1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "intrinsics_x86_64.h"
18
19 #include <limits>
20
21 #include "arch/x86_64/instruction_set_features_x86_64.h"
22 #include "art_method.h"
23 #include "base/bit_utils.h"
24 #include "code_generator_x86_64.h"
25 #include "entrypoints/quick/quick_entrypoints.h"
26 #include "heap_poisoning.h"
27 #include "intrinsics.h"
28 #include "intrinsics_utils.h"
29 #include "lock_word.h"
30 #include "mirror/array-inl.h"
31 #include "mirror/object_array-inl.h"
32 #include "mirror/reference.h"
33 #include "mirror/string.h"
34 #include "scoped_thread_state_change-inl.h"
35 #include "thread-current-inl.h"
36 #include "utils/x86_64/assembler_x86_64.h"
37 #include "utils/x86_64/constants_x86_64.h"
38
39 namespace art {
40
41 namespace x86_64 {
42
IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64 * codegen)43 IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen)
44 : allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) {
45 }
46
GetAssembler()47 X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() {
48 return down_cast<X86_64Assembler*>(codegen_->GetAssembler());
49 }
50
GetAllocator()51 ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() {
52 return codegen_->GetGraph()->GetAllocator();
53 }
54
TryDispatch(HInvoke * invoke)55 bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) {
56 Dispatch(invoke);
57 LocationSummary* res = invoke->GetLocations();
58 if (res == nullptr) {
59 return false;
60 }
61 return res->Intrinsified();
62 }
63
MoveArguments(HInvoke * invoke,CodeGeneratorX86_64 * codegen)64 static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) {
65 InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor;
66 IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
67 }
68
69 using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>;
70
71 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
72 #define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> // NOLINT
73
74 // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
75 class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode {
76 public:
ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction * instruction)77 explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction)
78 : SlowPathCode(instruction) {
79 DCHECK(kEmitCompilerReadBarrier);
80 DCHECK(kUseBakerReadBarrier);
81 }
82
EmitNativeCode(CodeGenerator * codegen)83 void EmitNativeCode(CodeGenerator* codegen) override {
84 CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
85 LocationSummary* locations = instruction_->GetLocations();
86 DCHECK(locations->CanCall());
87 DCHECK(instruction_->IsInvokeStaticOrDirect())
88 << "Unexpected instruction in read barrier arraycopy slow path: "
89 << instruction_->DebugName();
90 DCHECK(instruction_->GetLocations()->Intrinsified());
91 DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
92
93 int32_t element_size = DataType::Size(DataType::Type::kReference);
94
95 CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister<CpuRegister>();
96 CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister<CpuRegister>();
97 CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister<CpuRegister>();
98
99 __ Bind(GetEntryLabel());
100 NearLabel loop;
101 __ Bind(&loop);
102 __ movl(CpuRegister(TMP), Address(src_curr_addr, 0));
103 __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
104 // TODO: Inline the mark bit check before calling the runtime?
105 // TMP = ReadBarrier::Mark(TMP);
106 // No need to save live registers; it's taken care of by the
107 // entrypoint. Also, there is no need to update the stack mask,
108 // as this runtime call will not trigger a garbage collection.
109 int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(TMP);
110 // This runtime call does not require a stack map.
111 x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
112 __ MaybePoisonHeapReference(CpuRegister(TMP));
113 __ movl(Address(dst_curr_addr, 0), CpuRegister(TMP));
114 __ addl(src_curr_addr, Immediate(element_size));
115 __ addl(dst_curr_addr, Immediate(element_size));
116 __ cmpl(src_curr_addr, src_stop_addr);
117 __ j(kNotEqual, &loop);
118 __ jmp(GetExitLabel());
119 }
120
GetDescription() const121 const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathX86_64"; }
122
123 private:
124 DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64);
125 };
126
127 #undef __
128
129 #define __ assembler->
130
CreateFPToIntLocations(ArenaAllocator * allocator,HInvoke * invoke)131 static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
132 LocationSummary* locations =
133 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
134 locations->SetInAt(0, Location::RequiresFpuRegister());
135 locations->SetOut(Location::RequiresRegister());
136 }
137
CreateIntToFPLocations(ArenaAllocator * allocator,HInvoke * invoke)138 static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
139 LocationSummary* locations =
140 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
141 locations->SetInAt(0, Location::RequiresRegister());
142 locations->SetOut(Location::RequiresFpuRegister());
143 }
144
MoveFPToInt(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)145 static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
146 Location input = locations->InAt(0);
147 Location output = locations->Out();
148 __ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit);
149 }
150
MoveIntToFP(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)151 static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
152 Location input = locations->InAt(0);
153 Location output = locations->Out();
154 __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit);
155 }
156
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)157 void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
158 CreateFPToIntLocations(allocator_, invoke);
159 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)160 void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
161 CreateIntToFPLocations(allocator_, invoke);
162 }
163
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)164 void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
165 MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
166 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)167 void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
168 MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
169 }
170
VisitFloatFloatToRawIntBits(HInvoke * invoke)171 void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
172 CreateFPToIntLocations(allocator_, invoke);
173 }
VisitFloatIntBitsToFloat(HInvoke * invoke)174 void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
175 CreateIntToFPLocations(allocator_, invoke);
176 }
177
VisitFloatFloatToRawIntBits(HInvoke * invoke)178 void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
179 MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
180 }
VisitFloatIntBitsToFloat(HInvoke * invoke)181 void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
182 MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
183 }
184
CreateIntToIntLocations(ArenaAllocator * allocator,HInvoke * invoke)185 static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
186 LocationSummary* locations =
187 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
188 locations->SetInAt(0, Location::RequiresRegister());
189 locations->SetOut(Location::SameAsFirstInput());
190 }
191
GenReverseBytes(LocationSummary * locations,DataType::Type size,X86_64Assembler * assembler)192 static void GenReverseBytes(LocationSummary* locations,
193 DataType::Type size,
194 X86_64Assembler* assembler) {
195 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
196
197 switch (size) {
198 case DataType::Type::kInt16:
199 // TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
200 __ bswapl(out);
201 __ sarl(out, Immediate(16));
202 break;
203 case DataType::Type::kInt32:
204 __ bswapl(out);
205 break;
206 case DataType::Type::kInt64:
207 __ bswapq(out);
208 break;
209 default:
210 LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
211 UNREACHABLE();
212 }
213 }
214
VisitIntegerReverseBytes(HInvoke * invoke)215 void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
216 CreateIntToIntLocations(allocator_, invoke);
217 }
218
VisitIntegerReverseBytes(HInvoke * invoke)219 void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
220 GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
221 }
222
VisitLongReverseBytes(HInvoke * invoke)223 void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) {
224 CreateIntToIntLocations(allocator_, invoke);
225 }
226
VisitLongReverseBytes(HInvoke * invoke)227 void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) {
228 GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
229 }
230
VisitShortReverseBytes(HInvoke * invoke)231 void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) {
232 CreateIntToIntLocations(allocator_, invoke);
233 }
234
VisitShortReverseBytes(HInvoke * invoke)235 void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) {
236 GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
237 }
238
CreateFPToFPLocations(ArenaAllocator * allocator,HInvoke * invoke)239 static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
240 LocationSummary* locations =
241 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
242 locations->SetInAt(0, Location::RequiresFpuRegister());
243 locations->SetOut(Location::RequiresFpuRegister());
244 }
245
VisitMathSqrt(HInvoke * invoke)246 void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) {
247 CreateFPToFPLocations(allocator_, invoke);
248 }
249
VisitMathSqrt(HInvoke * invoke)250 void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) {
251 LocationSummary* locations = invoke->GetLocations();
252 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
253 XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
254
255 GetAssembler()->sqrtsd(out, in);
256 }
257
InvokeOutOfLineIntrinsic(CodeGeneratorX86_64 * codegen,HInvoke * invoke)258 static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) {
259 MoveArguments(invoke, codegen);
260
261 DCHECK(invoke->IsInvokeStaticOrDirect());
262 codegen->GenerateStaticOrDirectCall(
263 invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(RDI));
264
265 // Copy the result back to the expected output.
266 Location out = invoke->GetLocations()->Out();
267 if (out.IsValid()) {
268 DCHECK(out.IsRegister());
269 codegen->MoveFromReturnRegister(out, invoke->GetType());
270 }
271 }
272
CreateSSE41FPToFPLocations(ArenaAllocator * allocator,HInvoke * invoke,CodeGeneratorX86_64 * codegen)273 static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator,
274 HInvoke* invoke,
275 CodeGeneratorX86_64* codegen) {
276 // Do we have instruction support?
277 if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
278 CreateFPToFPLocations(allocator, invoke);
279 return;
280 }
281
282 // We have to fall back to a call to the intrinsic.
283 LocationSummary* locations =
284 new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly);
285 InvokeRuntimeCallingConvention calling_convention;
286 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
287 locations->SetOut(Location::FpuRegisterLocation(XMM0));
288 // Needs to be RDI for the invoke.
289 locations->AddTemp(Location::RegisterLocation(RDI));
290 }
291
GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64 * codegen,HInvoke * invoke,X86_64Assembler * assembler,int round_mode)292 static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen,
293 HInvoke* invoke,
294 X86_64Assembler* assembler,
295 int round_mode) {
296 LocationSummary* locations = invoke->GetLocations();
297 if (locations->WillCall()) {
298 InvokeOutOfLineIntrinsic(codegen, invoke);
299 } else {
300 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
301 XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
302 __ roundsd(out, in, Immediate(round_mode));
303 }
304 }
305
VisitMathCeil(HInvoke * invoke)306 void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) {
307 CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
308 }
309
VisitMathCeil(HInvoke * invoke)310 void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) {
311 GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2);
312 }
313
VisitMathFloor(HInvoke * invoke)314 void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) {
315 CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
316 }
317
VisitMathFloor(HInvoke * invoke)318 void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) {
319 GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1);
320 }
321
VisitMathRint(HInvoke * invoke)322 void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) {
323 CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
324 }
325
VisitMathRint(HInvoke * invoke)326 void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) {
327 GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0);
328 }
329
CreateSSE41FPToIntLocations(ArenaAllocator * allocator,HInvoke * invoke,CodeGeneratorX86_64 * codegen)330 static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator,
331 HInvoke* invoke,
332 CodeGeneratorX86_64* codegen) {
333 // Do we have instruction support?
334 if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
335 LocationSummary* locations =
336 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
337 locations->SetInAt(0, Location::RequiresFpuRegister());
338 locations->SetOut(Location::RequiresRegister());
339 locations->AddTemp(Location::RequiresFpuRegister());
340 locations->AddTemp(Location::RequiresFpuRegister());
341 return;
342 }
343
344 // We have to fall back to a call to the intrinsic.
345 LocationSummary* locations =
346 new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly);
347 InvokeRuntimeCallingConvention calling_convention;
348 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
349 locations->SetOut(Location::RegisterLocation(RAX));
350 // Needs to be RDI for the invoke.
351 locations->AddTemp(Location::RegisterLocation(RDI));
352 }
353
VisitMathRoundFloat(HInvoke * invoke)354 void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) {
355 CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
356 }
357
VisitMathRoundFloat(HInvoke * invoke)358 void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) {
359 LocationSummary* locations = invoke->GetLocations();
360 if (locations->WillCall()) {
361 InvokeOutOfLineIntrinsic(codegen_, invoke);
362 return;
363 }
364
365 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
366 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
367 XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
368 XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
369 NearLabel skip_incr, done;
370 X86_64Assembler* assembler = GetAssembler();
371
372 // Since no direct x86 rounding instruction matches the required semantics,
373 // this intrinsic is implemented as follows:
374 // result = floor(in);
375 // if (in - result >= 0.5f)
376 // result = result + 1.0f;
377 __ movss(t2, in);
378 __ roundss(t1, in, Immediate(1));
379 __ subss(t2, t1);
380 __ comiss(t2, codegen_->LiteralFloatAddress(0.5f));
381 __ j(kBelow, &skip_incr);
382 __ addss(t1, codegen_->LiteralFloatAddress(1.0f));
383 __ Bind(&skip_incr);
384
385 // Final conversion to an integer. Unfortunately this also does not have a
386 // direct x86 instruction, since NaN should map to 0 and large positive
387 // values need to be clipped to the extreme value.
