/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | bidirectional_sequence_rnn_state_output.mod.py | 90 num_batches = 2 variable 221 "{{ {}, {}, {} }}".format(num_batches, max_time, input_size)), 229 "{{ {}, {} }}".format(num_batches, fw_num_units)), 237 "{{ {}, {} }}".format(num_batches, bw_num_units)), 246 "{{ {}, {}, {} }}".format(num_batches, max_time, fw_num_units)), 249 "{{ {}, {}, {} }}".format(num_batches, max_time, bw_num_units)), 252 "{{ {}, {} }}".format(num_batches, fw_num_units)), 255 "{{ {}, {} }}".format(num_batches, bw_num_units)), 260 fw_hidden_state_data=[0] * num_batches * fw_num_units, 264 bw_hidden_state_data=[0] * num_batches * bw_num_units, [all …]
|
D | bidirectional_sequence_rnn_1_3.mod.py | 88 num_batches = 2 variable 216 "{{ {}, {}, {} }}".format(num_batches, max_time, input_size)), 224 "{{ {}, {} }}".format(num_batches, fw_num_units)), 232 "{{ {}, {} }}".format(num_batches, bw_num_units)), 235 "{{ {}, {}, {} }}".format(num_batches, max_time, input_size)), 240 "{{ {}, {}, {} }}".format(num_batches, max_time, fw_num_units)), 243 "{{ {}, {}, {} }}".format(num_batches, max_time, bw_num_units)), 251 fw_hidden_state_data=[0] * num_batches * fw_num_units, 255 bw_hidden_state_data=[0] * num_batches * bw_num_units, 266 "{{ {}, {}, {} }}".format(max_time, num_batches, input_size)), [all …]
|
D | unidirectional_sequence_rnn.mod.py | 42 def convert_to_time_major(tensor, num_batches, max_time, input_size): argument 43 return np.array(tensor).reshape([num_batches, max_time, input_size 47 num_batches = 2 variable 180 "{{{}, {}, {}}}".format(num_batches, max_time, input_size)), 187 "{{{}, {}}}".format(num_batches, num_units)), 189 "{{{}, {}, {}}}".format(num_batches, max_time, num_units)), 191 "{{{}, {}}}".format(num_batches, num_units)), 198 hidden_state_data=[0] * num_batches * num_units, 206 "{{{}, {}, {}}}".format(max_time, num_batches, input_size)), 213 "{{{}, {}}}".format(num_batches, num_units)), [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | bidirectional_sequence_rnn.mod.py | 82 num_batches = 2 variable 210 num_batches, max_time, input_size)), 218 "{{ {}, {} }}".format(num_batches, fw_num_units)), 226 "{{ {}, {} }}".format(num_batches, bw_num_units)), 234 num_batches, max_time, fw_num_units)), 237 num_batches, max_time, bw_num_units)), 245 fw_hidden_state_data=[0] * num_batches * fw_num_units, 249 bw_hidden_state_data=[0] * num_batches * bw_num_units, 260 max_time, num_batches, input_size)), 268 "{{ {}, {} }}".format(num_batches, fw_num_units)), [all …]
|
D | unidirectional_sequence_rnn.mod.py | 39 def convert_to_time_major(tensor, num_batches, max_time, input_size): argument 40 return np.array(tensor).reshape([num_batches, max_time, 44 num_batches = 2 variable 142 num_batches, max_time, input_size)), 149 num_batches, num_units)), 151 num_batches, max_time, num_units)), 158 hidden_state_data=[0] * num_batches * num_units, 164 max_time, num_batches, input_size)), 171 num_batches, num_units)), 173 max_time, num_batches, num_units)), [all …]
|
/frameworks/ml/nn/common/operations/ |
D | SVDFTest.cpp | 295 int num_batches() const { return batches_; } in num_batches() function in android::nn::wrapper::SVDFOpModel 336 const int svdf_num_batches = svdf.num_batches(); in TEST() 395 const int svdf_num_batches = svdf.num_batches(); in TEST()
|
D | RNNTest.cpp | 189 uint32_t num_batches() const { return batches_; } in num_batches() function in android::nn::wrapper::BasicRNNOpModel 283 sizeof(rnn_input) / sizeof(float) / (rnn.input_size() * rnn.num_batches()); in TEST()
|