1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "SVDF.h"
18 
19 #include <gmock/gmock-matchers.h>
20 #include <gtest/gtest.h>
21 #include "NeuralNetworksWrapper.h"
22 
23 using ::testing::FloatNear;
24 using ::testing::Matcher;
25 
26 namespace android {
27 namespace nn {
28 namespace wrapper {
29 
30 namespace {
31 
ArrayFloatNear(const std::vector<float> & values,float max_abs_error=1.e-6)32 std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
33                                            float max_abs_error = 1.e-6) {
34     std::vector<Matcher<float>> matchers;
35     matchers.reserve(values.size());
36     for (const float& v : values) {
37         matchers.emplace_back(FloatNear(v, max_abs_error));
38     }
39     return matchers;
40 }
41 
42 }  // namespace
43 
44 using ::testing::ElementsAreArray;
45 
46 static float svdf_input[] = {
47         0.12609188,  -0.46347019, -0.89598465, 0.12609188,  -0.46347019, -0.89598465,
48 
49         0.14278367,  -1.64410412, -0.75222826, 0.14278367,  -1.64410412, -0.75222826,
50 
51         0.49837467,  0.19278903,  0.26584083,  0.49837467,  0.19278903,  0.26584083,
52 
53         -0.11186574, 0.13164264,  -0.05349274, -0.11186574, 0.13164264,  -0.05349274,
54 
55         -0.68892461, 0.37783599,  0.18263303,  -0.68892461, 0.37783599,  0.18263303,
56 
57         -0.81299269, -0.86831826, 1.43940818,  -0.81299269, -0.86831826, 1.43940818,
58 
59         -1.45006323, -0.82251364, -1.69082689, -1.45006323, -0.82251364, -1.69082689,
60 
61         0.03966608,  -0.24936394, -0.77526885, 0.03966608,  -0.24936394, -0.77526885,
62 
63         0.11771342,  -0.23761693, -0.65898693, 0.11771342,  -0.23761693, -0.65898693,
64 
65         -0.89477462, 1.67204106,  -0.53235275, -0.89477462, 1.67204106,  -0.53235275};
66 
67 static float svdf_input_rank2[] = {
68         0.12609188,  -0.46347019, -0.89598465, 0.35867718,  0.36897406,  0.73463392,
69 
70         0.14278367,  -1.64410412, -0.75222826, -0.57290924, 0.12729003,  0.7567004,
71 
72         0.49837467,  0.19278903,  0.26584083,  0.17660543,  0.52949083,  -0.77931279,
73 
74         -0.11186574, 0.13164264,  -0.05349274, -0.72674477, -0.5683046,  0.55900657,
75 
76         -0.68892461, 0.37783599,  0.18263303,  -0.63690937, 0.44483393,  -0.71817774,
77 
78         -0.81299269, -0.86831826, 1.43940818,  -0.95760226, 1.82078898,  0.71135032,
79 
80         -1.45006323, -0.82251364, -1.69082689, -1.65087092, -1.89238167, 1.54172635,
81 
82         0.03966608,  -0.24936394, -0.77526885, 2.06740379,  -1.51439476, 1.43768692,
83 
84         0.11771342,  -0.23761693, -0.65898693, 0.31088525,  -1.55601168, -0.87661445,
85 
86         -0.89477462, 1.67204106,  -0.53235275, -0.6230064,  0.29819036,  1.06939757,
87 };
88 
89 static float svdf_golden_output[] = {0.014899,    -0.0517661, -0.143725, -0.00271883,
90                                      0.014899,    -0.0517661, -0.143725, -0.00271883,
91 
92                                      0.068281,    -0.162217,  -0.152268, 0.00323521,
93                                      0.068281,    -0.162217,  -0.152268, 0.00323521,
94 
95                                      -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
