1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "debugger_interface.h"
18
19 #include <android-base/logging.h>
20
21 #include "base/array_ref.h"
22 #include "base/bit_utils.h"
23 #include "base/logging.h"
24 #include "base/mutex.h"
25 #include "base/time_utils.h"
26 #include "base/utils.h"
27 #include "dex/dex_file.h"
28 #include "jit/jit.h"
29 #include "jit/jit_code_cache.h"
30 #include "jit/jit_memory_region.h"
31 #include "runtime.h"
32 #include "thread-current-inl.h"
33 #include "thread.h"
34
35 #include <atomic>
36 #include <cstddef>
37
38 //
39 // Debug interface for native tools (gdb, lldb, libunwind, simpleperf).
40 //
41 // See http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
42 //
43 // There are two ways for native tools to access the debug data safely:
44 //
45 // 1) Synchronously, by setting a breakpoint in the __*_debug_register_code
46 // method, which is called after every modification of the linked list.
47 // GDB does this, but it is complex to set up and it stops the process.
48 //
49 // 2) Asynchronously, using the entry seqlocks.
50 // * The seqlock is a monotonically increasing counter, which
51 // is even if the entry is valid and odd if it is invalid.
52 // It is set to even value after all other fields are set,
53 // and it is set to odd value before the entry is deleted.
54 // * This makes it possible to safely read the symfile data:
55 // * The reader should read the value of the seqlock both
56 // before and after reading the symfile. If the seqlock
57 // values match and are even the copy is consistent.
58 // * Entries are recycled, but never freed, which guarantees
59 // that the seqlock is not overwritten by a random value.
60 // * The linked-list is one level higher. The next-pointer
61 // must always point to an entry with even seqlock, which
62 // ensures that entries of a crashed process can be read.
63 // This means the entry must be added after it is created
64 // and it must be removed before it is invalidated (odd).
65 // * When iterating over the linked list the reader can use
66 // the timestamps to ensure that current and next entry
67 // were not deleted using the following steps:
68 // 1) Read next pointer and the next entry's seqlock.
69 // 2) Read the symfile and re-read the next pointer.
70 // 3) Re-read both the current and next seqlock.
71 // 4) Go to step 1 with using new entry and seqlock.
72 //
73 // 3) Asynchronously, using the global seqlock.
74 // * The seqlock is a monotonically increasing counter which is incremented
75 // before and after every modification of the linked list. Odd value of
76 // the counter means the linked list is being modified (it is locked).
77 // * The tool should read the value of the seqlock both before and after
78 // copying the linked list. If the seqlock values match and are even,
79 // the copy is consistent. Otherwise, the reader should try again.
80 // * Note that using the data directly while is it being modified
81 // might crash the tool. Therefore, the only safe way is to make
82 // a copy and use the copy only after the seqlock has been checked.
83 // * Note that the process might even free and munmap the data while
84 // it is being copied, therefore the reader should either handle
85 // SEGV or use OS calls to read the memory (e.g. process_vm_readv).
86 // * The timestamps on the entry record the time when the entry was
87 // created which is relevant if the unwinding is not live and is
88 // postponed until much later. All timestamps must be unique.
89 // * For full conformance with the C++ memory model, all seqlock
90 // protected accesses should be atomic. We currently do this in the
91 // more critical cases. The rest will have to be fixed before
92 // attempting to run TSAN on this code.
93 //
94
95 namespace art {
96
97 static Mutex g_jit_debug_lock("JIT native debug entries", kNativeDebugInterfaceLock);
98 static Mutex g_dex_debug_lock("DEX native debug entries", kNativeDebugInterfaceLock);
99
100 // Most loads and stores need no synchronization since all memory is protected by the global locks.
101 // Some writes are synchronized so libunwindstack can read the memory safely from another process.
102 constexpr std::memory_order kNonRacingRelaxed = std::memory_order_relaxed;
103
104 // Public binary interface between ART and native tools (gdb, libunwind, etc).
