1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "calling_convention_x86.h"
18
19 #include <android-base/logging.h>
20
21 #include "arch/instruction_set.h"
22 #include "arch/x86/jni_frame_x86.h"
23 #include "handle_scope-inl.h"
24 #include "utils/x86/managed_register_x86.h"
25
26 namespace art {
27 namespace x86 {
28
29 static_assert(kX86PointerSize == PointerSize::k32, "Unexpected x86 pointer size");
30
31 static constexpr ManagedRegister kCalleeSaveRegisters[] = {
32 // Core registers.
33 X86ManagedRegister::FromCpuRegister(EBP),
34 X86ManagedRegister::FromCpuRegister(ESI),
35 X86ManagedRegister::FromCpuRegister(EDI),
36 // No hard float callee saves.
37 };
38
39 template <size_t size>
CalculateCoreCalleeSpillMask(const ManagedRegister (& callee_saves)[size])40 static constexpr uint32_t CalculateCoreCalleeSpillMask(
41 const ManagedRegister (&callee_saves)[size]) {
42 // The spilled PC gets a special marker.
43 uint32_t result = 1 << kNumberOfCpuRegisters;
44 for (auto&& r : callee_saves) {
45 if (r.AsX86().IsCpuRegister()) {
46 result |= (1 << r.AsX86().AsCpuRegister());
47 }
48 }
49 return result;
50 }
51
52 static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(kCalleeSaveRegisters);
53 static constexpr uint32_t kFpCalleeSpillMask = 0u;
54
55 static constexpr ManagedRegister kNativeCalleeSaveRegisters[] = {
56 // Core registers.
57 X86ManagedRegister::FromCpuRegister(EBX),
58 X86ManagedRegister::FromCpuRegister(EBP),
59 X86ManagedRegister::FromCpuRegister(ESI),
60 X86ManagedRegister::FromCpuRegister(EDI),
61 // No hard float callee saves.
62 };
63
64 static constexpr uint32_t kNativeCoreCalleeSpillMask =
65 CalculateCoreCalleeSpillMask(kNativeCalleeSaveRegisters);
66 static constexpr uint32_t kNativeFpCalleeSpillMask = 0u;
67
68 // Calling convention
69
InterproceduralScratchRegister() const70 ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() const {
71 return X86ManagedRegister::FromCpuRegister(ECX);
72 }
73
InterproceduralScratchRegister() const74 ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() const {
75 return X86ManagedRegister::FromCpuRegister(ECX);
76 }
77
ReturnScratchRegister() const78 ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
79 return ManagedRegister::NoRegister(); // No free regs, so assembler uses push/pop
80 }
81
ReturnRegisterForShorty(const char * shorty,bool jni)82 static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
83 if (shorty[0] == 'F' || shorty[0] == 'D') {
84 if (jni) {
85 return X86ManagedRegister::FromX87Register(ST0);
86 } else {
87 return X86ManagedRegister::FromXmmRegister(XMM0);
88 }
89 } else if (shorty[0] == 'J') {
90 return X86ManagedRegister::FromRegisterPair(EAX_EDX);
91 } else if (shorty[0] == 'V') {
92 return ManagedRegister::NoRegister();
93 } else {
94 return X86ManagedRegister::FromCpuRegister(EAX);
95 }
96 }
97
ReturnRegister()98 ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
99 return ReturnRegisterForShorty(GetShorty(), false);
100 }
101
ReturnRegister()102 ManagedRegister X86JniCallingConvention::ReturnRegister() {
103 return ReturnRegisterForShorty(GetShorty(), true);
104 }
105
IntReturnRegister()106 ManagedRegister X86JniCallingConvention::IntReturnRegister() {
107 return X86ManagedRegister::FromCpuRegister(EAX);
108 }
109
110 // Managed runtime calling convention
111
MethodRegister()112 ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
113 return X86ManagedRegister::FromCpuRegister(EAX);
114 }
115
IsCurrentParamInRegister()116 bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
117 return false; // Everything is passed by stack
118 }
119
IsCurrentParamOnStack()120 bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
121 // We assume all parameters are on stack, args coming via registers are spilled as entry_spills.
122 return true;
123 }
124
CurrentParamRegister()125 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
126 ManagedRegister res = ManagedRegister::NoRegister();
127 if (!IsCurrentParamAFloatOrDouble()) {
128 switch (gpr_arg_count_) {
129 case 0:
130 res = X86ManagedRegister::FromCpuRegister(ECX);
131 break;
132 case 1:
133 res = X86ManagedRegister::FromCpuRegister(EDX);
134 break;
135 case 2:
136 // Don't split a long between the last register and the stack.