96                                      -0.0317821,  -0.0333089, 0.0609602, 0.0333759,
97 
98                                      -0.00623099, -0.077701,  -0.391193, -0.0136691,
99                                      -0.00623099, -0.077701,  -0.391193, -0.0136691,
100 
101                                      0.201551,    -0.164607,  -0.179462, -0.0592739,
102                                      0.201551,    -0.164607,  -0.179462, -0.0592739,
103 
104                                      0.0886511,   -0.0875401, -0.269283, 0.0281379,
105                                      0.0886511,   -0.0875401, -0.269283, 0.0281379,
106 
107                                      -0.201174,   -0.586145,  -0.628624, -0.0330412,
108                                      -0.201174,   -0.586145,  -0.628624, -0.0330412,
109 
110                                      -0.0839096,  -0.299329,  0.108746,  0.109808,
111                                      -0.0839096,  -0.299329,  0.108746,  0.109808,
112 
113                                      0.419114,    -0.237824,  -0.422627, 0.175115,
114                                      0.419114,    -0.237824,  -0.422627, 0.175115,
115 
116                                      0.36726,     -0.522303,  -0.456502, -0.175475,
117                                      0.36726,     -0.522303,  -0.456502, -0.175475};
118 
119 static float svdf_golden_output_rank_2[] = {
120         -0.09623547, -0.10193135, 0.11083051,  -0.0347917,
121         0.1141196,   0.12965347,  -0.12652366, 0.01007236,
122 
123         -0.16396809, -0.21247184, 0.11259045,  -0.04156673,
124         0.10132131,  -0.06143532, -0.00924693, 0.10084561,
125 
126         0.01257364,  0.0506071,   -0.19287863, -0.07162561,
127         -0.02033747, 0.22673416,  0.15487903,  0.02525555,
128 
129         -0.1411963,  -0.37054959, 0.01774767,  0.05867489,
130         0.09607603,  -0.0141301,  -0.08995658, 0.12867066,
131 
132         -0.27142537, -0.16955489, 0.18521598,  -0.12528358,
133         0.00331409,  0.11167502,  0.02218599,  -0.07309391,
134 
135         0.09593632,  -0.28361851, -0.0773851,  0.17199151,
136         -0.00075242, 0.33691186,  -0.1536046,  0.16572715,
137 
138         -0.27916506, -0.27626723, 0.42615682,  0.3225764,
139         -0.37472126, -0.55655634, -0.05013514, 0.289112,
140 
141         -0.24418658, 0.07540751,  -0.1940318,  -0.08911639,
142         0.00732617,  0.46737891,  0.26449674,  0.24888524,
143 
144         -0.17225097, -0.54660404, -0.38795233, 0.08389944,
145         0.07736043,  -0.28260678, 0.15666828,  1.14949894,
146 
147         -0.57454878, -0.64704704, 0.73235172,  -0.34616736,
148         0.21120001,  -0.22927976, 0.02455296,  -0.35906726,
149 };
150 
151 #define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
152     ACTION(Input)                                \
153     ACTION(WeightsFeature)                       \
154     ACTION(WeightsTime)                          \
155     ACTION(Bias)                                 \
156     ACTION(StateIn)
157 
158 // For all output and intermediate states
159 #define FOR_ALL_OUTPUT_TENSORS(ACTION) \
160     ACTION(StateOut)                   \
161     ACTION(Output)
162 
163 // Derived class of SingleOpModel, which is used to test SVDF TFLite op.
