p != nullptr) {
233 const auto parentTransform = p->getTransform();
234 tr = tr * inverseOrientation(parentTransform.getOrientation());
235 }
236
237 // and finally apply it to the original texture matrix
238 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
239 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
240 }
241
242 const Rect win{getBounds()};
243 float bufferWidth = getBufferSize(s).getWidth();
244 float bufferHeight = getBufferSize(s).getHeight();
245
246 // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
247 // been set and there is no parent layer bounds. In that case, the scale is meaningless so
248 // ignore them.
249 if (!getBufferSize(s).isValid()) {
250 bufferWidth = float(win.right) - float(win.left);
251 bufferHeight = float(win.bottom) - float(win.top);
252 }
253
254 const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
255 const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
256 const float translateY = float(win.top) / bufferHeight;
257 const float translateX = float(win.left) / bufferWidth;
258
259 // Flip y-coordinates because GLConsumer expects OpenGL convention.
260 mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
261 mat4::translate(vec4(-.5, -.5, 0, 1)) *
262 mat4::translate(vec4(translateX, translateY, 0, 1)) *
263 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
264
265 layer.source.buffer.useTextureFiltering = useFiltering;
266 layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
267
268 return layer;
269 }
270
isHdrY410() const271 bool BufferLayer::isHdrY410() const {
272 // pixel format is HDR Y410 masquerading as RGBA_1010102
273 return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
274 mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
275 mBufferInfo.mPixelFormat == HAL_PIXEL_FORMAT_RGBA_1010102);
276 }
277
getCompositionEngineLayerFE() const278 sp<compositionengine::LayerFE> BufferLayer::getCompositionEngineLayerFE() const {
279 return asLayerFE();
280 }
281
editCompositionState()282 compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() {
283 return mCompositionState.get();
284 }
285
getCompositionState() const286 const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const {
287 return mCompositionState.get();
288 }
289
preparePerFrameCompositionState()290 void BufferLayer::preparePerFrameCompositionState() {
291 Layer::preparePerFrameCompositionState();
292
293 // Sideband layers
294 auto* compositionState = editCompositionState();
295 if (compositionState->sidebandStream.get()) {
296 compositionState->compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
297 return;
298 } else {
299 // Normal buffer layers
300 compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
301 compositionState->compositionType = mPotentialCursor
302 ? Hwc2::IComposerClient::Composition::CURSOR
303 : Hwc2::IComposerClient::Composition::DEVICE;
304 }
305
306 compositionState->buffer = mBufferInfo.mBuffer;
307 compositionState->bufferSlot = (mBufferInfo.mBufferSlot == BufferQueue::INVALID_BUFFER_SLOT)
308 ? 0
309 : mBufferInfo.mBufferSlot;
310 compositionState->acquireFence = mBufferInfo.mFence;
311 }
312
onPreComposition(nsecs_t refreshStartTime)313 bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
314 if (mBufferInfo.mBuffer != nullptr) {
315 Mutex::Autolock lock(mFrameEventHistoryMutex);
316 mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
317 }
318 mRefreshPending = false;
319 return hasReadyFrame();
320 }
321
onPostComposition(const DisplayDevice * display,const std::shared_ptr<FenceTime> & glDoneFence,const std::shared_ptr<FenceTime> & presentFence,const CompositorTiming & compositorTiming)322 bool BufferLayer::onPostComposition(const DisplayDevice* display,
323 const std::shared_ptr<FenceTime>& glDoneFence,
324 const std::shared_ptr<FenceTime>& presentFence,
325 const CompositorTiming& compositorTiming) {
326 // mFrameLatencyNeeded is true when a new frame was latched for the
327 // composition.
328 if (!mBufferInfo.mFrameLatencyNeeded) return false;
329
330 // Update mFrameEventHistory.
331 {
332 Mutex::Autolock lock(mFrameEventHistoryMutex);
333 mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
334 compositorTiming);
335 finalizeFrameEventHistory(glDoneFence, compositorTiming);
336 }
337
338 // Update mFrameTracker.
339 nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
340 mFrameTracker.setDesiredPresentTime(desiredPresentTime);
341
342 const int32_t layerId = getSequence();
343 mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
344
345 const auto outputLayer = findOutputLayerForDisplay(display);
346 if (outputLayer && outputLayer->requiresClientComposition()) {
347 nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
348 mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
349 clientCompositionTimestamp,
350 FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
351 }
352
353 std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
354 if (frameReadyFence->isValid()) {
355 mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
356 } else {
357 // There was no fence for this frame, so assume that it was ready
358 // to be presented at the desired present time.