137 if (IsCurrentParamALong()) {
138 return ManagedRegister::NoRegister();
139 }
140 res = X86ManagedRegister::FromCpuRegister(EBX);
141 break;
142 }
143 } else if (itr_float_and_doubles_ < 4) {
144 // First four float parameters are passed via XMM0..XMM3
145 res = X86ManagedRegister::FromXmmRegister(
146 static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_));
147 }
148 return res;
149 }
150
CurrentParamHighLongRegister()151 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() {
152 ManagedRegister res = ManagedRegister::NoRegister();
153 DCHECK(IsCurrentParamALong());
154 switch (gpr_arg_count_) {
155 case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break;
156 case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break;
157 }
158 return res;
159 }
160
CurrentParamStackOffset()161 FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
162 return FrameOffset(displacement_.Int32Value() + // displacement
163 kFramePointerSize + // Method*
164 (itr_slots_ * kFramePointerSize)); // offset into in args
165 }
166
EntrySpills()167 const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() {
168 // We spill the argument registers on X86 to free them up for scratch use, we then assume
169 // all arguments are on the stack.
170 if (entry_spills_.size() == 0) {
171 ResetIterator(FrameOffset(0));
172 while (HasNext()) {
173 ManagedRegister in_reg = CurrentParamRegister();
174 bool is_long = IsCurrentParamALong();
175 if (!in_reg.IsNoRegister()) {
176 int32_t size = IsParamADouble(itr_args_) ? 8 : 4;
177 int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
178 ManagedRegisterSpill spill(in_reg, size, spill_offset);
179 entry_spills_.push_back(spill);
180 if (is_long) {
181 // special case, as we need a second register here.
182 in_reg = CurrentParamHighLongRegister();
183 DCHECK(!in_reg.IsNoRegister());
184 // We have to spill the second half of the long.
185 ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4);
186 entry_spills_.push_back(spill2);
187 }
188
189 // Keep track of the number of GPRs allocated.
190 if (!IsCurrentParamAFloatOrDouble()) {
191 if (is_long) {
192 // Long was allocated in 2 registers.
193 gpr_arg_count_ += 2;
194 } else {
195 gpr_arg_count_++;
196 }
197 }
198 } else if (is_long) {
199 // We need to skip the unused last register, which is empty.
200 // If we are already out of registers, this is harmless.
201 gpr_arg_count_ += 2;
202 }
203 Next();
204 }
205 }
206 return entry_spills_;
207 }
208
209 // JNI calling convention
210
X86JniCallingConvention(bool is_static,bool is_synchronized,bool is_critical_native,const char * shorty)211 X86JniCallingConvention::X86JniCallingConvention(bool is_static,
212 bool is_synchronized,
213 bool is_critical_native,
214 const char* shorty)
215 : JniCallingConvention(is_static,
216 is_synchronized,
217 is_critical_native,
218 shorty,
219 kX86PointerSize) {
220 }
221
CoreSpillMask() const222 uint32_t X86JniCallingConvention::CoreSpillMask() const {
223 return is_critical_native_ ? 0u : kCoreCalleeSpillMask;
224 }
225
FpSpillMask() const226 uint32_t X86JniCallingConvention::FpSpillMask() const {
227 return is_critical_native_ ? 0u : kFpCalleeSpillMask;
228 }
229
FrameSize() const230 size_t X86JniCallingConvention::FrameSize() const {
231 if (is_critical_native_) {
232 CHECK(!SpillsMethod());
233 CHECK(!HasLocalReferenceSegmentState());
234 CHECK(!HasHandleScope());
235 CHECK(!SpillsReturnValue());
236 return 0u; // There is no managed frame for @CriticalNative.
237 }
238
239 // Method*, PC return address and callee save area size, local reference segment state
240 CHECK(SpillsMethod());
241 const size_t method_ptr_size = static_cast<size_t>(kX86PointerSize);
242 const size_t pc_return_addr_size = kFramePointerSize;
243 const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
244 size_t total_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
245
246 CHECK(HasLocalReferenceSegmentState());
247 total_size += kFramePointerSize;
248
249 CHECK(HasHandleScope());
250 total_size += HandleScope::SizeOf(kX86_64PointerSize, ReferenceCount());
251
252 // Plus return value spill area size
253 CHECK(SpillsReturnValue());
254 total_size += SizeOfReturnValue();
255
256 return RoundUp(total_size, kStackAlignment);
257 }
258
OutArgSize() const259 size_t X86JniCallingConvention::OutArgSize() const {
260 // Count param args, including JNIEnv* and jclass*; count 8-byte args twice.