164 class SVDFOpModel {
165    public:
SVDFOpModel(uint32_t batches,uint32_t units,uint32_t input_size,uint32_t memory_size,uint32_t rank)166     SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size, uint32_t memory_size,
167                 uint32_t rank)
168         : batches_(batches),
169           units_(units),
170           input_size_(input_size),
171           memory_size_(memory_size),
172           rank_(rank) {
173         std::vector<std::vector<uint32_t>> input_shapes{
174                 {batches_, input_size_},                   // Input tensor
175                 {units_ * rank_, input_size_},             // weights_feature tensor
176                 {units_ * rank_, memory_size_},            // weights_time tensor
177                 {units_},                                  // bias tensor
178                 {batches_, memory_size * units_ * rank_},  // state in tensor
179         };
180         std::vector<uint32_t> inputs;
181         auto it = input_shapes.begin();
182 
183         // Input and weights
184 #define AddInput(X)                                     \
185     OperandType X##OpndTy(Type::TENSOR_FLOAT32, *it++); \
186     inputs.push_back(model_.addOperand(&X##OpndTy));
187 
188         FOR_ALL_INPUT_AND_WEIGHT_TENSORS(AddInput);
189 
190 #undef AddInput
191 
192         // Parameters
193         OperandType RankParamTy(Type::INT32, {});
194         inputs.push_back(model_.addOperand(&RankParamTy));
195         OperandType ActivationParamTy(Type::INT32, {});
196         inputs.push_back(model_.addOperand(&ActivationParamTy));
197 
198         // Output and other intermediate state
199         std::vector<std::vector<uint32_t>> output_shapes{{batches_, memory_size_ * units_ * rank_},
200                                                          {batches_, units_}};
201         std::vector<uint32_t> outputs;
202 
203         auto it2 = output_shapes.begin();
204 
205 #define AddOutput(X)                                     \
206     OperandType X##OpndTy(Type::TENSOR_FLOAT32, *it2++); \
207     outputs.push_back(model_.addOperand(&X##OpndTy));
208 
209         FOR_ALL_OUTPUT_TENSORS(AddOutput);
210 
211 #undef AddOutput
212 
213         Input_.insert(Input_.end(), batches_ * input_size_, 0.f);
214         StateIn_.insert(StateIn_.end(), batches_ * units_ * rank_ * memory_size_, 0.f);
215 
216         auto multiAll = [](const std::vector<uint32_t>& dims) -> uint32_t {
217             uint32_t sz = 1;
218             for (uint32_t d : dims) {
219                 sz *= d;
220             }
221             return sz;
222         };
223 
224         it2 = output_shapes.begin();
225 
226 #define ReserveOutput(X) X##_.insert(X##_.end(), multiAll(*it2++), 0.f);
227 
228         FOR_ALL_OUTPUT_TENSORS(ReserveOutput);
229 
230         model_.addOperation(ANEURALNETWORKS_SVDF, inputs, outputs);
231         model_.identifyInputsAndOutputs(inputs, outputs);
232 
233         model_.finish();
234     }
235 
Invoke()236     void Invoke() {
237         ASSERT_TRUE(model_.isValid());
238 
239         Compilation compilation(&model_);
240         compilation.finish();
241         Execution execution(&compilation);
242 
243         StateIn_.swap(StateOut_);
244 
245 #define SetInputOrWeight(X)                                                                     \
246     ASSERT_EQ(execution.setInput(SVDF::k##X##Tensor, X##_.data(), sizeof(float) * X##_.size()), \
247               Result::NO_ERROR);
248 
249         FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
250 
251 #undef SetInputOrWeight
252 
253 #define SetOutput(X)                                                                             \
254     EXPECT_TRUE(X##_.data() != nullptr);                                                         \
255     ASSERT_EQ(execution.setOutput(SVDF::k##X##Tensor, X##_.data(), sizeof(float) * X##_.size()), \
256               Result::NO_ERROR);
257 
258         FOR_ALL_OUTPUT_TENSORS(SetOutput);
259 
260 #undef SetOutput
261 
262         ASSERT_EQ(execution.setInput(SVDF::kRankParam, &rank_, sizeof(rank_)), Result::NO_ERROR);
263 
264         int activation = TfLiteFusedActivation::kTfLiteActNone;
265         ASSERT_EQ(execution.setInput(SVDF::kActivationParam, &activation, sizeof(activation)),
266                   Result::NO_ERROR);
267 
268         ASSERT_EQ(execution.compute(), Result::NO_ERROR);
269     }
270 
271 #define DefineSetter(X) \
272     void Set##X(const std::vector<float>& f) { X##_.insert(X##_.end(), f.begin(), f.end()); }
273 
274     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
275 
276 #undef DefineSetter
277 
SetInput(int offset,float * begin,float * end)278     void SetInput(int offset, float* begin, float* end) {
279         for (; begin != end; begin++, offset++) {
280             Input_[offset] = *begin;
281         }
282     }
283 
284     // Resets the state of SVDF op by filling it with 0's.