388 codegen_->Load32BitValue(out, kPrimIntMax);
389 __ cvtsi2ss(t2, out);
390 __ comiss(t1, t2);
391 __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
392 __ movl(out, Immediate(0)); // does not change flags
393 __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
394 __ cvttss2si(out, t1);
395 __ Bind(&done);
396 }
397
VisitMathRoundDouble(HInvoke * invoke)398 void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) {
399 CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
400 }
401
VisitMathRoundDouble(HInvoke * invoke)402 void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) {
403 LocationSummary* locations = invoke->GetLocations();
404 if (locations->WillCall()) {
405 InvokeOutOfLineIntrinsic(codegen_, invoke);
406 return;
407 }
408
409 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
410 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
411 XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
412 XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
413 NearLabel skip_incr, done;
414 X86_64Assembler* assembler = GetAssembler();
415
416 // Since no direct x86 rounding instruction matches the required semantics,
417 // this intrinsic is implemented as follows:
418 // result = floor(in);
419 // if (in - result >= 0.5)
420 // result = result + 1.0f;
421 __ movsd(t2, in);
422 __ roundsd(t1, in, Immediate(1));
423 __ subsd(t2, t1);
424 __ comisd(t2, codegen_->LiteralDoubleAddress(0.5));
425 __ j(kBelow, &skip_incr);
426 __ addsd(t1, codegen_->LiteralDoubleAddress(1.0f));
427 __ Bind(&skip_incr);
428
429 // Final conversion to an integer. Unfortunately this also does not have a
430 // direct x86 instruction, since NaN should map to 0 and large positive
431 // values need to be clipped to the extreme value.
432 codegen_->Load64BitValue(out, kPrimLongMax);
433 __ cvtsi2sd(t2, out, /* is64bit= */ true);
434 __ comisd(t1, t2);
435 __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
436 __ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit
437 __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
438 __ cvttsd2si(out, t1, /* is64bit= */ true);
439 __ Bind(&done);
440 }
441
CreateFPToFPCallLocations(ArenaAllocator * allocator,HInvoke * invoke)442 static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
443 LocationSummary* locations =
444 new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
445 InvokeRuntimeCallingConvention calling_convention;
446 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
447 locations->SetOut(Location::FpuRegisterLocation(XMM0));
448
449 // We have to ensure that the native code doesn't clobber the XMM registers which are
450 // non-volatile for ART, but volatile for Native calls. This will ensure that they are
451 // saved in the prologue and properly restored.
452 for (FloatRegister fp_reg : non_volatile_xmm_regs) {
453 locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
454 }
455 }
456
GenFPToFPCall(HInvoke * invoke,CodeGeneratorX86_64 * codegen,QuickEntrypointEnum entry)457 static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen,
458 QuickEntrypointEnum entry) {
459 LocationSummary* locations = invoke->GetLocations();
460 DCHECK(locations->WillCall());
461 DCHECK(invoke->IsInvokeStaticOrDirect());
462
463 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
464 }
465
VisitMathCos(HInvoke * invoke)466 void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) {
467 CreateFPToFPCallLocations(allocator_, invoke);
468 }
469
VisitMathCos(HInvoke * invoke)470 void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) {
471 GenFPToFPCall(invoke, codegen_, kQuickCos);
472 }
473
VisitMathSin(HInvoke * invoke)474 void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) {
475 CreateFPToFPCallLocations(allocator_, invoke);
476 }
477
VisitMathSin(HInvoke * invoke)478 void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) {
479 GenFPToFPCall(invoke, codegen_, kQuickSin);
480 }
481
VisitMathAcos(HInvoke * invoke)482 void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) {
483 CreateFPToFPCallLocations(allocator_, invoke);
484 }
485
VisitMathAcos(HInvoke * invoke)486 void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) {
487 GenFPToFPCall(invoke, codegen_, kQuickAcos);
488 }
489
VisitMathAsin(HInvoke * invoke)490 void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) {
491 CreateFPToFPCallLocations(allocator_, invoke);
492 }
493
VisitMathAsin(HInvoke * invoke)494 void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) {
495 GenFPToFPCall(invoke, codegen_, kQuickAsin);
496 }
497
VisitMathAtan(HInvoke * invoke)498 void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) {
499 CreateFPToFPCallLocations(allocator_, invoke);
500 }
501
VisitMathAtan(HInvoke * invoke)502 void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) {
503 GenFPToFPCall(invoke, codegen_, kQuickAtan);
504 }
505
VisitMathCbrt(HInvoke * invoke)506 void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) {
507 CreateFPToFPCallLocations(allocator_, invoke);
508 }
509
VisitMathCbrt(HInvoke * invoke)510 void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) {
511 GenFPToFPCall(invoke, codegen_, kQuickCbrt);
512 }
513
VisitMathCosh(HInvoke * invoke)514 void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) {
515 CreateFPToFPCallLocations(allocator_, invoke);
516 }
517
VisitMathCosh(HInvoke * invoke)518 void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) {
519 GenFPToFPCall(invoke, codegen_, kQuickCosh);
520 }
521
VisitMathExp(HInvoke * invoke)522 void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) {
523 CreateFPToFPCallLocations(allocator_, invoke);
524 }
525
VisitMathExp(HInvoke * invoke)526 void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) {
527 GenFPToFPCall(invoke, codegen_, kQuickExp);
528 }
529
VisitMathExpm1(HInvoke * invoke)530 void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) {
531 CreateFPToFPCallLocations(allocator_, invoke);
532 }
533
VisitMathExpm1(HInvoke * invoke)534 void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) {
535 GenFPToFPCall(invoke, codegen_, kQuickExpm1);
536 }
537
VisitMathLog(HInvoke * invoke)538 void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) {
539 CreateFPToFPCallLocations(allocator_, invoke);
540 }
541
VisitMathLog(HInvoke * invoke)542 void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) {
543 GenFPToFPCall(invoke, codegen_, kQuickLog);
544 }
545
VisitMathLog10(HInvoke * invoke)546 void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) {
547 CreateFPToFPCallLocations(allocator_, invoke);
548 }
549
VisitMathLog10(HInvoke * invoke)550 void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) {
551 GenFPToFPCall(invoke, codegen_, kQuickLog10);
552 }
553
VisitMathSinh(HInvoke * invoke)554 void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) {
555 CreateFPToFPCallLocations(allocator_, invoke);
556 }
557
VisitMathSinh(HInvoke * invoke)558 void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) {
559 GenFPToFPCall(invoke, codegen_, kQuickSinh);
560 }
561
VisitMathTan(HInvoke * invoke)562 void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) {
563 CreateFPToFPCallLocations(allocator_, invoke);
564 }
565
VisitMathTan(HInvoke * invoke)566 void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) {
567 GenFPToFPCall(invoke, codegen_, kQuickTan);
568 }
569
VisitMathTanh(HInvoke * invoke)570 void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) {
571 CreateFPToFPCallLocations(allocator_, invoke);
572 }
573
VisitMathTanh(HInvoke * invoke)574 void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) {
575 GenFPToFPCall(invoke, codegen_, kQuickTanh);
576 }
577
CreateFPFPToFPCallLocations(ArenaAllocator * allocator,HInvoke * invoke)578 static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
579 LocationSummary* locations =
580 new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
581 InvokeRuntimeCallingConvention calling_convention;
582 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
583 locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
584 locations->SetOut(Location::FpuRegisterLocation(XMM0));
585
586 // We have to ensure that the native code doesn't clobber the XMM registers which are
587 // non-volatile for ART, but volatile for Native calls. This will ensure that they are
588 // saved in the prologue and properly restored.
589 for (FloatRegister fp_reg : non_volatile_xmm_regs) {
590 locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
591 }
592 }
593
VisitMathAtan2(HInvoke * invoke)594 void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) {
595 CreateFPFPToFPCallLocations(allocator_, invoke);
596 }
597
VisitMathAtan2(HInvoke * invoke)598 void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) {
599 GenFPToFPCall(invoke, codegen_, kQuickAtan2);
600 }
601
VisitMathPow(HInvoke * invoke)602 void IntrinsicLocationsBuilderX86_64::VisitMathPow(HInvoke* invoke) {
603 CreateFPFPToFPCallLocations(allocator_, invoke);
604 }
605
VisitMathPow(HInvoke * invoke)606 void IntrinsicCodeGeneratorX86_64::VisitMathPow(HInvoke* invoke) {
607 GenFPToFPCall(invoke, codegen_, kQuickPow);
608 }
609
VisitMathHypot(HInvoke * invoke)610 void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) {
611 CreateFPFPToFPCallLocations(allocator_, invoke);
612 }
613
VisitMathHypot(HInvoke * invoke)614 void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) {
615 GenFPToFPCall(invoke, codegen_, kQuickHypot);
616 }
617
VisitMathNextAfter(HInvoke * invoke)618 void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) {
619 CreateFPFPToFPCallLocations(allocator_, invoke);
620 }
621
VisitMathNextAfter(HInvoke * invoke)622 void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) {
623 GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
624 }
625
VisitSystemArrayCopyChar(HInvoke * invoke)626 void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
627 // Check to see if we have known failures that will cause us to have to bail out
628 // to the runtime, and just generate the runtime call directly.
629 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
630 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
631
632 // The positions must be non-negative.
633 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
634 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
635 // We will have to fail anyways.
636 return;
637 }
638
639 // The length must be > 0.
640 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
641 if (length != nullptr) {
642 int32_t len = length->GetValue();
643 if (len < 0) {
644 // Just call as normal.
645 return;
646 }
647 }
648
649 LocationSummary* locations =
650 new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
651 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
652 locations->SetInAt(0, Location::RequiresRegister());
653 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
654 locations->SetInAt(2, Location::RequiresRegister());
655 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
656 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
657
658 // And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
659 locations->AddTemp(Location::RegisterLocation(RSI));
660 locations->AddTemp(Location::RegisterLocation(RDI));
661 locations->AddTemp(Location::RegisterLocation(RCX));
662 }
663
CheckPosition(X86_64Assembler * assembler,Location pos,CpuRegister input,Location length,SlowPathCode * slow_path,CpuRegister temp,bool length_is_input_length=false)664 static void CheckPosition(X86_64Assembler* assembler,
665 Location pos,
666 CpuRegister input,
667 Location length,
668 SlowPathCode* slow_path,
669 CpuRegister temp,
670 bool length_is_input_length = false) {
671 // Where is the length in the Array?
672 const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
673
674 if (pos.IsConstant()) {
675 int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
676 if (pos_const == 0) {
677 if (!length_is_input_length) {
678 // Check that length(input) >= length.
679 if (length.IsConstant()) {
680 __ cmpl(Address(input, length_offset),
681 Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
682 } else {
683 __ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>());
684 }
685 __ j(kLess, slow_path->GetEntryLabel());
686 }
687 } else {
688 // Check that length(input) >= pos.
689 __ movl(temp, Address(input, length_offset));
690 __ subl(temp, Immediate(pos_const));
691 __ j(kLess, slow_path->GetEntryLabel());
692
693 // Check that (length(input) - pos) >= length.
694 if (length.IsConstant()) {
695 __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
696 } else {
697 __ cmpl(temp, length.AsRegister<CpuRegister>());
698 }
699 __ j(kLess, slow_path->GetEntryLabel());
700 }
701 } else if (length_is_input_length) {
702 // The only way the copy can succeed is if pos is zero.
703 CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
704 __ testl(pos_reg, pos_reg);
705 __ j(kNotEqual, slow_path->GetEntryLabel());
706 } else {
707 // Check that pos >= 0.
708 CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
709 __ testl(pos_reg, pos_reg);
710 __ j(kLess, slow_path->GetEntryLabel());
711
712 // Check that pos <= length(input).
713 __ cmpl(Address(input, length_offset), pos_reg);
714 __ j(kLess, slow_path->GetEntryLabel());
715
716 // Check that (length(input) - pos) >= length.
717 __ movl(temp, Address(input, length_offset));
718 __ subl(temp, pos_reg);
719 if (length.IsConstant()) {
720 __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
721 } else {
722 __ cmpl(temp, length.AsRegister<CpuRegister>());
723 }
724 __ j(kLess, slow_path->GetEntryLabel());
725 }
726 }
727
VisitSystemArrayCopyChar(HInvoke * invoke)728 void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
729 X86_64Assembler* assembler = GetAssembler();
730 LocationSummary* locations = invoke->GetLocations();
731
732 CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
733 Location src_pos = locations->InAt(1);
734 CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
735 Location dest_pos = locations->InAt(3);
736 Location length = locations->InAt(4);
737
738 // Temporaries that we need for MOVSW.