105 extern "C" {
106 enum JITAction {
107 JIT_NOACTION = 0,
108 JIT_REGISTER_FN,
109 JIT_UNREGISTER_FN
110 };
111
112 // Public/stable binary interface.
113 struct JITCodeEntryPublic {
114 std::atomic<const JITCodeEntry*> next_; // Atomic to guarantee consistency after crash.
115 const JITCodeEntry* prev_ = nullptr; // For linked list deletion. Unused in readers.
116 const uint8_t* symfile_addr_ = nullptr; // Address of the in-memory ELF file.
117 uint64_t symfile_size_ = 0; // NB: The offset is 12 on x86 but 16 on ARM32.
118
119 // Android-specific fields:
120 uint64_t timestamp_; // CLOCK_MONOTONIC time of entry registration.
121 std::atomic_uint32_t seqlock_{1}; // Synchronization. Even value if entry is valid.
122 };
123
124 // Implementation-specific fields (which can be used only in this file).
125 struct JITCodeEntry : public JITCodeEntryPublic {
126 // Unpacked entries: Code address of the symbol in the ELF file.
127 // Packed entries: The start address of the covered memory range.
128 const void* addr_ = nullptr;
129 // Allow merging of ELF files to save space.
130 // Packing drops advanced DWARF data, so it is not always desirable.
131 bool allow_packing_ = false;
132 // Whether this entry has been LZMA compressed.
133 // Compression is expensive, so we don't always do it.
134 bool is_compressed_ = false;
135 };
136
137 // Public/stable binary interface.
138 struct JITDescriptorPublic {
139 uint32_t version_ = 1; // NB: GDB supports only version 1.
140 uint32_t action_flag_ = JIT_NOACTION; // One of the JITAction enum values.
141 const JITCodeEntry* relevant_entry_ = nullptr; // The entry affected by the action.
142 std::atomic<const JITCodeEntry*> head_{nullptr}; // Head of link list of all entries.
143
144 // Android-specific fields:
145 uint8_t magic_[8] = {'A', 'n', 'd', 'r', 'o', 'i', 'd', '2'};
146 uint32_t flags_ = 0; // Reserved for future use. Must be 0.
147 uint32_t sizeof_descriptor = sizeof(JITDescriptorPublic);
148 uint32_t sizeof_entry = sizeof(JITCodeEntryPublic);
149 std::atomic_uint32_t seqlock_{0}; // Incremented before and after any modification.
150 uint64_t timestamp_ = 1; // CLOCK_MONOTONIC time of last action.
151 };
152
153 // Implementation-specific fields (which can be used only in this file).
154 struct JITDescriptor : public JITDescriptorPublic {
155 const JITCodeEntry* tail_ = nullptr; // Tail of link list of all live entries.
156 const JITCodeEntry* free_entries_ = nullptr; // List of deleted entries ready for reuse.
157
158 // Used for memory sharing with zygote. See NativeDebugInfoPreFork().
159 const JITCodeEntry* zygote_head_entry_ = nullptr;
160 JITCodeEntry application_tail_entry_{};
161 };
162
163 // Public interface: Can be used by reader to check the structs have the expected size.
164 uint32_t g_art_sizeof_jit_code_entry = sizeof(JITCodeEntryPublic);
165 uint32_t g_art_sizeof_jit_descriptor = sizeof(JITDescriptorPublic);
166
167 // Check that std::atomic has the expected layout.
168 static_assert(alignof(std::atomic_uint32_t) == alignof(uint32_t), "Weird alignment");
169 static_assert(sizeof(std::atomic_uint32_t) == sizeof(uint32_t), "Weird size");
170 static_assert(std::atomic_uint32_t::is_always_lock_free, "Expected to be lock free");
171 static_assert(alignof(std::atomic<void*>) == alignof(void*), "Weird alignment");
172 static_assert(sizeof(std::atomic<void*>) == sizeof(void*), "Weird size");
173 static_assert(std::atomic<void*>::is_always_lock_free, "Expected to be lock free");
174
175 // GDB may set breakpoint here. We must ensure it is not removed or deduplicated.