ResetState()285     void ResetState() {
286         std::fill(StateIn_.begin(), StateIn_.end(), 0.f);
287         std::fill(StateOut_.begin(), StateOut_.end(), 0.f);
288     }
289 
290     // Extracts the output tensor from the SVDF op.
GetOutput() const291     const std::vector<float>& GetOutput() const { return Output_; }
292 
input_size() const293     int input_size() const { return input_size_; }
num_units() const294     int num_units() const { return units_; }
num_batches() const295     int num_batches() const { return batches_; }
296 
297    private:
298     Model model_;
299 
300     const uint32_t batches_;
301     const uint32_t units_;
302     const uint32_t input_size_;
303     const uint32_t memory_size_;
304     const uint32_t rank_;
305 
306 #define DefineTensor(X) std::vector<float> X##_;
307 
308     FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor);
309     FOR_ALL_OUTPUT_TENSORS(DefineTensor);
310 
311 #undef DefineTensor
312 };
313 
TEST(SVDFOpTest,BlackBoxTest)314 TEST(SVDFOpTest, BlackBoxTest) {
315     SVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
316                      /*memory_size=*/10, /*rank=*/1);
317     svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347, 0.22197971, 0.12416199,
318                             0.27901134, 0.27557442, 0.3905206, -0.36137494, -0.06634006,
319                             -0.10640851});
320 
321     svdf.SetWeightsTime({-0.31930989, 0.37613347,  0.27901134,  -0.36137494, -0.36118156,
322                          0.22197971,  0.27557442,  -0.06634006, 0.0079667,   0.12416199,
323 
324                          0.3905206,   -0.10640851, -0.0976817,  0.15294972,  0.39635518,
325                          -0.02702999, 0.39296314,  0.15785322,  0.21931258,  0.31053296,
326 
327                          -0.36916667, 0.38031587,  -0.21580373, 0.27072677,  0.23622236,
328                          0.34936687,  0.18174365,  0.35907319,  -0.17493086, 0.324846,
329 
330                          -0.10781813, 0.27201805,  0.14324132,  -0.23681851, -0.27115166,
331                          -0.01580888, -0.14943552, 0.15465137,  0.09784451,  -0.0337657});
332 
333     svdf.SetBias({});
334 
335     svdf.ResetState();
336     const int svdf_num_batches = svdf.num_batches();
337     const int svdf_input_size = svdf.input_size();
338     const int svdf_num_units = svdf.num_units();
339     const int input_sequence_size =
340             sizeof(svdf_input) / sizeof(float) / (svdf_input_size * svdf_num_batches);
341     // Going over each input batch, setting the input tensor, invoking the SVDF op
342     // and checking the output with the expected golden values.