739 CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>();
740 DCHECK_EQ(src_base.AsRegister(), RSI);
741 CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>();
742 DCHECK_EQ(dest_base.AsRegister(), RDI);
743 CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>();
744 DCHECK_EQ(count.AsRegister(), RCX);
745
746 SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
747 codegen_->AddSlowPath(slow_path);
748
749 // Bail out if the source and destination are the same.
750 __ cmpl(src, dest);
751 __ j(kEqual, slow_path->GetEntryLabel());
752
753 // Bail out if the source is null.
754 __ testl(src, src);
755 __ j(kEqual, slow_path->GetEntryLabel());
756
757 // Bail out if the destination is null.
758 __ testl(dest, dest);
759 __ j(kEqual, slow_path->GetEntryLabel());
760
761 // If the length is negative, bail out.
762 // We have already checked in the LocationsBuilder for the constant case.
763 if (!length.IsConstant()) {
764 __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
765 __ j(kLess, slow_path->GetEntryLabel());
766 }
767
768 // Validity checks: source. Use src_base as a temporary register.
769 CheckPosition(assembler, src_pos, src, length, slow_path, src_base);
770
771 // Validity checks: dest. Use src_base as a temporary register.
772 CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base);
773
774 // We need the count in RCX.
775 if (length.IsConstant()) {
776 __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
777 } else {
778 __ movl(count, length.AsRegister<CpuRegister>());
779 }
780
781 // Okay, everything checks out. Finally time to do the copy.
782 // Check assumption that sizeof(Char) is 2 (used in scaling below).
783 const size_t char_size = DataType::Size(DataType::Type::kUint16);
784 DCHECK_EQ(char_size, 2u);
785
786 const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
787
788 if (src_pos.IsConstant()) {
789 int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
790 __ leal(src_base, Address(src, char_size * src_pos_const + data_offset));
791 } else {
792 __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(),
793 ScaleFactor::TIMES_2, data_offset));
794 }
795 if (dest_pos.IsConstant()) {
796 int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
797 __ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset));
798 } else {
799 __ leal(dest_base, Address(dest, dest_pos.AsRegister<CpuRegister>(),
800 ScaleFactor::TIMES_2, data_offset));
801 }
802
803 // Do the move.
804 __ rep_movsw();
805
806 __ Bind(slow_path->GetExitLabel());
807 }
808
809
VisitSystemArrayCopy(HInvoke * invoke)810 void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
811 // The only read barrier implementation supporting the
812 // SystemArrayCopy intrinsic is the Baker-style read barriers.
813 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
814 return;
815 }
816
817 CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
818 }
819
820 // Compute base source address, base destination address, and end
821 // source address for the System.arraycopy intrinsic in `src_base`,
822 // `dst_base` and `src_end` respectively.
GenSystemArrayCopyAddresses(X86_64Assembler * assembler,DataType::Type type,const CpuRegister & src,const Location & src_pos,const CpuRegister & dst,const Location & dst_pos,const Location & copy_length,const CpuRegister & src_base,const CpuRegister & dst_base,const CpuRegister & src_end)823 static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler,
824 DataType::Type type,
825 const CpuRegister& src,
826 const Location& src_pos,
827 const CpuRegister& dst,
828 const Location& dst_pos,
829 const Location& copy_length,
830 const CpuRegister& src_base,
831 const CpuRegister& dst_base,
832 const CpuRegister& src_end) {
833 // This routine is only used by the SystemArrayCopy intrinsic.
834 DCHECK_EQ(type, DataType::Type::kReference);
835 const int32_t element_size = DataType::Size(type);
836 const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type));
837 const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
838
839 if (src_pos.IsConstant()) {
840 int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
841 __ leal(src_base, Address(src, element_size * constant + data_offset));
842 } else {
843 __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
844 }
845
846 if (dst_pos.IsConstant()) {
847 int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue();
848 __ leal(dst_base, Address(dst, element_size * constant + data_offset));
849 } else {
850 __ leal(dst_base, Address(dst, dst_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
851 }
852
853 if (copy_length.IsConstant()) {
854 int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue();
855 __ leal(src_end, Address(src_base, element_size * constant));
856 } else {
857 __ leal(src_end, Address(src_base, copy_length.AsRegister<CpuRegister>(), scale_factor, 0));
858 }
859 }
860
VisitSystemArrayCopy(HInvoke * invoke)861 void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
862 // The only read barrier implementation supporting the
863 // SystemArrayCopy intrinsic is the Baker-style read barriers.
864 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
865
866 X86_64Assembler* assembler = GetAssembler();
867 LocationSummary* locations = invoke->GetLocations();
868
869 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
870 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
871 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
872 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
873 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
874
875 CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
876 Location src_pos = locations->InAt(1);
877 CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
878 Location dest_pos = locations->InAt(3);
879 Location length = locations->InAt(4);
880 Location temp1_loc = locations->GetTemp(0);
881 CpuRegister temp1 = temp1_loc.AsRegister<CpuRegister>();
882 Location temp2_loc = locations->GetTemp(1);
883 CpuRegister temp2 = temp2_loc.AsRegister<CpuRegister>();
884 Location temp3_loc = locations->GetTemp(2);
885 CpuRegister temp3 = temp3_loc.AsRegister<CpuRegister>();
886 Location TMP_loc = Location::RegisterLocation(TMP);
887
888 SlowPathCode* intrinsic_slow_path =
889 new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
890 codegen_->AddSlowPath(intrinsic_slow_path);
891
892 NearLabel conditions_on_positions_validated;
893 SystemArrayCopyOptimizations optimizations(invoke);
894
895 // If source and destination are the same, we go to slow path if we need to do
896 // forward copying.
897 if (src_pos.IsConstant()) {
898 int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
899 if (dest_pos.IsConstant()) {
900 int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
901 if (optimizations.GetDestinationIsSource()) {
902 // Checked when building locations.
903 DCHECK_GE(src_pos_constant, dest_pos_constant);
904 } else if (src_pos_constant < dest_pos_constant) {
905 __ cmpl(src, dest);
906 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
907 }
908 } else {
909 if (!optimizations.GetDestinationIsSource()) {
910 __ cmpl(src, dest);
911 __ j(kNotEqual, &conditions_on_positions_validated);
912 }
913 __ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant));
914 __ j(kGreater, intrinsic_slow_path->GetEntryLabel());
915 }
916 } else {
917 if (!optimizations.GetDestinationIsSource()) {
918 __ cmpl(src, dest);
919 __ j(kNotEqual, &conditions_on_positions_validated);
920 }
921 if (dest_pos.IsConstant()) {
922 int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
923 __ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant));
924 __ j(kLess, intrinsic_slow_path->GetEntryLabel());
925 } else {
926 __ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>());
927 __ j(kLess, intrinsic_slow_path->GetEntryLabel());
928 }
929 }
930
931 __ Bind(&conditions_on_positions_validated);
932
933 if (!optimizations.GetSourceIsNotNull()) {
934 // Bail out if the source is null.
935 __ testl(src, src);
936 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
937 }
938
939 if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
940 // Bail out if the destination is null.
941 __ testl(dest, dest);
942 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
943 }
944
945 // If the length is negative, bail out.
946 // We have already checked in the LocationsBuilder for the constant case.
947 if (!length.IsConstant() &&
948 !optimizations.GetCountIsSourceLength() &&
949 !optimizations.GetCountIsDestinationLength()) {
950 __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
951 __ j(kLess, intrinsic_slow_path->GetEntryLabel());
952 }
953
954 // Validity checks: source.
955 CheckPosition(assembler,
956 src_pos,
957 src,
958 length,
959 intrinsic_slow_path,
960 temp1,
961 optimizations.GetCountIsSourceLength());
962
963 // Validity checks: dest.
964 CheckPosition(assembler,
965 dest_pos,
966 dest,
967 length,
968 intrinsic_slow_path,
969 temp1,
970 optimizations.GetCountIsDestinationLength());
971
972 if (!optimizations.GetDoesNotNeedTypeCheck()) {
973 // Check whether all elements of the source array are assignable to the component
974 // type of the destination array. We do two checks: the classes are the same,
975 // or the destination is Object[]. If none of these checks succeed, we go to the
976 // slow path.
977
978 bool did_unpoison = false;
979 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
980 // /* HeapReference<Class> */ temp1 = dest->klass_
981 codegen_->GenerateFieldLoadWithBakerReadBarrier(
982 invoke, temp1_loc, dest, class_offset, /* needs_null_check= */ false);
983 // Register `temp1` is not trashed by the read barrier emitted
984 // by GenerateFieldLoadWithBakerReadBarrier below, as that
985 // method produces a call to a ReadBarrierMarkRegX entry point,
986 // which saves all potentially live registers, including
987 // temporaries such a `temp1`.
988 // /* HeapReference<Class> */ temp2 = src->klass_
989 codegen_->GenerateFieldLoadWithBakerReadBarrier(
990 invoke, temp2_loc, src, class_offset, /* needs_null_check= */ false);
991 // If heap poisoning is enabled, `temp1` and `temp2` have been
992 // unpoisoned by the the previous calls to
993 // GenerateFieldLoadWithBakerReadBarrier.
994 } else {
995 // /* HeapReference<Class> */ temp1 = dest->klass_
996 __ movl(temp1, Address(dest, class_offset));
997 // /* HeapReference<Class> */ temp2 = src->klass_
998 __ movl(temp2, Address(src, class_offset));
999 if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
1000 !optimizations.GetSourceIsNonPrimitiveArray()) {
1001 // One or two of the references need to be unpoisoned. Unpoison them
1002 // both to make the identity check valid.
1003 __ MaybeUnpoisonHeapReference(temp1);
1004 __ MaybeUnpoisonHeapReference(temp2);
1005 did_unpoison = true;
1006 }
1007 }
1008
1009 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
1010 // Bail out if the destination is not a non primitive array.
1011 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1012 // /* HeapReference<Class> */ TMP = temp1->component_type_
1013 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1014 invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false);
1015 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1016 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
1017 // If heap poisoning is enabled, `TMP` has been unpoisoned by
1018 // the the previous call to GenerateFieldLoadWithBakerReadBarrier.
1019 } else {
1020 // /* HeapReference<Class> */ TMP = temp1->component_type_
1021 __ movl(CpuRegister(TMP), Address(temp1, component_offset));
1022 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1023 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
1024 __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1025 }
1026 __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1027 __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
1028 }
1029
1030 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
1031 // Bail out if the source is not a non primitive array.
1032 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1033 // For the same reason given earlier, `temp1` is not trashed by the
1034 // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
1035 // /* HeapReference<Class> */ TMP = temp2->component_type_
1036 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1037 invoke, TMP_loc, temp2, component_offset, /* needs_null_check= */ false);
1038 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1039 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
1040 // If heap poisoning is enabled, `TMP` has been unpoisoned by
1041 // the the previous call to GenerateFieldLoadWithBakerReadBarrier.
1042 } else {
1043 // /* HeapReference<Class> */ TMP = temp2->component_type_
1044 __ movl(CpuRegister(TMP), Address(temp2, component_offset));
1045 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1046 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
1047 __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1048 }
1049 __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1050 __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
1051 }
1052
1053 __ cmpl(temp1, temp2);
1054
1055 if (optimizations.GetDestinationIsTypedObjectArray()) {
1056 NearLabel do_copy;
1057 __ j(kEqual, &do_copy);
1058 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1059 // /* HeapReference<Class> */ temp1 = temp1->component_type_
1060 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1061 invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false);
1062 // We do not need to emit a read barrier for the following
1063 // heap reference load, as `temp1` is only used in a
1064 // comparison with null below, and this reference is not
1065 // kept afterwards.
1066 __ cmpl(Address(temp1, super_offset), Immediate(0));
1067 } else {
1068 if (!did_unpoison) {
1069 __ MaybeUnpoisonHeapReference(temp1);
1070 }
1071 // /* HeapReference<Class> */ temp1 = temp1->component_type_
1072 __ movl(temp1, Address(temp1, component_offset));
1073 __ MaybeUnpoisonHeapReference(temp1);
1074 // No need to unpoison the following heap reference load, as
1075 // we're comparing against null.
1076 __ cmpl(Address(temp1, super_offset), Immediate(0));
1077 }
1078 __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
1079 __ Bind(&do_copy);
1080 } else {
1081 __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
1082 }
1083 } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
1084 DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
1085 // Bail out if the source is not a non primitive array.