__jit_debug_register_code()176 void __attribute__((noinline)) __jit_debug_register_code() {
177 __asm__("");
178 }
179
180 // Alternatively, native tools may overwrite this field to execute custom handler.
181 void (*__jit_debug_register_code_ptr)() = __jit_debug_register_code;
182
183 // The root data structure describing of all JITed methods.
GUARDED_BY(g_jit_debug_lock)184 JITDescriptor __jit_debug_descriptor GUARDED_BY(g_jit_debug_lock) {};
185
186 // The following globals mirror the ones above, but are used to register dex files.
__dex_debug_register_code()187 void __attribute__((noinline)) __dex_debug_register_code() {
188 __asm__("");
189 }
190 void (*__dex_debug_register_code_ptr)() = __dex_debug_register_code;
GUARDED_BY(g_dex_debug_lock)191 JITDescriptor __dex_debug_descriptor GUARDED_BY(g_dex_debug_lock) {};
192 }
193
194 struct DexNativeInfo {
195 static constexpr bool kCopySymfileData = false; // Just reference DEX files.
Descriptorart::DexNativeInfo196 static JITDescriptor& Descriptor() { return __dex_debug_descriptor; }
NotifyNativeDebuggerart::DexNativeInfo197 static void NotifyNativeDebugger() { __dex_debug_register_code_ptr(); }
Allocart::DexNativeInfo198 static const void* Alloc(size_t size) { return malloc(size); }
Freeart::DexNativeInfo199 static void Free(const void* ptr) { free(const_cast<void*>(ptr)); }
Writableart::DexNativeInfo200 template<class T> static T* Writable(const T* v) { return const_cast<T*>(v); }
201 };
202
203 struct JitNativeInfo {
204 static constexpr bool kCopySymfileData = true; // Copy debug info to JIT memory.
Descriptorart::JitNativeInfo205 static JITDescriptor& Descriptor() { return __jit_debug_descriptor; }
NotifyNativeDebuggerart::JitNativeInfo206 static void NotifyNativeDebugger() { __jit_debug_register_code_ptr(); }
Allocart::JitNativeInfo207 static const void* Alloc(size_t size) { return Memory()->AllocateData(size); }
Freeart::JitNativeInfo208 static void Free(const void* ptr) { Memory()->FreeData(reinterpret_cast<const uint8_t*>(ptr)); }
209 static void Free(void* ptr) = delete;
210
Writableart::JitNativeInfo211 template<class T> static T* Writable(const T* v) {
212 // Special case: This entry is in static memory and not allocated in JIT memory.
213 if (v == reinterpret_cast<const void*>(&Descriptor().application_tail_entry_)) {
214 return const_cast<T*>(v);
215 }
216 return const_cast<T*>(Memory()->GetWritableDataAddress(v));
217 }
218
Memoryart::JitNativeInfo219 static jit::JitMemoryRegion* Memory() ASSERT_CAPABILITY(Locks::jit_lock_) {
220 Locks::jit_lock_->AssertHeld(Thread::Current());
221 jit::JitCodeCache* jit_code_cache = Runtime::Current()->GetJitCodeCache();
222 CHECK(jit_code_cache != nullptr);
223 jit::JitMemoryRegion* memory = jit_code_cache->GetCurrentRegion();
224 CHECK(memory->IsValid());
225 return memory;
226 }
227 };
228
GetJITCodeEntrySymFile(const JITCodeEntry * entry)229 ArrayRef<const uint8_t> GetJITCodeEntrySymFile(const JITCodeEntry* entry) {
230 return ArrayRef<const uint8_t>(entry->symfile_addr_, entry->symfile_size_);
231 }
232
233 // Ensure the timestamp is monotonically increasing even in presence of low
234 // granularity system timer. This ensures each entry has unique timestamp.