359 mFrameTracker.setFrameReadyTime(desiredPresentTime);
360 }
361
362 if (presentFence->isValid()) {
363 mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence);
364 mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
365 presentFence, FrameTracer::FrameEvent::PRESENT_FENCE);
366 mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
367 } else if (!display) {
368 // Do nothing.
369 } else if (const auto displayId = display->getId();
370 displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
371 // The HWC doesn't support present fences, so use the refresh
372 // timestamp instead.
373 const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
374 mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime);
375 mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
376 actualPresentTime,
377 FrameTracer::FrameEvent::PRESENT_FENCE);
378 mFrameTracker.setActualPresentTime(actualPresentTime);
379 }
380
381 mFrameTracker.advanceFrame();
382 mBufferInfo.mFrameLatencyNeeded = false;
383 return true;
384 }
385
gatherBufferInfo()386 void BufferLayer::gatherBufferInfo() {
387 mBufferInfo.mPixelFormat =
388 !mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->format;
389 mBufferInfo.mFrameLatencyNeeded = true;
390 }
391
latchBuffer(bool & recomputeVisibleRegions,nsecs_t latchTime,nsecs_t expectedPresentTime)392 bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
393 nsecs_t expectedPresentTime) {
394 ATRACE_CALL();
395
396 bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
397
398 if (refreshRequired) {
399 return refreshRequired;
400 }
401
402 if (!hasReadyFrame()) {
403 return false;
404 }
405
406 // if we've already called updateTexImage() without going through
407 // a composition step, we have to skip this layer at this point
408 // because we cannot call updateTeximage() without a corresponding
409 // compositionComplete() call.
410 // we'll trigger an update in onPreComposition().
411 if (mRefreshPending) {
412 return false;
413 }
414
415 // If the head buffer's acquire fence hasn't signaled yet, return and
416 // try again later
417 if (!fenceHasSignaled()) {
418 ATRACE_NAME("!fenceHasSignaled()");
419 mFlinger->signalLayerUpdate();
420 return false;
421 }
422
423 // Capture the old state of the layer for comparisons later
424 const State& s(getDrawingState());
425 const bool oldOpacity = isOpaque(s);
426
427 BufferInfo oldBufferInfo = mBufferInfo;
428
429 if (!allTransactionsSignaled(expectedPresentTime)) {
430 mFlinger->setTransactionFlags(eTraversalNeeded);
431 return false;
432 }
433
434 status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime);
435 if (err != NO_ERROR) {
436 return false;
437 }
438
439 err = updateActiveBuffer();
440 if (err != NO_ERROR) {
441 return false;
442 }
443
444 err = updateFrameNumber(latchTime);
445 if (err != NO_ERROR) {
446 return false;
447 }
448
449 gatherBufferInfo();
450
451 mRefreshPending = true;
452 if (oldBufferInfo.mBuffer == nullptr) {
453 // the first time we receive a buffer, we need to trigger a
454 // geometry invalidation.
455 recomputeVisibleRegions = true;
456 }
457
458 if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
459 (mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
460 (mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
461 (mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
462 recomputeVisibleRegions = true;
463 }
464
465 if (oldBufferInfo.mBuffer != nullptr) {
466 uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
467 uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
468 if (bufWidth != uint32_t(oldBufferInfo.mBuffer->width) ||
469 bufHeight != uint32_t(oldBufferInfo.mBuffer->height)) {
470 recomputeVisibleRegions = true;
471 }
472 }
473
474 if (oldOpacity != isOpaque(s)) {
475 recomputeVisibleRegions = true;
476 }
477
478 // Remove any sync points corresponding to the buffer which was just
479 // latched
480 {
481 Mutex::Autolock lock(mLocalSyncPointMutex);
482 auto point = mLocalSyncPoints.begin();
483 while (point != mLocalSyncPoints.end()) {
484 if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
485 // This sync point must have been added since we started
486 // latching. Don't drop it yet.