1086 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1087 // /* HeapReference<Class> */ temp1 = src->klass_
1088 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1089 invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false);
1090 // /* HeapReference<Class> */ TMP = temp1->component_type_
1091 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1092 invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false);
1093 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1094 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
1095 } else {
1096 // /* HeapReference<Class> */ temp1 = src->klass_
1097 __ movl(temp1, Address(src, class_offset));
1098 __ MaybeUnpoisonHeapReference(temp1);
1099 // /* HeapReference<Class> */ TMP = temp1->component_type_
1100 __ movl(CpuRegister(TMP), Address(temp1, component_offset));
1101 // No need to unpoison `TMP` now, as we're comparing against null.
1102 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1103 __ j(kEqual, intrinsic_slow_path->GetEntryLabel());
1104 __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1105 }
1106 __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1107 __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
1108 }
1109
1110 const DataType::Type type = DataType::Type::kReference;
1111 const int32_t element_size = DataType::Size(type);
1112
1113 // Compute base source address, base destination address, and end
1114 // source address in `temp1`, `temp2` and `temp3` respectively.
1115 GenSystemArrayCopyAddresses(
1116 GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3);
1117
1118 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1119 // SystemArrayCopy implementation for Baker read barriers (see
1120 // also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier):
1121 //
1122 // if (src_ptr != end_ptr) {
1123 // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
1124 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
1125 // bool is_gray = (rb_state == ReadBarrier::GrayState());
1126 // if (is_gray) {
1127 // // Slow-path copy.
1128 // do {
1129 // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
1130 // } while (src_ptr != end_ptr)
1131 // } else {
1132 // // Fast-path copy.
1133 // do {
1134 // *dest_ptr++ = *src_ptr++;
1135 // } while (src_ptr != end_ptr)
1136 // }
1137 // }
1138
1139 NearLabel loop, done;
1140
1141 // Don't enter copy loop if `length == 0`.
1142 __ cmpl(temp1, temp3);
1143 __ j(kEqual, &done);
1144
1145 // Given the numeric representation, it's enough to check the low bit of the rb_state.
1146 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
1147 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
1148 constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
1149 constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
1150 constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
1151
1152 // if (rb_state == ReadBarrier::GrayState())
1153 // goto slow_path;
1154 // At this point, just do the "if" and make sure that flags are preserved until the branch.
1155 __ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value));
1156
1157 // Load fence to prevent load-load reordering.
1158 // Note that this is a no-op, thanks to the x86-64 memory model.
1159 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
1160
1161 // Slow path used to copy array when `src` is gray.
1162 SlowPathCode* read_barrier_slow_path =
1163 new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke);
1164 codegen_->AddSlowPath(read_barrier_slow_path);
1165
1166 // We have done the "if" of the gray bit check above, now branch based on the flags.
1167 __ j(kNotZero, read_barrier_slow_path->GetEntryLabel());
1168
1169 // Fast-path copy.
1170 // Iterate over the arrays and do a raw copy of the objects. We don't need to
1171 // poison/unpoison.
1172 __ Bind(&loop);
1173 __ movl(CpuRegister(TMP), Address(temp1, 0));
1174 __ movl(Address(temp2, 0), CpuRegister(TMP));
1175 __ addl(temp1, Immediate(element_size));
1176 __ addl(temp2, Immediate(element_size));
1177 __ cmpl(temp1, temp3);
1178 __ j(kNotEqual, &loop);
1179
1180 __ Bind(read_barrier_slow_path->GetExitLabel());
1181 __ Bind(&done);
1182 } else {
1183 // Non read barrier code.
1184
1185 // Iterate over the arrays and do a raw copy of the objects. We don't need to
1186 // poison/unpoison.
1187 NearLabel loop, done;
1188 __ cmpl(temp1, temp3);
1189 __ j(kEqual, &done);
1190 __ Bind(&loop);
1191 __ movl(CpuRegister(TMP), Address(temp1, 0));
1192 __ movl(Address(temp2, 0), CpuRegister(TMP));
1193 __ addl(temp1, Immediate(element_size));
1194 __ addl(temp2, Immediate(element_size));
1195 __ cmpl(temp1, temp3);
1196 __ j(kNotEqual, &loop);
1197 __ Bind(&done);
1198 }
1199
1200 // We only need one card marking on the destination array.
1201 codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* value_can_be_null= */ false);
1202
1203 __ Bind(intrinsic_slow_path->GetExitLabel());
1204 }
1205
VisitStringCompareTo(HInvoke * invoke)1206 void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) {
1207 LocationSummary* locations = new (allocator_) LocationSummary(
1208 invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
1209 InvokeRuntimeCallingConvention calling_convention;
1210 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1211 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1212 locations->SetOut(Location::RegisterLocation(RAX));
1213 }
1214
VisitStringCompareTo(HInvoke * invoke)1215 void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) {
1216 X86_64Assembler* assembler = GetAssembler();
1217 LocationSummary* locations = invoke->GetLocations();
1218
1219 // Note that the null check must have been done earlier.
1220 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1221
1222 CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>();
1223 __ testl(argument, argument);
1224 SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
1225 codegen_->AddSlowPath(slow_path);
1226 __ j(kEqual, slow_path->GetEntryLabel());
1227
1228 codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
1229 __ Bind(slow_path->GetExitLabel());
1230 }
1231
VisitStringEquals(HInvoke * invoke)1232 void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) {
1233 LocationSummary* locations =
1234 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1235 locations->SetInAt(0, Location::RequiresRegister());
1236 locations->SetInAt(1, Location::RequiresRegister());
1237
1238 // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction.
1239 locations->AddTemp(Location::RegisterLocation(RCX));
1240 locations->AddTemp(Location::RegisterLocation(RDI));
1241
1242 // Set output, RSI needed for repe_cmpsq instruction anyways.
1243 locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap);
1244 }
1245
VisitStringEquals(HInvoke * invoke)1246 void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) {
1247 X86_64Assembler* assembler = GetAssembler();
1248 LocationSummary* locations = invoke->GetLocations();
1249
1250 CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>();
1251 CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>();
1252 CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>();
1253 CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>();
1254 CpuRegister rsi = locations->Out().AsRegister<CpuRegister>();
1255
1256 NearLabel end, return_true, return_false;
1257
1258 // Get offsets of count, value, and class fields within a string object.
1259 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
1260 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1261 const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
1262
1263 // Note that the null check must have been done earlier.
1264 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1265
1266 StringEqualsOptimizations optimizations(invoke);
1267 if (!optimizations.GetArgumentNotNull()) {
1268 // Check if input is null, return false if it is.
1269 __ testl(arg, arg);
1270 __ j(kEqual, &return_false);
1271 }
1272
1273 if (!optimizations.GetArgumentIsString()) {
1274 // Instanceof check for the argument by comparing class fields.
1275 // All string objects must have the same type since String cannot be subclassed.
1276 // Receiver must be a string object, so its class field is equal to all strings' class fields.
1277 // If the argument is a string object, its class field must be equal to receiver's class field.
1278 //
1279 // As the String class is expected to be non-movable, we can read the class
1280 // field from String.equals' arguments without read barriers.
1281 AssertNonMovableStringClass();
1282 // Also, because we use the loaded class references only to compare them, we
1283 // don't need to unpoison them.
1284 // /* HeapReference<Class> */ rcx = str->klass_
1285 __ movl(rcx, Address(str, class_offset));
1286 // if (rcx != /* HeapReference<Class> */ arg->klass_) return false
1287 __ cmpl(rcx, Address(arg, class_offset));
1288 __ j(kNotEqual, &return_false);
1289 }
1290
1291 // Reference equality check, return true if same reference.
1292 __ cmpl(str, arg);
1293 __ j(kEqual, &return_true);
1294
1295 // Load length and compression flag of receiver string.
1296 __ movl(rcx, Address(str, count_offset));
1297 // Check if lengths and compressiond flags are equal, return false if they're not.
1298 // Two identical strings will always have same compression style since
1299 // compression style is decided on alloc.
1300 __ cmpl(rcx, Address(arg, count_offset));
1301 __ j(kNotEqual, &return_false);
1302 // Return true if both strings are empty. Even with string compression `count == 0` means empty.
1303 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1304 "Expecting 0=compressed, 1=uncompressed");
1305 __ jrcxz(&return_true);
1306
1307 if (mirror::kUseStringCompression) {
1308 NearLabel string_uncompressed;
1309 // Extract length and differentiate between both compressed or both uncompressed.
1310 // Different compression style is cut above.
1311 __ shrl(rcx, Immediate(1));
1312 __ j(kCarrySet, &string_uncompressed);
1313 // Divide string length by 2, rounding up, and continue as if uncompressed.
1314 // Merge clearing the compression flag with +1 for rounding.
1315 __ addl(rcx, Immediate(1));
1316 __ shrl(rcx, Immediate(1));
1317 __ Bind(&string_uncompressed);
1318 }
1319 // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction.
1320 __ leal(rsi, Address(str, value_offset));
1321 __ leal(rdi, Address(arg, value_offset));
1322
1323 // Divide string length by 4 and adjust for lengths not divisible by 4.
1324 __ addl(rcx, Immediate(3));
1325 __ shrl(rcx, Immediate(2));
1326
1327 // Assertions that must hold in order to compare strings 4 characters (uncompressed)
1328 // or 8 characters (compressed) at a time.
1329 DCHECK_ALIGNED(value_offset, 8);
1330 static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded");
1331
1332 // Loop to compare strings four characters at a time starting at the beginning of the string.
1333 __ repe_cmpsq();
1334 // If strings are not equal, zero flag will be cleared.
1335 __ j(kNotEqual, &return_false);
1336
1337 // Return true and exit the function.
1338 // If loop does not result in returning false, we return true.
1339 __ Bind(&return_true);
1340 __ movl(rsi, Immediate(1));
1341 __ jmp(&end);
1342
1343 // Return false and exit the function.
1344 __ Bind(&return_false);
1345 __ xorl(rsi, rsi);
1346 __ Bind(&end);
1347 }
1348
CreateStringIndexOfLocations(HInvoke * invoke,ArenaAllocator * allocator,bool start_at_zero)1349 static void CreateStringIndexOfLocations(HInvoke* invoke,
1350 ArenaAllocator* allocator,
1351 bool start_at_zero) {
1352 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1353 LocationSummary::kCallOnSlowPath,
1354 kIntrinsified);
1355 // The data needs to be in RDI for scasw. So request that the string is there, anyways.
1356 locations->SetInAt(0, Location::RegisterLocation(RDI));
1357 // If we look for a constant char, we'll still have to copy it into RAX. So just request the
1358 // allocator to do that, anyways. We can still do the constant check by checking the parameter
1359 // of the instruction explicitly.
1360 // Note: This works as we don't clobber RAX anywhere.
1361 locations->SetInAt(1, Location::RegisterLocation(RAX));
1362 if (!start_at_zero) {
1363 locations->SetInAt(2, Location::RequiresRegister()); // The starting index.
1364 }
1365 // As we clobber RDI during execution anyways, also use it as the output.
1366 locations->SetOut(Location::SameAsFirstInput());
1367
1368 // repne scasw uses RCX as the counter.
1369 locations->AddTemp(Location::RegisterLocation(RCX));
1370 // Need another temporary to be able to compute the result.
1371 locations->AddTemp(Location::RequiresRegister());
1372 }
1373
GenerateStringIndexOf(HInvoke * invoke,X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,bool start_at_zero)1374 static void GenerateStringIndexOf(HInvoke* invoke,
1375 X86_64Assembler* assembler,
1376 CodeGeneratorX86_64* codegen,
1377 bool start_at_zero) {
1378 LocationSummary* locations = invoke->GetLocations();
1379
1380 // Note that the null check must have been done earlier.
1381 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1382
1383 CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>();
1384 CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>();
1385 CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>();
1386 CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>();
1387 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
1388
1389 // Check our assumptions for registers.
1390 DCHECK_EQ(string_obj.AsRegister(), RDI);
1391 DCHECK_EQ(search_value.AsRegister(), RAX);
1392 DCHECK_EQ(counter.AsRegister(), RCX);
1393 DCHECK_EQ(out.AsRegister(), RDI);
1394
1395 // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
1396 // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
1397 SlowPathCode* slow_path = nullptr;
1398 HInstruction* code_point = invoke->InputAt(1);
1399 if (code_point->IsIntConstant()) {
1400 if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
1401 std::numeric_limits<uint16_t>::max()) {
1402 // Always needs the slow-path. We could directly dispatch to it, but this case should be
1403 // rare, so for simplicity just put the full slow-path down and branch unconditionally.