343     for (int i = 0; i < input_sequence_size; i++) {
344         float* batch_start = svdf_input + i * svdf_input_size * svdf_num_batches;
345         float* batch_end = batch_start + svdf_input_size * svdf_num_batches;
346         svdf.SetInput(0, batch_start, batch_end);
347 
348         svdf.Invoke();
349 
350         float* golden_start = svdf_golden_output + i * svdf_num_units * svdf_num_batches;
351         float* golden_end = golden_start + svdf_num_units * svdf_num_batches;
352         std::vector<float> expected;
353         expected.insert(expected.end(), golden_start, golden_end);
354 
355         EXPECT_THAT(svdf.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
356     }
357 }
358 
TEST(SVDFOpTest,BlackBoxTestRank2)359 TEST(SVDFOpTest, BlackBoxTestRank2) {
360     SVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
361                      /*memory_size=*/10, /*rank=*/2);
362     svdf.SetWeightsFeature({-0.31930989, 0.0079667,   0.39296314,  0.37613347, 0.12416199,
363                             0.15785322,  0.27901134,  0.3905206,   0.21931258, -0.36137494,
364                             -0.10640851, 0.31053296,  -0.36118156, -0.0976817, -0.36916667,
365                             0.22197971,  0.15294972,  0.38031587,  0.27557442, 0.39635518,
366                             -0.21580373, -0.06634006, -0.02702999, 0.27072677});
367 
368     svdf.SetWeightsTime({-0.31930989, 0.37613347,  0.27901134,  -0.36137494, -0.36118156,
369                          0.22197971,  0.27557442,  -0.06634006, 0.0079667,   0.12416199,
370 
371                          0.3905206,   -0.10640851, -0.0976817,  0.15294972,  0.39635518,
372                          -0.02702999, 0.39296314,  0.15785322,  0.21931258,  0.31053296,
373 
374                          -0.36916667, 0.38031587,  -0.21580373, 0.27072677,  0.23622236,
375                          0.34936687,  0.18174365,  0.35907319,  -0.17493086, 0.324846,
376 
377                          -0.10781813, 0.27201805,  0.14324132,  -0.23681851, -0.27115166,
378                          -0.01580888, -0.14943552, 0.15465137,  0.09784451,  -0.0337657,
379 
380                          -0.14884081, 0.19931212,  -0.36002168, 0.34663299,  -0.11405486,
381                          0.12672701,  0.39463779,  -0.07886535, -0.06384811, 0.08249187,
382 
383                          -0.26816407, -0.19905911, 0.29211238,  0.31264046,  -0.28664589,
384                          0.05698794,  0.11613581,  0.14078894,  0.02187902,  -0.21781836,
385 
386                          -0.15567942, 0.08693647,  -0.38256618, 0.36580828,  -0.22922277,
387                          -0.0226903,  0.12878349,  -0.28122205, -0.10850525, -0.11955214,
388 
389                          0.27179423,  -0.04710215, 0.31069002,  0.22672787,  0.09580326,
390                          0.08682203,  0.1258215,   0.1851041,   0.29228821,  0.12366763});
391 
392     svdf.SetBias({});
393 
394     svdf.ResetState();
395     const int svdf_num_batches = svdf.num_batches();
396     const int svdf_input_size = svdf.input_size();
397     const int svdf_num_units = svdf.num_units();
398     const int input_sequence_size =
399             sizeof(svdf_input_rank2) / sizeof(float) / (svdf_input_size * svdf_num_batches);
400     // Going over each input batch, setting the input tensor, invoking the SVDF op
401     // and checking the output with the expected golden values.
402     for (int i = 0; i < input_sequence_size; i++) {
403         float* batch_start = svdf_input_rank2 + i * svdf_input_size * svdf_num_batches;
404         float* batch_end = batch_start + svdf_input_size * svdf_num_batches;
405         svdf.SetInput(0, batch_start, batch_end);
406 
407         svdf.Invoke();
408 
409         float* golden_start = svdf_golden_output_rank_2 + i * svdf_num_units * svdf_num_batches;
410         float* golden_end = golden_start + svdf_num_units * svdf_num_batches;
411         std::vector<float> expected;
412         expected.insert(expected.end(), golden_start, golden_end);
413 
414         EXPECT_THAT(svdf.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
415     }
416 }
417 
418 }  // namespace wrapper
419 }  // namespace nn
420 }  // namespace android
421