487 ++point;
488 continue;
489 }
490
491 if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
492 std::stringstream ss;
493 ss << "Dropping sync point " << (*point)->getFrameNumber();
494 ATRACE_NAME(ss.str().c_str());
495 point = mLocalSyncPoints.erase(point);
496 } else {
497 ++point;
498 }
499 }
500 }
501
502 return true;
503 }
504
505 // transaction
notifyAvailableFrames(nsecs_t expectedPresentTime)506 void BufferLayer::notifyAvailableFrames(nsecs_t expectedPresentTime) {
507 const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime);
508 const bool headFenceSignaled = fenceHasSignaled();
509 const bool presentTimeIsCurrent = framePresentTimeIsCurrent(expectedPresentTime);
510 Mutex::Autolock lock(mLocalSyncPointMutex);
511 for (auto& point : mLocalSyncPoints) {
512 if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled &&
513 presentTimeIsCurrent) {
514 point->setFrameAvailable();
515 sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer();
516 if (requestedSyncLayer) {
517 // Need to update the transaction flag to ensure the layer's pending transaction
518 // gets applied.
519 requestedSyncLayer->setTransactionFlags(eTransactionNeeded);
520 }
521 }
522 }
523 }
524
hasReadyFrame() const525 bool BufferLayer::hasReadyFrame() const {
526 return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
527 }
528
getEffectiveScalingMode() const529 uint32_t BufferLayer::getEffectiveScalingMode() const {
530 if (mOverrideScalingMode >= 0) {
531 return mOverrideScalingMode;
532 }
533
534 return mBufferInfo.mScaleMode;
535 }
536
isProtected() const537 bool BufferLayer::isProtected() const {
538 const sp<GraphicBuffer>& buffer(mBufferInfo.mBuffer);
539 return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
540 }
541
latchUnsignaledBuffers()542 bool BufferLayer::latchUnsignaledBuffers() {
543 static bool propertyLoaded = false;
544 static bool latch = false;
545 static std::mutex mutex;
546 std::lock_guard<std::mutex> lock(mutex);
547 if (!propertyLoaded) {
548 char value[PROPERTY_VALUE_MAX] = {};
549 property_get("debug.sf.latch_unsignaled", value, "0");
550 latch = atoi(value);
551 propertyLoaded = true;
552 }
553 return latch;
554 }
555
556 // h/w composer set-up
allTransactionsSignaled(nsecs_t expectedPresentTime)557 bool BufferLayer::allTransactionsSignaled(nsecs_t expectedPresentTime) {
558 const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime);
559 bool matchingFramesFound = false;
560 bool allTransactionsApplied = true;
561 Mutex::Autolock lock(mLocalSyncPointMutex);
562
563 for (auto& point : mLocalSyncPoints) {
564 if (point->getFrameNumber() > headFrameNumber) {
565 break;
566 }
567 matchingFramesFound = true;
568
569 if (!point->frameIsAvailable()) {
570 // We haven't notified the remote layer that the frame for
571 // this point is available yet. Notify it now, and then
572 // abort this attempt to latch.
573 point->setFrameAvailable();
574 allTransactionsApplied = false;
575 break;
576 }
577
578 allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
579 }
580 return !matchingFramesFound || allTransactionsApplied;
581 }
582
583 // As documented in libhardware header, formats in the range
584 // 0x100 - 0x1FF are specific to the HAL implementation, and
585 // are known to have no alpha channel
586 // TODO: move definition for device-specific range into
587 // hardware.h, instead of using hard-coded values here.
588 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
589
getOpacityForFormat(uint32_t format)590 bool BufferLayer::getOpacityForFormat(uint32_t format) {
591 if (HARDWARE_IS_DEVICE_FORMAT(format)) {
592 return true;
593 }
594 switch (format) {
595 case HAL_PIXEL_FORMAT_RGBA_8888:
596 case HAL_PIXEL_FORMAT_BGRA_8888:
597 case HAL_PIXEL_FORMAT_RGBA_FP16:
598 case HAL_PIXEL_FORMAT_RGBA_1010102:
599 return false;
600 }
601 // in all other case, we have no blending (also for unknown formats)
602 return true;
603 }
604
needsFiltering(const DisplayDevice * display) const605 bool BufferLayer::needsFiltering(const DisplayDevice* display) const {
606 const auto outputLayer = findOutputLayerForDisplay(display);
607 if (outputLayer == nullptr) {
608 return false;
609 }
610
611 // We need filtering if the sourceCrop rectangle size does not match the
612 // displayframe rectangle size (not a 1:1 render)
613 const auto& compositionState = outputLayer->getState();
614 const auto displayFrame = compositionState.displayFrame;
615 const auto sourceCrop = compositionState.sourceCrop;
616 return sourceCrop.getHeight() != displayFrame.getHeight() ||
617 sourceCrop.getWidth() != displayFrame.getWidth();
618 }
619
needsFilteringForScreenshots(const DisplayDevice * display,const ui::Transform & inverseParentTransform) const620 bool BufferLayer::needsFilteringForScreenshots(const DisplayDevice* display,
621 const ui::Transform& inverseParentTransform) const {
622 const auto outputLayer = findOutputLayerForDisplay(display);
623 if (outputLayer == nullptr) {
624 return false;
625 }
626
627 // We need filtering if the sourceCrop rectangle size does not match the
628 // viewport rectangle size (not a 1:1 render)
629 const auto& compositionState = outputLayer->getState();
630 const ui::Transform& displayTransform = display->getTransform();
631 const ui::Transform inverseTransform = inverseParentTransform * displayTransform.inverse();
632 // Undo the transformation of the displayFrame so that we're back into
633 // layer-stack space.