1404 slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
1405 codegen->AddSlowPath(slow_path);
1406 __ jmp(slow_path->GetEntryLabel());
1407 __ Bind(slow_path->GetExitLabel());
1408 return;
1409 }
1410 } else if (code_point->GetType() != DataType::Type::kUint16) {
1411 __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
1412 slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
1413 codegen->AddSlowPath(slow_path);
1414 __ j(kAbove, slow_path->GetEntryLabel());
1415 }
1416
1417 // From here down, we know that we are looking for a char that fits in
1418 // 16 bits (uncompressed) or 8 bits (compressed).
1419 // Location of reference to data array within the String object.
1420 int32_t value_offset = mirror::String::ValueOffset().Int32Value();
1421 // Location of count within the String object.
1422 int32_t count_offset = mirror::String::CountOffset().Int32Value();
1423
1424 // Load the count field of the string containing the length and compression flag.
1425 __ movl(string_length, Address(string_obj, count_offset));
1426
1427 // Do a zero-length check. Even with string compression `count == 0` means empty.
1428 // TODO: Support jecxz.
1429 NearLabel not_found_label;
1430 __ testl(string_length, string_length);
1431 __ j(kEqual, ¬_found_label);
1432
1433 if (mirror::kUseStringCompression) {
1434 // Use TMP to keep string_length_flagged.
1435 __ movl(CpuRegister(TMP), string_length);
1436 // Mask out first bit used as compression flag.
1437 __ shrl(string_length, Immediate(1));
1438 }
1439
1440 if (start_at_zero) {
1441 // Number of chars to scan is the same as the string length.
1442 __ movl(counter, string_length);
1443 // Move to the start of the string.
1444 __ addq(string_obj, Immediate(value_offset));
1445 } else {
1446 CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>();
1447
1448 // Do a start_index check.
1449 __ cmpl(start_index, string_length);
1450 __ j(kGreaterEqual, ¬_found_label);
1451
1452 // Ensure we have a start index >= 0;
1453 __ xorl(counter, counter);
1454 __ cmpl(start_index, Immediate(0));
1455 __ cmov(kGreater, counter, start_index, /* is64bit= */ false); // 32-bit copy is enough.
1456
1457 if (mirror::kUseStringCompression) {
1458 NearLabel modify_counter, offset_uncompressed_label;
1459 __ testl(CpuRegister(TMP), Immediate(1));
1460 __ j(kNotZero, &offset_uncompressed_label);
1461 __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset));
1462 __ jmp(&modify_counter);
1463 // Move to the start of the string: string_obj + value_offset + 2 * start_index.
1464 __ Bind(&offset_uncompressed_label);
1465 __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
1466 __ Bind(&modify_counter);
1467 } else {
1468 __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
1469 }
1470 // Now update ecx, the work counter: it's gonna be string.length - start_index.
1471 __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit.
1472 __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
1473 }
1474
1475 if (mirror::kUseStringCompression) {
1476 NearLabel uncompressed_string_comparison;
1477 NearLabel comparison_done;
1478 __ testl(CpuRegister(TMP), Immediate(1));
1479 __ j(kNotZero, &uncompressed_string_comparison);
1480 // Check if RAX (search_value) is ASCII.
1481 __ cmpl(search_value, Immediate(127));
1482 __ j(kGreater, ¬_found_label);
1483 // Comparing byte-per-byte.
1484 __ repne_scasb();
1485 __ jmp(&comparison_done);
1486 // Everything is set up for repne scasw:
1487 // * Comparison address in RDI.
1488 // * Counter in ECX.
1489 __ Bind(&uncompressed_string_comparison);
1490 __ repne_scasw();
1491 __ Bind(&comparison_done);
1492 } else {
1493 __ repne_scasw();
1494 }
1495 // Did we find a match?
1496 __ j(kNotEqual, ¬_found_label);
1497
1498 // Yes, we matched. Compute the index of the result.
1499 __ subl(string_length, counter);
1500 __ leal(out, Address(string_length, -1));
1501
1502 NearLabel done;
1503 __ jmp(&done);
1504
1505 // Failed to match; return -1.
1506 __ Bind(¬_found_label);
1507 __ movl(out, Immediate(-1));
1508
1509 // And join up at the end.
1510 __ Bind(&done);
1511 if (slow_path != nullptr) {
1512 __ Bind(slow_path->GetExitLabel());
1513 }
1514 }
1515
VisitStringIndexOf(HInvoke * invoke)1516 void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) {
1517 CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ true);
1518 }
1519
VisitStringIndexOf(HInvoke * invoke)1520 void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) {
1521 GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true);
1522 }
1523
VisitStringIndexOfAfter(HInvoke * invoke)1524 void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
1525 CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ false);
1526 }
1527
VisitStringIndexOfAfter(HInvoke * invoke)1528 void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
1529 GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false);
1530 }
1531
VisitStringNewStringFromBytes(HInvoke * invoke)1532 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
1533 LocationSummary* locations = new (allocator_) LocationSummary(
1534 invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
1535 InvokeRuntimeCallingConvention calling_convention;
1536 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1537 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1538 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
1539 locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
1540 locations->SetOut(Location::RegisterLocation(RAX));
1541 }
1542
VisitStringNewStringFromBytes(HInvoke * invoke)1543 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
1544 X86_64Assembler* assembler = GetAssembler();
1545 LocationSummary* locations = invoke->GetLocations();
1546
1547 CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>();
1548 __ testl(byte_array, byte_array);
1549 SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
1550 codegen_->AddSlowPath(slow_path);
1551 __ j(kEqual, slow_path->GetEntryLabel());
1552
1553 codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc());
1554 CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
1555 __ Bind(slow_path->GetExitLabel());
1556 }
1557
VisitStringNewStringFromChars(HInvoke * invoke)1558 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
1559 LocationSummary* locations =
1560 new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
1561 InvokeRuntimeCallingConvention calling_convention;
1562 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1563 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1564 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
1565 locations->SetOut(Location::RegisterLocation(RAX));
1566 }
1567
VisitStringNewStringFromChars(HInvoke * invoke)1568 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
1569 // No need to emit code checking whether `locations->InAt(2)` is a null
1570 // pointer, as callers of the native method
1571 //
1572 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
1573 //
1574 // all include a null check on `data` before calling that method.
1575 codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
1576 CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
1577 }
1578
VisitStringNewStringFromString(HInvoke * invoke)1579 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
1580 LocationSummary* locations = new (allocator_) LocationSummary(
1581 invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
1582 InvokeRuntimeCallingConvention calling_convention;
1583 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1584 locations->SetOut(Location::RegisterLocation(RAX));
1585 }
1586
VisitStringNewStringFromString(HInvoke * invoke)1587 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
1588 X86_64Assembler* assembler = GetAssembler();
1589 LocationSummary* locations = invoke->GetLocations();
1590
1591 CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>();
1592 __ testl(string_to_copy, string_to_copy);
1593 SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
1594 codegen_->AddSlowPath(slow_path);
1595 __ j(kEqual, slow_path->GetEntryLabel());
1596
1597 codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
1598 CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
1599 __ Bind(slow_path->GetExitLabel());
1600 }
1601
VisitStringGetCharsNoCheck(HInvoke * invoke)1602 void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
1603 // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
1604 LocationSummary* locations =
1605 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1606 locations->SetInAt(0, Location::RequiresRegister());
1607 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1608 locations->SetInAt(2, Location::RequiresRegister());
1609 locations->SetInAt(3, Location::RequiresRegister());
1610 locations->SetInAt(4, Location::RequiresRegister());
1611
1612 // And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
1613 locations->AddTemp(Location::RegisterLocation(RSI));
1614 locations->AddTemp(Location::RegisterLocation(RDI));
1615 locations->AddTemp(Location::RegisterLocation(RCX));
1616 }
1617
VisitStringGetCharsNoCheck(HInvoke * invoke)1618 void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
1619 X86_64Assembler* assembler = GetAssembler();
1620 LocationSummary* locations = invoke->GetLocations();
1621
1622 size_t char_component_size = DataType::Size(DataType::Type::kUint16);
1623 // Location of data in char array buffer.
1624 const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
1625 // Location of char array data in string.
1626 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1627
1628 // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
1629 CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
1630 Location srcBegin = locations->InAt(1);
1631 int srcBegin_value =
1632 srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
1633 CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>();
1634 CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>();
1635 CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>();
1636
1637 // Check assumption that sizeof(Char) is 2 (used in scaling below).
1638 const size_t char_size = DataType::Size(DataType::Type::kUint16);
1639 DCHECK_EQ(char_size, 2u);
1640
1641 NearLabel done;
1642 // Compute the number of chars (words) to move.
1643 __ movl(CpuRegister(RCX), srcEnd);
1644 if (srcBegin.IsConstant()) {
1645 __ subl(CpuRegister(RCX), Immediate(srcBegin_value));
1646 } else {
1647 DCHECK(srcBegin.IsRegister());
1648 __ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>());
1649 }
1650 if (mirror::kUseStringCompression) {
1651 NearLabel copy_uncompressed, copy_loop;
1652 const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
1653 DCHECK_EQ(c_char_size, 1u);
1654 // Location of count in string.
1655 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
1656
1657 __ testl(Address(obj, count_offset), Immediate(1));
1658 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1659 "Expecting 0=compressed, 1=uncompressed");
1660 __ j(kNotZero, ©_uncompressed);
1661 // Compute the address of the source string by adding the number of chars from
1662 // the source beginning to the value offset of a string.
1663 __ leaq(CpuRegister(RSI),
1664 CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset));
1665 // Start the loop to copy String's value to Array of Char.
1666 __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
1667
1668 __ Bind(©_loop);
1669 __ jrcxz(&done);
1670 // Use TMP as temporary (convert byte from RSI to word).
1671 // TODO: Selecting RAX as the temporary and using LODSB/STOSW.
1672 __ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0));
1673 __ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP));
1674 __ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size));
1675 __ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size));
1676 // TODO: Add support for LOOP to X86_64Assembler.
1677 __ subl(CpuRegister(RCX), Immediate(1));
1678 __ jmp(©_loop);
1679
1680 __ Bind(©_uncompressed);
1681 }
1682
1683 __ leaq(CpuRegister(RSI),
1684 CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset));
1685 // Compute the address of the destination buffer.
1686 __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
1687 // Do the move.
1688 __ rep_movsw();
1689
1690 __ Bind(&done);
1691 }
1692
GenPeek(LocationSummary * locations,DataType::Type size,X86_64Assembler * assembler)1693 static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
1694 CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
1695 CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity.
1696 // x86 allows unaligned access. We do not have to check the input or use specific instructions
1697 // to avoid a SIGBUS.
1698 switch (size) {
1699 case DataType::Type::kInt8:
1700 __ movsxb(out, Address(address, 0));
1701 break;
1702 case DataType::Type::kInt16:
1703 __ movsxw(out, Address(address, 0));
1704 break;
1705 case DataType::Type::kInt32:
1706 __ movl(out, Address(address, 0));
1707 break;
1708 case DataType::Type::kInt64:
1709 __ movq(out, Address(address, 0));
1710 break;
1711 default:
1712 LOG(FATAL) << "Type not recognized for peek: " << size;
1713 UNREACHABLE();
1714 }
1715 }
1716
VisitMemoryPeekByte(HInvoke * invoke)1717 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
1718 CreateIntToIntLocations(allocator_, invoke);
1719 }
1720
VisitMemoryPeekByte(HInvoke * invoke)1721 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
1722 GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
1723 }
1724
VisitMemoryPeekIntNative(HInvoke * invoke)1725 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
1726 CreateIntToIntLocations(allocator_, invoke);
1727 }
1728
VisitMemoryPeekIntNative(HInvoke * invoke)1729 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
1730 GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
1731 }
1732
VisitMemoryPeekLongNative(HInvoke * invoke)1733 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
1734 CreateIntToIntLocations(allocator_, invoke);
1735 }
1736
VisitMemoryPeekLongNative(HInvoke * invoke)1737 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
1738 GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
1739 }
1740
VisitMemoryPeekShortNative(HInvoke * invoke)1741 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
1742 CreateIntToIntLocations(allocator_, invoke);
1743 }
1744
VisitMemoryPeekShortNative(HInvoke * invoke)1745 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
1746 GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
1747 }
1748
CreateIntIntToVoidLocations(ArenaAllocator * allocator,HInvoke * invoke)1749 static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
1750 LocationSummary* locations =
1751 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1752 locations->SetInAt(0, Location::RequiresRegister());
1753 locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1)));
1754 }
1755
GenPoke(LocationSummary * locations,DataType::Type size,X86_64Assembler * assembler)1756 static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
1757 CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
1758 Location value = locations->InAt(1);
1759 // x86 allows unaligned access. We do not have to check the input or use specific instructions
1760 // to avoid a SIGBUS.