GetNextTimestamp(JITDescriptor & descriptor)235 static uint64_t GetNextTimestamp(JITDescriptor& descriptor) {
236 return std::max(descriptor.timestamp_ + 1, NanoTime());
237 }
238
239 // Mark the descriptor as "locked", so native tools know the data is being modified.
Seqlock(JITDescriptor & descriptor)240 static void Seqlock(JITDescriptor& descriptor) {
241 DCHECK_EQ(descriptor.seqlock_.load(kNonRacingRelaxed) & 1, 0u) << "Already locked";
242 descriptor.seqlock_.fetch_add(1, std::memory_order_relaxed);
243 // Ensure that any writes within the locked section cannot be reordered before the increment.
244 std::atomic_thread_fence(std::memory_order_release);
245 }
246
247 // Mark the descriptor as "unlocked", so native tools know the data is safe to read.
Sequnlock(JITDescriptor & descriptor)248 static void Sequnlock(JITDescriptor& descriptor) {
249 DCHECK_EQ(descriptor.seqlock_.load(kNonRacingRelaxed) & 1, 1u) << "Already unlocked";
250 // Ensure that any writes within the locked section cannot be reordered after the increment.
251 std::atomic_thread_fence(std::memory_order_release);
252 descriptor.seqlock_.fetch_add(1, std::memory_order_relaxed);
253 }
254
255 // Insert 'entry' in the linked list before 'next' and mark it as valid (append if 'next' is null).
256 // This method must be called under global lock (g_jit_debug_lock or g_dex_debug_lock).
257 template<class NativeInfo>
InsertNewEntry(const JITCodeEntry * entry,const JITCodeEntry * next)258 static void InsertNewEntry(const JITCodeEntry* entry, const JITCodeEntry* next) {
259 CHECK_EQ(entry->seqlock_.load(kNonRacingRelaxed) & 1, 1u) << "Expected invalid entry";
260 JITDescriptor& descriptor = NativeInfo::Descriptor();
261 const JITCodeEntry* prev = (next != nullptr ? next->prev_ : descriptor.tail_);
262 JITCodeEntry* writable = NativeInfo::Writable(entry);
263 writable->next_ = next;
264 writable->prev_ = prev;
265 writable->seqlock_.fetch_add(1, std::memory_order_release); // Mark as valid.
266 // Backward pointers should not be used by readers, so they are non-atomic.
267 if (next != nullptr) {
268 NativeInfo::Writable(next)->prev_ = entry;
269 } else {
270 descriptor.tail_ = entry;
271 }
272 // Forward pointers must be atomic and they must point to a valid entry at all times.
273 if (prev != nullptr) {
274 NativeInfo::Writable(prev)->next_.store(entry, std::memory_order_release);
275 } else {
276 descriptor.head_.store(entry, std::memory_order_release);
277 }
278 }
279
280 // This must be called with the appropriate lock taken (g_{jit,dex}_debug_lock).
281 template<class NativeInfo>
CreateJITCodeEntryInternal(ArrayRef<const uint8_t> symfile=ArrayRef<const uint8_t> (),const void * addr=nullptr,bool allow_packing=false,bool is_compressed=false)282 static const JITCodeEntry* CreateJITCodeEntryInternal(
283 ArrayRef<const uint8_t> symfile = ArrayRef<const uint8_t>(),
284 const void* addr = nullptr,
285 bool allow_packing = false,
286 bool is_compressed = false) {
287 JITDescriptor& descriptor = NativeInfo::Descriptor();
288
289 // Allocate JITCodeEntry if needed.
290 if (descriptor.free_entries_ == nullptr) {
291 const void* memory = NativeInfo::Alloc(sizeof(JITCodeEntry));
292 if (memory == nullptr) {
293 LOG(ERROR) << "Failed to allocate memory for native debug info";
294 return nullptr;
295 }
296 new (NativeInfo::Writable(memory)) JITCodeEntry();
297 descriptor.free_entries_ = reinterpret_cast<const JITCodeEntry*>(memory);
298 }
299
300 // Make a copy of the buffer to shrink it and to pass ownership to JITCodeEntry.