261 size_t all_args = NumberOfExtraArgumentsForJni() + NumArgs() + NumLongOrDoubleArgs();
262 // The size of outgoiong arguments.
263 size_t size = all_args * kFramePointerSize;
264
265 // @CriticalNative can use tail call as all managed callee saves are preserved by AAPCS.
266 static_assert((kCoreCalleeSpillMask & ~kNativeCoreCalleeSpillMask) == 0u);
267 static_assert((kFpCalleeSpillMask & ~kNativeFpCalleeSpillMask) == 0u);
268
269 if (UNLIKELY(IsCriticalNative())) {
270 // Add return address size for @CriticalNative.
271 // For normal native the return PC is part of the managed stack frame instead of out args.
272 size += kFramePointerSize;
273 // For @CriticalNative, we can make a tail call if there are no stack args
274 // and the return type is not FP type (needs moving from ST0 to MMX0) and
275 // we do not need to extend the result.
276 bool return_type_ok = GetShorty()[0] == 'I' || GetShorty()[0] == 'J' || GetShorty()[0] == 'V';
277 DCHECK_EQ(
278 return_type_ok,
279 GetShorty()[0] != 'F' && GetShorty()[0] != 'D' && !RequiresSmallResultTypeExtension());
280 if (return_type_ok && size == kFramePointerSize) {
281 // Note: This is not aligned to kNativeStackAlignment but that's OK for tail call.
282 static_assert(kFramePointerSize < kNativeStackAlignment);
283 DCHECK_EQ(kFramePointerSize, GetCriticalNativeOutArgsSize(GetShorty(), NumArgs() + 1u));
284 return kFramePointerSize;
285 }
286 }
287
288 size_t out_args_size = RoundUp(size, kNativeStackAlignment);
289 if (UNLIKELY(IsCriticalNative())) {
290 DCHECK_EQ(out_args_size, GetCriticalNativeOutArgsSize(GetShorty(), NumArgs() + 1u));
291 }
292 return out_args_size;
293 }
294
CalleeSaveRegisters() const295 ArrayRef<const ManagedRegister> X86JniCallingConvention::CalleeSaveRegisters() const {
296 if (UNLIKELY(IsCriticalNative())) {
297 // Do not spill anything, whether tail call or not (return PC is already on the stack).
298 return ArrayRef<const ManagedRegister>();
299 } else {
300 return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
301 }
302 }
303
IsCurrentParamInRegister()304 bool X86JniCallingConvention::IsCurrentParamInRegister() {
305 return false; // Everything is passed by stack.
306 }
307
IsCurrentParamOnStack()308 bool X86JniCallingConvention::IsCurrentParamOnStack() {
309 return true; // Everything is passed by stack.
310 }
311
CurrentParamRegister()312 ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
313 LOG(FATAL) << "Should not reach here";
314 UNREACHABLE();
315 }
316
CurrentParamStackOffset()317 FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
318 return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize));
319 }
320
HiddenArgumentRegister() const321 ManagedRegister X86JniCallingConvention::HiddenArgumentRegister() const {
322 CHECK(IsCriticalNative());
323 // EAX is neither managed callee-save, nor argument register, nor scratch register.
324 DCHECK(std::none_of(kCalleeSaveRegisters,
325 kCalleeSaveRegisters + std::size(kCalleeSaveRegisters),
326 [](ManagedRegister callee_save) constexpr {
327 return callee_save.Equals(X86ManagedRegister::FromCpuRegister(EAX));
328 }));
329 DCHECK(!InterproceduralScratchRegister().Equals(X86ManagedRegister::FromCpuRegister(EAX)));
330 return X86ManagedRegister::FromCpuRegister(EAX);
331 }
332
UseTailCall() const333 bool X86JniCallingConvention::UseTailCall() const {
334 CHECK(IsCriticalNative());
335 return OutArgSize() == kFramePointerSize;
336 }
337
338 } // namespace x86
339 } // namespace art
340