1761 switch (size) {
1762 case DataType::Type::kInt8:
1763 if (value.IsConstant()) {
1764 __ movb(Address(address, 0),
1765 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1766 } else {
1767 __ movb(Address(address, 0), value.AsRegister<CpuRegister>());
1768 }
1769 break;
1770 case DataType::Type::kInt16:
1771 if (value.IsConstant()) {
1772 __ movw(Address(address, 0),
1773 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1774 } else {
1775 __ movw(Address(address, 0), value.AsRegister<CpuRegister>());
1776 }
1777 break;
1778 case DataType::Type::kInt32:
1779 if (value.IsConstant()) {
1780 __ movl(Address(address, 0),
1781 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1782 } else {
1783 __ movl(Address(address, 0), value.AsRegister<CpuRegister>());
1784 }
1785 break;
1786 case DataType::Type::kInt64:
1787 if (value.IsConstant()) {
1788 int64_t v = value.GetConstant()->AsLongConstant()->GetValue();
1789 DCHECK(IsInt<32>(v));
1790 int32_t v_32 = v;
1791 __ movq(Address(address, 0), Immediate(v_32));
1792 } else {
1793 __ movq(Address(address, 0), value.AsRegister<CpuRegister>());
1794 }
1795 break;
1796 default:
1797 LOG(FATAL) << "Type not recognized for poke: " << size;
1798 UNREACHABLE();
1799 }
1800 }
1801
VisitMemoryPokeByte(HInvoke * invoke)1802 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
1803 CreateIntIntToVoidLocations(allocator_, invoke);
1804 }
1805
VisitMemoryPokeByte(HInvoke * invoke)1806 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
1807 GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
1808 }
1809
VisitMemoryPokeIntNative(HInvoke * invoke)1810 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
1811 CreateIntIntToVoidLocations(allocator_, invoke);
1812 }
1813
VisitMemoryPokeIntNative(HInvoke * invoke)1814 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
1815 GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
1816 }
1817
VisitMemoryPokeLongNative(HInvoke * invoke)1818 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
1819 CreateIntIntToVoidLocations(allocator_, invoke);
1820 }
1821
VisitMemoryPokeLongNative(HInvoke * invoke)1822 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
1823 GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
1824 }
1825
VisitMemoryPokeShortNative(HInvoke * invoke)1826 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
1827 CreateIntIntToVoidLocations(allocator_, invoke);
1828 }
1829
VisitMemoryPokeShortNative(HInvoke * invoke)1830 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
1831 GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
1832 }
1833
VisitThreadCurrentThread(HInvoke * invoke)1834 void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
1835 LocationSummary* locations =
1836 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1837 locations->SetOut(Location::RequiresRegister());
1838 }
1839
VisitThreadCurrentThread(HInvoke * invoke)1840 void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
1841 CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
1842 GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64PointerSize>(),
1843 /* no_rip= */ true));
1844 }
1845
GenUnsafeGet(HInvoke * invoke,DataType::Type type,bool is_volatile ATTRIBUTE_UNUSED,CodeGeneratorX86_64 * codegen)1846 static void GenUnsafeGet(HInvoke* invoke,
1847 DataType::Type type,
1848 bool is_volatile ATTRIBUTE_UNUSED,
1849 CodeGeneratorX86_64* codegen) {
1850 X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
1851 LocationSummary* locations = invoke->GetLocations();
1852 Location base_loc = locations->InAt(1);
1853 CpuRegister base = base_loc.AsRegister<CpuRegister>();
1854 Location offset_loc = locations->InAt(2);
1855 CpuRegister offset = offset_loc.AsRegister<CpuRegister>();
1856 Location output_loc = locations->Out();
1857 CpuRegister output = output_loc.AsRegister<CpuRegister>();
1858
1859 switch (type) {
1860 case DataType::Type::kInt32:
1861 __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1862 break;
1863
1864 case DataType::Type::kReference: {
1865 if (kEmitCompilerReadBarrier) {
1866 if (kUseBakerReadBarrier) {
1867 Address src(base, offset, ScaleFactor::TIMES_1, 0);
1868 codegen->GenerateReferenceLoadWithBakerReadBarrier(
1869 invoke, output_loc, base, src, /* needs_null_check= */ false);
1870 } else {
1871 __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1872 codegen->GenerateReadBarrierSlow(
1873 invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
1874 }
1875 } else {
1876 __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1877 __ MaybeUnpoisonHeapReference(output);
1878 }
1879 break;
1880 }
1881
1882 case DataType::Type::kInt64:
1883 __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1884 break;
1885
1886 default:
1887 LOG(FATAL) << "Unsupported op size " << type;
1888 UNREACHABLE();
1889 }
1890 }
1891
CreateIntIntIntToIntLocations(ArenaAllocator * allocator,HInvoke * invoke)1892 static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
1893 bool can_call = kEmitCompilerReadBarrier &&
1894 (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
1895 invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
1896 LocationSummary* locations =
1897 new (allocator) LocationSummary(invoke,
1898 can_call
1899 ? LocationSummary::kCallOnSlowPath
1900 : LocationSummary::kNoCall,
1901 kIntrinsified);
1902 if (can_call && kUseBakerReadBarrier) {
1903 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
1904 }
1905 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1906 locations->SetInAt(1, Location::RequiresRegister());
1907 locations->SetInAt(2, Location::RequiresRegister());
1908 locations->SetOut(Location::RequiresRegister(),
1909 (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
1910 }
1911
VisitUnsafeGet(HInvoke * invoke)1912 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) {
1913 CreateIntIntIntToIntLocations(allocator_, invoke);
1914 }
VisitUnsafeGetVolatile(HInvoke * invoke)1915 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
1916 CreateIntIntIntToIntLocations(allocator_, invoke);
1917 }
VisitUnsafeGetLong(HInvoke * invoke)1918 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
1919 CreateIntIntIntToIntLocations(allocator_, invoke);
1920 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)1921 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
1922 CreateIntIntIntToIntLocations(allocator_, invoke);
1923 }
VisitUnsafeGetObject(HInvoke * invoke)1924 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
1925 CreateIntIntIntToIntLocations(allocator_, invoke);
1926 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)1927 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1928 CreateIntIntIntToIntLocations(allocator_, invoke);
1929 }
1930
1931
VisitUnsafeGet(HInvoke * invoke)1932 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) {
1933 GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
1934 }
VisitUnsafeGetVolatile(HInvoke * invoke)1935 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
1936 GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
1937 }
VisitUnsafeGetLong(HInvoke * invoke)1938 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
1939 GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
1940 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)1941 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
1942 GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
1943 }
VisitUnsafeGetObject(HInvoke * invoke)1944 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
1945 GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_);
1946 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)1947 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1948 GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_);
1949 }
1950
1951
CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator * allocator,DataType::Type type,HInvoke * invoke)1952 static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator,
1953 DataType::Type type,
1954 HInvoke* invoke) {
1955 LocationSummary* locations =
1956 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1957 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1958 locations->SetInAt(1, Location::RequiresRegister());
1959 locations->SetInAt(2, Location::RequiresRegister());
1960 locations->SetInAt(3, Location::RequiresRegister());
1961 if (type == DataType::Type::kReference) {
1962 // Need temp registers for card-marking.
1963 locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
1964 locations->AddTemp(Location::RequiresRegister());
1965 }
1966 }
1967
VisitUnsafePut(HInvoke * invoke)1968 void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) {
1969 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
1970 }
VisitUnsafePutOrdered(HInvoke * invoke)1971 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
1972 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
1973 }
VisitUnsafePutVolatile(HInvoke * invoke)1974 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
1975 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
1976 }
VisitUnsafePutObject(HInvoke * invoke)1977 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) {
1978 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
1979 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)1980 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1981 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
1982 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)1983 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1984 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
1985 }
VisitUnsafePutLong(HInvoke * invoke)1986 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) {
1987 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
1988 }
VisitUnsafePutLongOrdered(HInvoke * invoke)1989 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1990 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
1991 }
VisitUnsafePutLongVolatile(HInvoke * invoke)1992 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
1993 CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
1994 }
1995
1996 // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
1997 // memory model.
GenUnsafePut(LocationSummary * locations,DataType::Type type,bool is_volatile,CodeGeneratorX86_64 * codegen)1998 static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile,
1999 CodeGeneratorX86_64* codegen) {
2000 X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
2001 CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
2002 CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
2003 CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>();
2004
2005 if (type == DataType::Type::kInt64) {
2006 __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
2007 } else if (kPoisonHeapReferences && type == DataType::Type::kReference) {
2008 CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
2009 __ movl(temp, value);
2010 __ PoisonHeapReference(temp);
2011 __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
2012 } else {
2013 __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
2014 }
2015
2016 if (is_volatile) {
2017 codegen->MemoryFence();
2018 }
2019
2020 if (type == DataType::Type::kReference) {
2021 bool value_can_be_null = true; // TODO: Worth finding out this information?
2022 codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
2023 locations->GetTemp(1).AsRegister<CpuRegister>(),
2024 base,
2025 value,
2026 value_can_be_null);
2027 }
2028 }
2029
VisitUnsafePut(HInvoke * invoke)2030 void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) {
2031 GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
2032 }
VisitUnsafePutOrdered(HInvoke * invoke)2033 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
2034 GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
2035 }
VisitUnsafePutVolatile(HInvoke * invoke)2036 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
2037 GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
2038 }
VisitUnsafePutObject(HInvoke * invoke)2039 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) {
2040 GenUnsafePut(
2041 invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ false, codegen_);
2042 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)2043 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
2044 GenUnsafePut(
2045 invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ false, codegen_);
2046 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)2047 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
2048 GenUnsafePut(
2049 invoke->GetLocations(), DataType::Type::kReference, /* is_volatile= */ true, codegen_);
2050 }
VisitUnsafePutLong(HInvoke * invoke)2051 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) {
2052 GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
2053 }
VisitUnsafePutLongOrdered(HInvoke * invoke)2054 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
2055 GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
2056 }
VisitUnsafePutLongVolatile(HInvoke * invoke)2057 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
2058 GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
2059 }
2060
CreateIntIntIntIntIntToInt(ArenaAllocator * allocator,DataType::Type type,HInvoke * invoke)2061 static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator,
2062 DataType::Type type,
2063 HInvoke* invoke) {
2064 bool can_call = kEmitCompilerReadBarrier &&
2065 kUseBakerReadBarrier &&
2066 (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
2067 LocationSummary* locations =
2068 new (allocator) LocationSummary(invoke,
2069 can_call
2070 ? LocationSummary::kCallOnSlowPath
2071 : LocationSummary::kNoCall,
2072 kIntrinsified);
2073 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
2074 locations->SetInAt(1, Location::RequiresRegister());
2075 locations->SetInAt(2, Location::RequiresRegister());
2076 // expected value must be in EAX/RAX.
2077 locations->SetInAt(3, Location::RegisterLocation(RAX));
2078 locations->SetInAt(4, Location::RequiresRegister());
2079
2080 locations->SetOut(Location::RequiresRegister());
2081 if (type == DataType::Type::kReference) {
2082 // Need temporary registers for card-marking, and possibly for
2083 // (Baker) read barrier.
2084 locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
2085 locations->AddTemp(Location::RequiresRegister());
2086 }
2087 }
2088
VisitUnsafeCASInt(HInvoke * invoke)2089 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
2090 CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke);
2091 }
2092
VisitUnsafeCASLong(HInvoke * invoke)2093 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
2094 CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke);
2095 }
2096
VisitUnsafeCASObject(HInvoke * invoke)2097 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
2098 // The only read barrier implementation supporting the
2099 // UnsafeCASObject intrinsic is the Baker-style read barriers.
2100 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
2101 return;
2102 }
2103
2104 CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke);
2105 }
2106
GenCAS(DataType::Type type,HInvoke * invoke,CodeGeneratorX86_64 * codegen)2107 static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) {
2108 X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
2109 LocationSummary* locations = invoke->GetLocations();
2110
2111 CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
2112 CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
2113 CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>();
2114 // Ensure `expected` is in RAX (required by the CMPXCHG instruction).
2115 DCHECK_EQ(expected.AsRegister(), RAX);
2116 CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>();
2117 Location out_loc = locations->Out();
2118 CpuRegister out = out_loc.AsRegister<CpuRegister>();
2119
2120 if (type == DataType::Type::kReference) {
2121 // The only read barrier implementation supporting the
2122 // UnsafeCASObject intrinsic is the Baker-style read barriers.