301 if (NativeInfo::kCopySymfileData && !symfile.empty()) {
302 const uint8_t* copy = reinterpret_cast<const uint8_t*>(NativeInfo::Alloc(symfile.size()));
303 if (copy == nullptr) {
304 LOG(ERROR) << "Failed to allocate memory for native debug info";
305 return nullptr;
306 }
307 memcpy(NativeInfo::Writable(copy), symfile.data(), symfile.size());
308 symfile = ArrayRef<const uint8_t>(copy, symfile.size());
309 }
310
311 uint64_t timestamp = GetNextTimestamp(descriptor);
312
313 // We must insert entries at specific place. See NativeDebugInfoPreFork().
314 const JITCodeEntry* next = descriptor.head_.load(kNonRacingRelaxed); // Insert at the head.
315 if (descriptor.zygote_head_entry_ != nullptr && Runtime::Current()->IsZygote()) {
316 next = nullptr; // Insert zygote entries at the tail.
317 }
318
319 // Pop entry from the free list.
320 const JITCodeEntry* entry = descriptor.free_entries_;
321 descriptor.free_entries_ = descriptor.free_entries_->next_.load(kNonRacingRelaxed);
322
323 // Create the entry and set all its fields.
324 JITCodeEntry* writable_entry = NativeInfo::Writable(entry);
325 writable_entry->symfile_addr_ = symfile.data();
326 writable_entry->symfile_size_ = symfile.size();
327 writable_entry->addr_ = addr;
328 writable_entry->allow_packing_ = allow_packing;
329 writable_entry->is_compressed_ = is_compressed;
330 writable_entry->timestamp_ = timestamp;
331
332 // Add the entry to the main linked list.
333 Seqlock(descriptor);
334 InsertNewEntry<NativeInfo>(entry, next);
335 descriptor.relevant_entry_ = entry;
336 descriptor.action_flag_ = JIT_REGISTER_FN;
337 descriptor.timestamp_ = timestamp;
338 Sequnlock(descriptor);
339
340 NativeInfo::NotifyNativeDebugger();
341
342 return entry;
343 }
344
345 template<class NativeInfo>
DeleteJITCodeEntryInternal(const JITCodeEntry * entry)346 static void DeleteJITCodeEntryInternal(const JITCodeEntry* entry) {
347 CHECK(entry != nullptr);
348 JITDescriptor& descriptor = NativeInfo::Descriptor();
349
350 // Remove the entry from the main linked-list.
351 Seqlock(descriptor);
352 const JITCodeEntry* next = entry->next_.load(kNonRacingRelaxed);
353 const JITCodeEntry* prev = entry->prev_;
354 if (next != nullptr) {
355 NativeInfo::Writable(next)->prev_ = prev;
356 } else {
357 descriptor.tail_ = prev;
358 }
359 if (prev != nullptr) {
360 NativeInfo::Writable(prev)->next_.store(next, std::memory_order_relaxed);
361 } else {
362 descriptor.head_.store(next, std::memory_order_relaxed);
363 }
364 descriptor.relevant_entry_ = entry;
365 descriptor.action_flag_ = JIT_UNREGISTER_FN;
366 descriptor.timestamp_ = GetNextTimestamp(descriptor);
367 Sequnlock(descriptor);
368
369 NativeInfo::NotifyNativeDebugger();
370
371 // Delete the entry.
372 JITCodeEntry* writable_entry = NativeInfo::Writable(entry);
373 CHECK_EQ(writable_entry->seqlock_.load(kNonRacingRelaxed) & 1, 0u) << "Expected valid entry";
374 // Release: Ensures that "next_" points to valid entry at any time in reader.
375 writable_entry->seqlock_.fetch_add(1, std::memory_order_release); // Mark as invalid.
376 // Release: Ensures that the entry is seen as invalid before it's data is freed.