634 const Rect frame = inverseTransform.transform(compositionState.displayFrame);
635 const FloatRect sourceCrop = compositionState.sourceCrop;
636
637 int32_t frameHeight = frame.getHeight();
638 int32_t frameWidth = frame.getWidth();
639 // If the display transform had a rotational component then undo the
640 // rotation so that the orientation matches the source crop.
641 if (displayTransform.getOrientation() & ui::Transform::ROT_90) {
642 std::swap(frameHeight, frameWidth);
643 }
644 return sourceCrop.getHeight() != frameHeight || sourceCrop.getWidth() != frameWidth;
645 }
646
getHeadFrameNumber(nsecs_t expectedPresentTime) const647 uint64_t BufferLayer::getHeadFrameNumber(nsecs_t expectedPresentTime) const {
648 if (hasFrameUpdate()) {
649 return getFrameNumber(expectedPresentTime);
650 } else {
651 return mCurrentFrameNumber;
652 }
653 }
654
getBufferSize(const State & s) const655 Rect BufferLayer::getBufferSize(const State& s) const {
656 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
657 // we cannot determine the buffer size.
658 if ((s.sidebandStream != nullptr) ||
659 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
660 return Rect(getActiveWidth(s), getActiveHeight(s));
661 }
662
663 if (mBufferInfo.mBuffer == nullptr) {
664 return Rect::INVALID_RECT;
665 }
666
667 uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
668 uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
669
670 // Undo any transformations on the buffer and return the result.
671 if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
672 std::swap(bufWidth, bufHeight);
673 }
674
675 if (getTransformToDisplayInverse()) {
676 uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
677 if (invTransform & ui::Transform::ROT_90) {
678 std::swap(bufWidth, bufHeight);
679 }
680 }
681
682 return Rect(bufWidth, bufHeight);
683 }
684
computeSourceBounds(const FloatRect & parentBounds) const685 FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
686 const State& s(getDrawingState());
687
688 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
689 // we cannot determine the buffer size.
690 if ((s.sidebandStream != nullptr) ||
691 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
692 return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
693 }
694
695 if (mBufferInfo.mBuffer == nullptr) {
696 return parentBounds;
697 }
698
699 uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
700 uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
701
702 // Undo any transformations on the buffer and return the result.