2123 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
2124
2125 CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
2126 CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
2127
2128 // Mark card for object assuming new value is stored.
2129 bool value_can_be_null = true; // TODO: Worth finding out this information?
2130 codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null);
2131
2132 // The address of the field within the holding object.
2133 Address field_addr(base, offset, ScaleFactor::TIMES_1, 0);
2134
2135 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2136 // Need to make sure the reference stored in the field is a to-space
2137 // one before attempting the CAS or the CAS could fail incorrectly.
2138 codegen->GenerateReferenceLoadWithBakerReadBarrier(
2139 invoke,
2140 out_loc, // Unused, used only as a "temporary" within the read barrier.
2141 base,
2142 field_addr,
2143 /* needs_null_check= */ false,
2144 /* always_update_field= */ true,
2145 &temp1,
2146 &temp2);
2147 }
2148
2149 bool base_equals_value = (base.AsRegister() == value.AsRegister());
2150 Register value_reg = value.AsRegister();
2151 if (kPoisonHeapReferences) {
2152 if (base_equals_value) {
2153 // If `base` and `value` are the same register location, move
2154 // `value_reg` to a temporary register. This way, poisoning
2155 // `value_reg` won't invalidate `base`.
2156 value_reg = temp1.AsRegister();
2157 __ movl(CpuRegister(value_reg), base);
2158 }
2159
2160 // Check that the register allocator did not assign the location
2161 // of `expected` (RAX) to `value` nor to `base`, so that heap
2162 // poisoning (when enabled) works as intended below.
2163 // - If `value` were equal to `expected`, both references would
2164 // be poisoned twice, meaning they would not be poisoned at
2165 // all, as heap poisoning uses address negation.
2166 // - If `base` were equal to `expected`, poisoning `expected`
2167 // would invalidate `base`.
2168 DCHECK_NE(value_reg, expected.AsRegister());
2169 DCHECK_NE(base.AsRegister(), expected.AsRegister());
2170
2171 __ PoisonHeapReference(expected);
2172 __ PoisonHeapReference(CpuRegister(value_reg));
2173 }
2174
2175 __ LockCmpxchgl(field_addr, CpuRegister(value_reg));
2176
2177 // LOCK CMPXCHG has full barrier semantics, and we don't need
2178 // scheduling barriers at this time.
2179
2180 // Convert ZF into the Boolean result.
2181 __ setcc(kZero, out);
2182 __ movzxb(out, out);
2183
2184 // If heap poisoning is enabled, we need to unpoison the values
2185 // that were poisoned earlier.
2186 if (kPoisonHeapReferences) {
2187 if (base_equals_value) {
2188 // `value_reg` has been moved to a temporary register, no need
2189 // to unpoison it.
2190 } else {
2191 // Ensure `value` is different from `out`, so that unpoisoning
2192 // the former does not invalidate the latter.
2193 DCHECK_NE(value_reg, out.AsRegister());
2194 __ UnpoisonHeapReference(CpuRegister(value_reg));
2195 }
2196 // Ensure `expected` is different from `out`, so that unpoisoning
2197 // the former does not invalidate the latter.
2198 DCHECK_NE(expected.AsRegister(), out.AsRegister());
2199 __ UnpoisonHeapReference(expected);
2200 }
2201 } else {
2202 if (type == DataType::Type::kInt32) {
2203 __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value);
2204 } else if (type == DataType::Type::kInt64) {
2205 __ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value);
2206 } else {
2207 LOG(FATAL) << "Unexpected CAS type " << type;
2208 }
2209
2210 // LOCK CMPXCHG has full barrier semantics, and we don't need
2211 // scheduling barriers at this time.
2212
2213 // Convert ZF into the Boolean result.
2214 __ setcc(kZero, out);
2215 __ movzxb(out, out);
2216 }
2217 }
2218
VisitUnsafeCASInt(HInvoke * invoke)2219 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
2220 GenCAS(DataType::Type::kInt32, invoke, codegen_);
2221 }
2222
VisitUnsafeCASLong(HInvoke * invoke)2223 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
2224 GenCAS(DataType::Type::kInt64, invoke, codegen_);
2225 }
2226
VisitUnsafeCASObject(HInvoke * invoke)2227 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
2228 // The only read barrier implementation supporting the
2229 // UnsafeCASObject intrinsic is the Baker-style read barriers.
2230 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
2231
2232 GenCAS(DataType::Type::kReference, invoke, codegen_);
2233 }
2234
VisitIntegerReverse(HInvoke * invoke)2235 void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) {
2236 LocationSummary* locations =
2237 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2238 locations->SetInAt(0, Location::RequiresRegister());
2239 locations->SetOut(Location::SameAsFirstInput());
2240 locations->AddTemp(Location::RequiresRegister());
2241 }
2242
SwapBits(CpuRegister reg,CpuRegister temp,int32_t shift,int32_t mask,X86_64Assembler * assembler)2243 static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask,
2244 X86_64Assembler* assembler) {
2245 Immediate imm_shift(shift);
2246 Immediate imm_mask(mask);
2247 __ movl(temp, reg);
2248 __ shrl(reg, imm_shift);
2249 __ andl(temp, imm_mask);
2250 __ andl(reg, imm_mask);
2251 __ shll(temp, imm_shift);
2252 __ orl(reg, temp);
2253 }
2254
VisitIntegerReverse(HInvoke * invoke)2255 void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) {
2256 X86_64Assembler* assembler = GetAssembler();
2257 LocationSummary* locations = invoke->GetLocations();
2258
2259 CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
2260 CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
2261
2262 /*
2263 * Use one bswap instruction to reverse byte order first and then use 3 rounds of
2264 * swapping bits to reverse bits in a number x. Using bswap to save instructions
2265 * compared to generic luni implementation which has 5 rounds of swapping bits.
2266 * x = bswap x
2267 * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
2268 * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
2269 * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
2270 */
2271 __ bswapl(reg);
2272 SwapBits(reg, temp, 1, 0x55555555, assembler);
2273 SwapBits(reg, temp, 2, 0x33333333, assembler);
2274 SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
2275 }
2276
VisitLongReverse(HInvoke * invoke)2277 void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) {
2278 LocationSummary* locations =
2279 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2280 locations->SetInAt(0, Location::RequiresRegister());
2281 locations->SetOut(Location::SameAsFirstInput());
2282 locations->AddTemp(Location::RequiresRegister());
2283 locations->AddTemp(Location::RequiresRegister());
2284 }
2285
SwapBits64(CpuRegister reg,CpuRegister temp,CpuRegister temp_mask,int32_t shift,int64_t mask,X86_64Assembler * assembler)2286 static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask,
2287 int32_t shift, int64_t mask, X86_64Assembler* assembler) {
2288 Immediate imm_shift(shift);
2289 __ movq(temp_mask, Immediate(mask));
2290 __ movq(temp, reg);
2291 __ shrq(reg, imm_shift);
2292 __ andq(temp, temp_mask);
2293 __ andq(reg, temp_mask);
2294 __ shlq(temp, imm_shift);
2295 __ orq(reg, temp);
2296 }
2297
VisitLongReverse(HInvoke * invoke)2298 void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) {
2299 X86_64Assembler* assembler = GetAssembler();
2300 LocationSummary* locations = invoke->GetLocations();
2301
2302 CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
2303 CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
2304 CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
2305
2306 /*
2307 * Use one bswap instruction to reverse byte order first and then use 3 rounds of
2308 * swapping bits to reverse bits in a long number x. Using bswap to save instructions
2309 * compared to generic luni implementation which has 5 rounds of swapping bits.
2310 * x = bswap x
2311 * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
2312 * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
2313 * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
2314 */
2315 __ bswapq(reg);
2316 SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler);
2317 SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler);
2318 SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler);
2319 }
2320
CreateBitCountLocations(ArenaAllocator * allocator,CodeGeneratorX86_64 * codegen,HInvoke * invoke)2321 static void CreateBitCountLocations(
2322 ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) {
2323 if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
2324 // Do nothing if there is no popcnt support. This results in generating
2325 // a call for the intrinsic rather than direct code.
2326 return;
2327 }
2328 LocationSummary* locations =
2329 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2330 locations->SetInAt(0, Location::Any());
2331 locations->SetOut(Location::RequiresRegister());
2332 }
2333
GenBitCount(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2334 static void GenBitCount(X86_64Assembler* assembler,
2335 CodeGeneratorX86_64* codegen,
2336 HInvoke* invoke,
2337 bool is_long) {
2338 LocationSummary* locations = invoke->GetLocations();
2339 Location src = locations->InAt(0);
2340 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2341
2342 if (invoke->InputAt(0)->IsConstant()) {
2343 // Evaluate this at compile time.
2344 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2345 int32_t result = is_long
2346 ? POPCOUNT(static_cast<uint64_t>(value))
2347 : POPCOUNT(static_cast<uint32_t>(value));
2348 codegen->Load32BitValue(out, result);
2349 return;
2350 }
2351
2352 if (src.IsRegister()) {
2353 if (is_long) {
2354 __ popcntq(out, src.AsRegister<CpuRegister>());
2355 } else {
2356 __ popcntl(out, src.AsRegister<CpuRegister>());
2357 }
2358 } else if (is_long) {
2359 DCHECK(src.IsDoubleStackSlot());
2360 __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2361 } else {
2362 DCHECK(src.IsStackSlot());
2363 __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2364 }
2365 }
2366
VisitIntegerBitCount(HInvoke * invoke)2367 void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) {
2368 CreateBitCountLocations(allocator_, codegen_, invoke);
2369 }
2370
VisitIntegerBitCount(HInvoke * invoke)2371 void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) {
2372 GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ false);
2373 }
2374
VisitLongBitCount(HInvoke * invoke)2375 void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) {
2376 CreateBitCountLocations(allocator_, codegen_, invoke);
2377 }
2378
VisitLongBitCount(HInvoke * invoke)2379 void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) {
2380 GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ true);
2381 }
2382
CreateOneBitLocations(ArenaAllocator * allocator,HInvoke * invoke,bool is_high)2383 static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) {
2384 LocationSummary* locations =
2385 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2386 locations->SetInAt(0, Location::Any());
2387 locations->SetOut(Location::RequiresRegister());
2388 locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL
2389 : Location::RequiresRegister()); // any will do
2390 }
2391
GenOneBit(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_high,bool is_long)2392 static void GenOneBit(X86_64Assembler* assembler,
2393 CodeGeneratorX86_64* codegen,
2394 HInvoke* invoke,
2395 bool is_high, bool is_long) {
2396 LocationSummary* locations = invoke->GetLocations();
2397 Location src = locations->InAt(0);
2398 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2399
2400 if (invoke->InputAt(0)->IsConstant()) {
2401 // Evaluate this at compile time.
2402 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2403 if (value == 0) {
2404 __ xorl(out, out); // Clears upper bits too.
2405 return;
2406 }
2407 // Nonzero value.
2408 if (is_high) {
2409 value = is_long ? 63 - CLZ(static_cast<uint64_t>(value))
2410 : 31 - CLZ(static_cast<uint32_t>(value));
2411 } else {
2412 value = is_long ? CTZ(static_cast<uint64_t>(value))
2413 : CTZ(static_cast<uint32_t>(value));
2414 }
2415 if (is_long) {
2416 codegen->Load64BitValue(out, 1ULL << value);
2417 } else {
2418 codegen->Load32BitValue(out, 1 << value);
2419 }
2420 return;
2421 }
2422
2423 // Handle the non-constant cases.
2424 if (!is_high && codegen->GetInstructionSetFeatures().HasAVX2() &&
2425 src.IsRegister()) {
2426 __ blsi(out, src.AsRegister<CpuRegister>());
2427 } else {
2428 CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>();
2429 if (is_high) {
2430 // Use architectural support: basically 1 << bsr.
2431 if (src.IsRegister()) {
2432 if (is_long) {
2433 __ bsrq(tmp, src.AsRegister<CpuRegister>());
2434 } else {
2435 __ bsrl(tmp, src.AsRegister<CpuRegister>());
2436 }
2437 } else if (is_long) {
2438 DCHECK(src.IsDoubleStackSlot());
2439 __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2440 } else {
2441 DCHECK(src.IsStackSlot());
2442 __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2443 }
2444 // BSR sets ZF if the input was zero.
2445 NearLabel is_zero, done;
2446 __ j(kEqual, &is_zero);
2447 __ movl(out, Immediate(1)); // Clears upper bits too.