377 std::atomic_thread_fence(std::memory_order_release);
378 const uint8_t* symfile = entry->symfile_addr_;
379 writable_entry->symfile_addr_ = nullptr;
380 if (NativeInfo::kCopySymfileData && symfile != nullptr) {
381 NativeInfo::Free(symfile);
382 }
383
384 // Push the entry to the free list.
385 writable_entry->next_.store(descriptor.free_entries_, kNonRacingRelaxed);
386 writable_entry->prev_ = nullptr;
387 descriptor.free_entries_ = entry;
388 }
389
AddNativeDebugInfoForDex(Thread * self,const DexFile * dexfile)390 void AddNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) {
391 MutexLock mu(self, g_dex_debug_lock);
392 DCHECK(dexfile != nullptr);
393 const ArrayRef<const uint8_t> symfile(dexfile->Begin(), dexfile->Size());
394 CreateJITCodeEntryInternal<DexNativeInfo>(symfile);
395 }
396
RemoveNativeDebugInfoForDex(Thread * self,const DexFile * dexfile)397 void RemoveNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) {
398 MutexLock mu(self, g_dex_debug_lock);
399 DCHECK(dexfile != nullptr);
400 // We register dex files in the class linker and free them in DexFile_closeDexFile, but
401 // there might be cases where we load the dex file without using it in the class linker.
402 // On the other hand, single dex file might also be used with different class-loaders.
403 for (const JITCodeEntry* entry = __dex_debug_descriptor.head_; entry != nullptr; ) {
404 const JITCodeEntry* next = entry->next_; // Save next pointer before we free the memory.
405 if (entry->symfile_addr_ == dexfile->Begin()) {
406 DeleteJITCodeEntryInternal<DexNativeInfo>(entry);
407 }
408 entry = next;
409 }
410 }
411
412 // Splits the linked linked in to two parts:
413 // The first part (including the static head pointer) is owned by the application.
414 // The second part is owned by zygote and might be concurrently modified by it.
415 //
416 // We add two empty entries at the boundary which are never removed (app_tail, zygote_head).
417 // These entries are needed to preserve the next/prev pointers in the linked list,
418 // since zygote can not modify the application's data and vice versa.
419 //
420 // <------- owned by the application memory --------> <--- owned by zygote memory --->
421 // |----------------------|------------------|-------------|-----------------|
422 // head -> | application_entries* | application_tail | zygote_head | zygote_entries* |
423 // |+---------------------|------------------|-------------|----------------+|
424 // | |
425 // \-(new application entries) (new zygote entries)-/
426 //
427 // Zygote entries are inserted at the end, which means that repacked zygote entries
428 // will still be seen by single forward iteration of the linked list (avoiding race).
429 //
430 // Application entries are inserted at the start which introduces repacking race,
431 // but that is ok, since it is easy to read new entries from head in further pass.
432 // The benefit is that this makes it fast to read only the new entries.
433 //
NativeDebugInfoPreFork()434 void NativeDebugInfoPreFork() {
435 CHECK(Runtime::Current()->IsZygote());
436 JITDescriptor& descriptor = JitNativeInfo::Descriptor();
437 if (descriptor.zygote_head_entry_ != nullptr) {
438 return; // Already done - we need to do this only on the first fork.
439 }
440
441 // Create the zygote-owned head entry (with no ELF file).
442 // The data will be allocated from the current JIT memory (owned by zygote).
443 MutexLock mu(Thread::Current(), *Locks::jit_lock_); // Needed to alloc entry.
444 const JITCodeEntry* zygote_head =
445 reinterpret_cast<const JITCodeEntry*>(JitNativeInfo::Alloc(sizeof(JITCodeEntry)));
446 CHECK(zygote_head != nullptr);
447 new (JitNativeInfo::Writable(zygote_head)) JITCodeEntry(); // Initialize.
448 InsertNewEntry<JitNativeInfo>(zygote_head, descriptor.head_);
449 descriptor.zygote_head_entry_ = zygote_head;
450
451 // Create the child-owned tail entry (with no ELF file).