703 if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
704 std::swap(bufWidth, bufHeight);
705 }
706
707 if (getTransformToDisplayInverse()) {
708 uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
709 if (invTransform & ui::Transform::ROT_90) {
710 std::swap(bufWidth, bufHeight);
711 }
712 }
713
714 return FloatRect(0, 0, bufWidth, bufHeight);
715 }
716
latchAndReleaseBuffer()717 void BufferLayer::latchAndReleaseBuffer() {
718 mRefreshPending = false;
719 if (hasReadyFrame()) {
720 bool ignored = false;
721 latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */);
722 }
723 releasePendingBuffer(systemTime());
724 }
725
getPixelFormat() const726 PixelFormat BufferLayer::getPixelFormat() const {
727 return mBufferInfo.mPixelFormat;
728 }
729
getTransformToDisplayInverse() const730 bool BufferLayer::getTransformToDisplayInverse() const {
731 return mBufferInfo.mTransformToDisplayInverse;
732 }
733
getBufferCrop() const734 Rect BufferLayer::getBufferCrop() const {
735 // this is the crop rectangle that applies to the buffer
736 // itself (as opposed to the window)
737 if (!mBufferInfo.mCrop.isEmpty()) {
738 // if the buffer crop is defined, we use that
739 return mBufferInfo.mCrop;
740 } else if (mBufferInfo.mBuffer != nullptr) {
741 // otherwise we use the whole buffer
742 return mBufferInfo.mBuffer->getBounds();
743 } else {
744 // if we don't have a buffer yet, we use an empty/invalid crop
745 return Rect();
746 }
747 }
748
getBufferTransform() const749 uint32_t BufferLayer::getBufferTransform() const {
750 return mBufferInfo.mTransform;
751 }
752
getDataSpace() const753 ui::Dataspace BufferLayer::getDataSpace() const {
754 return mBufferInfo.mDataspace;
755 }
756
translateDataspace(ui::Dataspace dataspace)757 ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) {
758 ui::Dataspace updatedDataspace = dataspace;
759 // translate legacy dataspaces to modern dataspaces
760 switch (dataspace) {
761 case ui::Dataspace::SRGB:
762 updatedDataspace = ui::Dataspace::V0_SRGB;
763 break;
764 case ui::Dataspace::SRGB_LINEAR:
765 updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
766 break;
767 case ui::Dataspace::JFIF:
768 updatedDataspace = ui::Dataspace::V0_JFIF;
769 break;
770 case ui::Dataspace::BT601_625:
771 updatedDataspace = ui::Dataspace::V0_BT601_625;
772 break;
773 case ui::Dataspace::BT601_525:
774 updatedDataspace = ui::Dataspace::V0_BT601_525;
775 break;
776 case ui::Dataspace::BT709:
777 updatedDataspace = ui::Dataspace::V0_BT709;
778 break;
779 default:
780 break;
781 }
782
783 return updatedDataspace;
784 }
785
getBuffer() const786 sp<GraphicBuffer> BufferLayer::getBuffer() const {
787 return mBufferInfo.mBuffer;
788 }
789
getDrawingTransformMatrix(bool filteringEnabled,float outMatrix[16])790 void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) {
791 GLConsumer::computeTransformMatrix(outMatrix, mBufferInfo.mBuffer, mBufferInfo.mCrop,
792 mBufferInfo.mTransform, filteringEnabled);
793 }
794
setInitialValuesForClone(const sp<Layer> & clonedFrom)795 void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
796 Layer::setInitialValuesForClone(clonedFrom);
797
798 sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get());
799 mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
800 mPotentialCursor = bufferClonedFrom->mPotentialCursor;
801 mProtectedByApp = bufferClonedFrom->mProtectedByApp;
802
803 updateCloneBufferInfo();
804 }
805
updateCloneBufferInfo()806 void BufferLayer::updateCloneBufferInfo() {
807 if (!isClone() || !isClonedFromAlive()) {
808 return;
809 }
810
811 sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get());
812 mBufferInfo = clonedFrom->mBufferInfo;
813 mSidebandStream = clonedFrom->mSidebandStream;
814 surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
815 mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
816 mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
817
818 // After buffer info is updated, the drawingState from the real layer needs to be copied into
819 // the cloned. This is because some properties of drawingState can change when latchBuffer is
820 // called. However, copying the drawingState would also overwrite the cloned layer's relatives
821 // and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
822 // the cloned drawingState again.
823 wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
824 SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
825 wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
826 InputWindowInfo tmpInputInfo = mDrawingState.inputInfo;
827
828 mDrawingState = clonedFrom->mDrawingState;
829
830 mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
831 mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
832 mDrawingState.zOrderRelatives = tmpZOrderRelatives;
833 mDrawingState.inputInfo = tmpInputInfo;
834 }
835
setTransformHint(ui::Transform::RotationFlags displayTransformHint)836 void BufferLayer::setTransformHint(ui::Transform::RotationFlags displayTransformHint) {
837 mTransformHint = getFixedTransformHint();
838 if (mTransformHint == ui::Transform::ROT_INVALID) {
839 mTransformHint = displayTransformHint;
840 }
841 }
842
843 } // namespace android
844
845 #if defined(__gl_h_)
846 #error "don't include gl/gl.h in this file"
847 #endif
848
849 #if defined(__gl2_h_)
850 #error "don't include gl2/gl2.h in this file"
851 #endif
852
853 // TODO(b/129481165): remove the #pragma below and fix conversion issues
854 #pragma clang diagnostic pop // ignored "-Wconversion"
855