2448 if (is_long) {
2449 __ shlq(out, tmp);
2450 } else {
2451 __ shll(out, tmp);
2452 }
2453 __ jmp(&done);
2454 __ Bind(&is_zero);
2455 __ xorl(out, out); // Clears upper bits too.
2456 __ Bind(&done);
2457 } else {
2458 // Copy input into temporary.
2459 if (src.IsRegister()) {
2460 if (is_long) {
2461 __ movq(tmp, src.AsRegister<CpuRegister>());
2462 } else {
2463 __ movl(tmp, src.AsRegister<CpuRegister>());
2464 }
2465 } else if (is_long) {
2466 DCHECK(src.IsDoubleStackSlot());
2467 __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2468 } else {
2469 DCHECK(src.IsStackSlot());
2470 __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2471 }
2472 // Do the bit twiddling: basically tmp & -tmp;
2473 if (is_long) {
2474 __ movq(out, tmp);
2475 __ negq(tmp);
2476 __ andq(out, tmp);
2477 } else {
2478 __ movl(out, tmp);
2479 __ negl(tmp);
2480 __ andl(out, tmp);
2481 }
2482 }
2483 }
2484 }
2485
VisitIntegerHighestOneBit(HInvoke * invoke)2486 void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
2487 CreateOneBitLocations(allocator_, invoke, /* is_high= */ true);
2488 }
2489
VisitIntegerHighestOneBit(HInvoke * invoke)2490 void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
2491 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ false);
2492 }
2493
VisitLongHighestOneBit(HInvoke * invoke)2494 void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
2495 CreateOneBitLocations(allocator_, invoke, /* is_high= */ true);
2496 }
2497
VisitLongHighestOneBit(HInvoke * invoke)2498 void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
2499 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ true);
2500 }
2501
VisitIntegerLowestOneBit(HInvoke * invoke)2502 void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
2503 CreateOneBitLocations(allocator_, invoke, /* is_high= */ false);
2504 }
2505
VisitIntegerLowestOneBit(HInvoke * invoke)2506 void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
2507 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ false);
2508 }
2509
VisitLongLowestOneBit(HInvoke * invoke)2510 void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
2511 CreateOneBitLocations(allocator_, invoke, /* is_high= */ false);
2512 }
2513
VisitLongLowestOneBit(HInvoke * invoke)2514 void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
2515 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ true);
2516 }
2517
CreateLeadingZeroLocations(ArenaAllocator * allocator,HInvoke * invoke)2518 static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
2519 LocationSummary* locations =
2520 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2521 locations->SetInAt(0, Location::Any());
2522 locations->SetOut(Location::RequiresRegister());
2523 }
2524
GenLeadingZeros(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2525 static void GenLeadingZeros(X86_64Assembler* assembler,
2526 CodeGeneratorX86_64* codegen,
2527 HInvoke* invoke, bool is_long) {
2528 LocationSummary* locations = invoke->GetLocations();
2529 Location src = locations->InAt(0);
2530 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2531
2532 int zero_value_result = is_long ? 64 : 32;
2533 if (invoke->InputAt(0)->IsConstant()) {
2534 // Evaluate this at compile time.
2535 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2536 if (value == 0) {
2537 value = zero_value_result;
2538 } else {
2539 value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
2540 }
2541 codegen->Load32BitValue(out, value);
2542 return;
2543 }
2544
2545 // Handle the non-constant cases.
2546 if (src.IsRegister()) {
2547 if (is_long) {
2548 __ bsrq(out, src.AsRegister<CpuRegister>());
2549 } else {
2550 __ bsrl(out, src.AsRegister<CpuRegister>());
2551 }
2552 } else if (is_long) {
2553 DCHECK(src.IsDoubleStackSlot());
2554 __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2555 } else {
2556 DCHECK(src.IsStackSlot());
2557 __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2558 }
2559
2560 // BSR sets ZF if the input was zero, and the output is undefined.
2561 NearLabel is_zero, done;
2562 __ j(kEqual, &is_zero);
2563
2564 // Correct the result from BSR to get the CLZ result.
2565 __ xorl(out, Immediate(zero_value_result - 1));
2566 __ jmp(&done);
2567
2568 // Fix the zero case with the expected result.
2569 __ Bind(&is_zero);
2570 __ movl(out, Immediate(zero_value_result));
2571
2572 __ Bind(&done);
2573 }
2574
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)2575 void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
2576 CreateLeadingZeroLocations(allocator_, invoke);
2577 }
2578
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)2579 void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
2580 GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
2581 }
2582
VisitLongNumberOfLeadingZeros(HInvoke * invoke)2583 void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
2584 CreateLeadingZeroLocations(allocator_, invoke);
2585 }
2586
VisitLongNumberOfLeadingZeros(HInvoke * invoke)2587 void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
2588 GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
2589 }
2590
CreateTrailingZeroLocations(ArenaAllocator * allocator,HInvoke * invoke)2591 static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
2592 LocationSummary* locations =
2593 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2594 locations->SetInAt(0, Location::Any());
2595 locations->SetOut(Location::RequiresRegister());
2596 }
2597
GenTrailingZeros(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2598 static void GenTrailingZeros(X86_64Assembler* assembler,
2599 CodeGeneratorX86_64* codegen,
2600 HInvoke* invoke, bool is_long) {
2601 LocationSummary* locations = invoke->GetLocations();
2602 Location src = locations->InAt(0);
2603 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2604
2605 int zero_value_result = is_long ? 64 : 32;
2606 if (invoke->InputAt(0)->IsConstant()) {
2607 // Evaluate this at compile time.
2608 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2609 if (value == 0) {
2610 value = zero_value_result;
2611 } else {
2612 value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
2613 }
2614 codegen->Load32BitValue(out, value);
2615 return;
2616 }
2617
2618 // Handle the non-constant cases.
2619 if (src.IsRegister()) {
2620 if (is_long) {
2621 __ bsfq(out, src.AsRegister<CpuRegister>());
2622 } else {
2623 __ bsfl(out, src.AsRegister<CpuRegister>());
2624 }
2625 } else if (is_long) {
2626 DCHECK(src.IsDoubleStackSlot());
2627 __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2628 } else {
2629 DCHECK(src.IsStackSlot());
2630 __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2631 }
2632
2633 // BSF sets ZF if the input was zero, and the output is undefined.
2634 NearLabel done;
2635 __ j(kNotEqual, &done);
2636
2637 // Fix the zero case with the expected result.
2638 __ movl(out, Immediate(zero_value_result));
2639
2640 __ Bind(&done);
2641 }
2642
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)2643 void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
2644 CreateTrailingZeroLocations(allocator_, invoke);
2645 }
2646
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)2647 void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
2648 GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
2649 }
2650
VisitLongNumberOfTrailingZeros(HInvoke * invoke)2651 void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
2652 CreateTrailingZeroLocations(allocator_, invoke);
2653 }
2654
VisitLongNumberOfTrailingZeros(HInvoke * invoke)2655 void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
2656 GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
2657 }
2658
VisitIntegerValueOf(HInvoke * invoke)2659 void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) {
2660 InvokeRuntimeCallingConvention calling_convention;
2661 IntrinsicVisitor::ComputeIntegerValueOfLocations(
2662 invoke,
2663 codegen_,
2664 Location::RegisterLocation(RAX),
2665 Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2666 }
2667
VisitIntegerValueOf(HInvoke * invoke)2668 void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) {
2669 IntrinsicVisitor::IntegerValueOfInfo info =
2670 IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
2671 LocationSummary* locations = invoke->GetLocations();
2672 X86_64Assembler* assembler = GetAssembler();
2673
2674 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2675 InvokeRuntimeCallingConvention calling_convention;
2676 CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0));
2677 if (invoke->InputAt(0)->IsIntConstant()) {
2678 int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
2679 if (static_cast<uint32_t>(value - info.low) < info.length) {
2680 // Just embed the j.l.Integer in the code.
2681 DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
2682 codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
2683 } else {
2684 DCHECK(locations->CanCall());
2685 // Allocate and initialize a new j.l.Integer.
2686 // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
2687 // JIT object table.
2688 codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
2689 info.integer_boot_image_offset);
2690 __ movl(Address(out, info.value_offset), Immediate(value));
2691 }
2692 } else {
2693 DCHECK(locations->CanCall());
2694 CpuRegister in = locations->InAt(0).AsRegister<CpuRegister>();
2695 // Check bounds of our cache.
2696 __ leal(out, Address(in, -info.low));
2697 __ cmpl(out, Immediate(info.length));
2698 NearLabel allocate, done;
2699 __ j(kAboveEqual, &allocate);
2700 // If the value is within the bounds, load the j.l.Integer directly from the array.
2701 DCHECK_NE(out.AsRegister(), argument.AsRegister());
2702 codegen_->LoadBootImageAddress(argument, info.array_data_boot_image_reference);
2703 static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference<mirror::Object>),
2704 "Check heap reference size.");
2705 __ movl(out, Address(argument, out, TIMES_4, 0));
2706 __ MaybeUnpoisonHeapReference(out);
2707 __ jmp(&done);
2708 __ Bind(&allocate);
2709 // Otherwise allocate and initialize a new j.l.Integer.
2710 codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
2711 info.integer_boot_image_offset);
2712 __ movl(Address(out, info.value_offset), in);
2713 __ Bind(&done);
2714 }
2715 }
2716
VisitThreadInterrupted(HInvoke * invoke)2717 void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) {
2718 LocationSummary* locations =
2719 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2720 locations->SetOut(Location::RequiresRegister());
2721 }
2722
VisitThreadInterrupted(HInvoke * invoke)2723 void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) {
2724 X86_64Assembler* assembler = GetAssembler();
2725 CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
2726 Address address = Address::Absolute
2727 (Thread::InterruptedOffset<kX86_64PointerSize>().Int32Value(), /* no_rip= */ true);
2728 NearLabel done;
2729 __ gs()->movl(out, address);
2730 __ testl(out, out);
2731 __ j(kEqual, &done);
2732 __ gs()->movl(address, Immediate(0));
2733 codegen_->MemoryFence();
2734 __ Bind(&done);
2735 }
2736
VisitReachabilityFence(HInvoke * invoke)2737 void IntrinsicLocationsBuilderX86_64::VisitReachabilityFence(HInvoke* invoke) {
2738 LocationSummary* locations =
2739 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2740 locations->SetInAt(0, Location::Any());
2741 }
2742
VisitReachabilityFence(HInvoke * invoke ATTRIBUTE_UNUSED)2743 void IntrinsicCodeGeneratorX86_64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
2744
2745 UNIMPLEMENTED_INTRINSIC(X86_64, ReferenceGetReferent)
2746 UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite)
2747 UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite)
2748 UNIMPLEMENTED_INTRINSIC(X86_64, CRC32Update)
2749 UNIMPLEMENTED_INTRINSIC(X86_64, CRC32UpdateBytes)
2750 UNIMPLEMENTED_INTRINSIC(X86_64, CRC32UpdateByteBuffer)
2751 UNIMPLEMENTED_INTRINSIC(X86_64, FP16ToFloat)
2752 UNIMPLEMENTED_INTRINSIC(X86_64, FP16ToHalf)
2753 UNIMPLEMENTED_INTRINSIC(X86_64, FP16Floor)
2754 UNIMPLEMENTED_INTRINSIC(X86_64, FP16Ceil)
2755 UNIMPLEMENTED_INTRINSIC(X86_64, FP16Rint)
2756 UNIMPLEMENTED_INTRINSIC(X86_64, FP16Greater)
2757 UNIMPLEMENTED_INTRINSIC(X86_64, FP16GreaterEquals)
2758 UNIMPLEMENTED_INTRINSIC(X86_64, FP16Less)
2759 UNIMPLEMENTED_INTRINSIC(X86_64, FP16LessEquals)
2760
2761 UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOf);
2762 UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOfAfter);
2763 UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferAppend);
2764 UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferLength);
2765 UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferToString);
2766 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendObject);
2767 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendString);
2768 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendCharSequence);
2769 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendCharArray);
2770 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendBoolean);
2771 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendChar);
2772 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendInt);
2773 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendLong);
2774 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendFloat);
2775 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppendDouble);
2776 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderLength);
2777 UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderToString);
2778
2779 // 1.8.
2780 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt)
2781 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong)
2782 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt)
2783 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong)
2784 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject)
2785
2786 UNREACHABLE_INTRINSICS(X86_64)
2787
2788 #undef __
2789
2790 } // namespace x86_64
2791 } // namespace art
2792