452 // The data is statically allocated since it must be owned by the forked process.
453 InsertNewEntry<JitNativeInfo>(&descriptor.application_tail_entry_, descriptor.head_);
454 }
455
NativeDebugInfoPostFork()456 void NativeDebugInfoPostFork() {
457 CHECK(!Runtime::Current()->IsZygote());
458 JITDescriptor& descriptor = JitNativeInfo::Descriptor();
459 descriptor.free_entries_ = nullptr; // Don't reuse zygote's entries.
460 }
461
462 // Size of JIT code range covered by each packed JITCodeEntry.
463 static constexpr uint32_t kJitRepackGroupSize = 64 * KB;
464
465 // Automatically call the repack method every 'n' new entries.
466 static constexpr uint32_t kJitRepackFrequency = 64;
467 static uint32_t g_jit_num_unpacked_entries = 0;
468
469 // Split the JIT code cache into groups of fixed size and create single JITCodeEntry for each group.
470 // The start address of method's code determines which group it belongs to. The end is irrelevant.
471 // New mini debug infos will be merged if possible, and entries for GCed functions will be removed.
RepackEntries(bool compress_entries,ArrayRef<const void * > removed)472 static void RepackEntries(bool compress_entries, ArrayRef<const void*> removed)
473 REQUIRES(g_jit_debug_lock) {
474 DCHECK(std::is_sorted(removed.begin(), removed.end()));
475 jit::Jit* jit = Runtime::Current()->GetJit();
476 if (jit == nullptr) {
477 return;
478 }
479 JITDescriptor& descriptor = __jit_debug_descriptor;
480 bool is_zygote = Runtime::Current()->IsZygote();
481
482 // Collect entries that we want to pack.
483 std::vector<const JITCodeEntry*> entries;
484 entries.reserve(2 * kJitRepackFrequency);
485 for (const JITCodeEntry* it = descriptor.head_; it != nullptr; it = it->next_) {
486 if (it == descriptor.zygote_head_entry_ && !is_zygote) {
487 break; // Memory owned by the zygote process (read-only for an app).
488 }
489 if (it->allow_packing_) {
490 if (!compress_entries && it->is_compressed_ && removed.empty()) {
491 continue; // If we are not compressing, also avoid decompressing.
492 }
493 entries.push_back(it);
494 }
495 }
496 auto cmp = [](const JITCodeEntry* l, const JITCodeEntry* r) { return l->addr_ < r->addr_; };
497 std::sort(entries.begin(), entries.end(), cmp); // Sort by address.
498
499 // Process the entries in groups (each spanning memory range of size kJitRepackGroupSize).
500 for (auto group_it = entries.begin(); group_it != entries.end();) {
501 const void* group_ptr = AlignDown((*group_it)->addr_, kJitRepackGroupSize);
502 const void* group_end = reinterpret_cast<const uint8_t*>(group_ptr) + kJitRepackGroupSize;
503
504 // Find all entries in this group (each entry is an in-memory ELF file).
505 auto begin = group_it;
506 auto end = std::find_if(begin, entries.end(), [=](auto* e) { return e->addr_ >= group_end; });
507 CHECK(end > begin);
508 ArrayRef<const JITCodeEntry*> elfs(&*begin, end - begin);
509
510 // Find all symbols that have been removed in this memory range.
511 auto removed_begin = std::lower_bound(removed.begin(), removed.end(), group_ptr);
512 auto removed_end = std::lower_bound(removed.begin(), removed.end(), group_end);
513 CHECK(removed_end >= removed_begin);
514 ArrayRef<const void*> removed_subset(&*removed_begin, removed_end - removed_begin);
515
516 // Optimization: Don't compress the last group since it will likely change again soon.
517 bool compress = compress_entries && end != entries.end();
518
519 // Bail out early if there is nothing to do for this group.
520 if (elfs.size() == 1 && removed_subset.empty() && (*begin)->is_compressed_ == compress) {
521 group_it = end; // Go to next group.
522 continue;
523 }
524
525 // Create new single JITCodeEntry that covers this memory range.
526 uint64_t start_time = MicroTime();
527 size_t live_symbols;
528 std::vector<uint8_t> packed = jit->GetJitCompiler()->PackElfFileForJIT(
529 elfs, removed_subset, compress, &live_symbols);
530 VLOG(jit)
531 << "JIT mini-debug-info repacked"
532 << " for " << group_ptr
533 << " in " << MicroTime() - start_time << "us"
534 << " elfs=" << elfs.size()
535 << " dead=" << removed_subset.size()
536 << " live=" << live_symbols
537 << " size=" << packed.size() << (compress ? "(lzma)" : "");
538
539 // Replace the old entries with the new one (with their lifetime temporally overlapping).
540 CreateJITCodeEntryInternal<JitNativeInfo>(ArrayRef<const uint8_t>(packed),
541 /*addr_=*/ group_ptr,
542 /*allow_packing_=*/ true,
543 /*is_compressed_=*/ compress);
544 for (auto it : elfs) {
545 DeleteJITCodeEntryInternal<JitNativeInfo>(/*entry=*/ it);
546 }
547 group_it = end; // Go to next group.
548 }
549 g_jit_num_unpacked_entries = 0;
550 }
551
AddNativeDebugInfoForJit(const void * code_ptr,const std::vector<uint8_t> & symfile,bool allow_packing)552 void AddNativeDebugInfoForJit(const void* code_ptr,
553 const std::vector<uint8_t>& symfile,
554 bool allow_packing) {
555 MutexLock mu(Thread::Current(), g_jit_debug_lock);
556 DCHECK_NE(symfile.size(), 0u);
557
558 CreateJITCodeEntryInternal<JitNativeInfo>(ArrayRef<const uint8_t>(symfile),
559 /*addr=*/ code_ptr,
560 /*allow_packing=*/ allow_packing,
561 /*is_compressed=*/ false);
562
563 VLOG(jit)
564 << "JIT mini-debug-info added"
565 << " for " << code_ptr
566 << " size=" << PrettySize(symfile.size());
567
568 // Automatically repack entries on regular basis to save space.
569 // Pack (but don't compress) recent entries - this is cheap and reduces memory use by ~4x.
570 // We delay compression until after GC since it is more expensive (and saves further ~4x).
571 // Always compress zygote, since it does not GC and we want to keep the high-water mark low.
572 if (++g_jit_num_unpacked_entries >= kJitRepackFrequency) {
573 bool is_zygote = Runtime::Current()->IsZygote();
574 RepackEntries(/*compress_entries=*/ is_zygote, /*removed=*/ ArrayRef<const void*>());
575 }
576 }
577
RemoveNativeDebugInfoForJit(ArrayRef<const void * > removed)578 void RemoveNativeDebugInfoForJit(ArrayRef<const void*> removed) {
579 MutexLock mu(Thread::Current(), g_jit_debug_lock);
580 RepackEntries(/*compress_entries=*/ true, removed);
581
582 // Remove entries which are not allowed to be packed (containing single method each).
583 for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr;) {
584 const JITCodeEntry* next = it->next_;
585 if (!it->allow_packing_ && std::binary_search(removed.begin(), removed.end(), it->addr_)) {
586 DeleteJITCodeEntryInternal<JitNativeInfo>(/*entry=*/ it);
587 }
588 it = next;
589 }
590 }
591
GetJitMiniDebugInfoMemUsage()592 size_t GetJitMiniDebugInfoMemUsage() {
593 MutexLock mu(Thread::Current(), g_jit_debug_lock);
594 size_t size = 0;
595 for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr; it = it->next_) {
596 size += sizeof(JITCodeEntry) + it->symfile_size_;
597 }
598 return size;
599 }
600
GetNativeDebugInfoLock()601 Mutex* GetNativeDebugInfoLock() {
602 return &g_jit_debug_lock;
603 }
604
605 } // namespace art
606