1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "install/verifier.h"
18 
19 #include <errno.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 
24 #include <algorithm>
25 #include <functional>
26 #include <memory>
27 #include <vector>
28 
29 #include <android-base/logging.h>
30 #include <openssl/bio.h>
31 #include <openssl/bn.h>
32 #include <openssl/ecdsa.h>
33 #include <openssl/evp.h>
34 #include <openssl/obj_mac.h>
35 #include <openssl/pem.h>
36 #include <openssl/rsa.h>
37 #include <ziparchive/zip_archive.h>
38 
39 #include "otautil/print_sha1.h"
40 #include "private/asn1_decoder.h"
41 
42 /*
43  * Simple version of PKCS#7 SignedData extraction. This extracts the
44  * signature OCTET STRING to be used for signature verification.
45  *
46  * For full details, see http://www.ietf.org/rfc/rfc3852.txt
47  *
48  * The PKCS#7 structure looks like:
49  *
50  *   SEQUENCE (ContentInfo)
51  *     OID (ContentType)
52  *     [0] (content)
53  *       SEQUENCE (SignedData)
54  *         INTEGER (version CMSVersion)
55  *         SET (DigestAlgorithmIdentifiers)
56  *         SEQUENCE (EncapsulatedContentInfo)
57  *         [0] (CertificateSet OPTIONAL)
58  *         [1] (RevocationInfoChoices OPTIONAL)
59  *         SET (SignerInfos)
60  *           SEQUENCE (SignerInfo)
61  *             INTEGER (CMSVersion)
62  *             SEQUENCE (SignerIdentifier)
63  *             SEQUENCE (DigestAlgorithmIdentifier)
64  *             SEQUENCE (SignatureAlgorithmIdentifier)
65  *             OCTET STRING (SignatureValue)
66  */
read_pkcs7(const uint8_t * pkcs7_der,size_t pkcs7_der_len,std::vector<uint8_t> * sig_der)67 static bool read_pkcs7(const uint8_t* pkcs7_der, size_t pkcs7_der_len,
68                        std::vector<uint8_t>* sig_der) {
69   CHECK(sig_der != nullptr);
70   sig_der->clear();
71 
72   asn1_context ctx(pkcs7_der, pkcs7_der_len);
73 
74   std::unique_ptr<asn1_context> pkcs7_seq(ctx.asn1_sequence_get());
75   if (pkcs7_seq == nullptr || !pkcs7_seq->asn1_sequence_next()) {
76     return false;
77   }
78 
79   std::unique_ptr<asn1_context> signed_data_app(pkcs7_seq->asn1_constructed_get());
80   if (signed_data_app == nullptr) {
81     return false;
82   }
83 
84   std::unique_ptr<asn1_context> signed_data_seq(signed_data_app->asn1_sequence_get());
85   if (signed_data_seq == nullptr || !signed_data_seq->asn1_sequence_next() ||
86       !signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_sequence_next() ||
87       !signed_data_seq->asn1_constructed_skip_all()) {
88     return false;
89   }
90 
91   std::unique_ptr<asn1_context> sig_set(signed_data_seq->asn1_set_get());
92   if (sig_set == nullptr) {
93     return false;
94   }
95 
96   std::unique_ptr<asn1_context> sig_seq(sig_set->asn1_sequence_get());
97   if (sig_seq == nullptr || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next() ||
98       !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next()) {
99     return false;
100   }
101 
102   const uint8_t* sig_der_ptr;
103   size_t sig_der_length;
104   if (!sig_seq->asn1_octet_string_get(&sig_der_ptr, &sig_der_length)) {
105     return false;
106   }
107 
108   sig_der->resize(sig_der_length);
109   std::copy(sig_der_ptr, sig_der_ptr + sig_der_length, sig_der->begin());
110   return true;
111 }
112 
verify_file(VerifierInterface * package,const std::vector<Certificate> & keys)113 int verify_file(VerifierInterface* package, const std::vector<Certificate>& keys) {
114   CHECK(package);
115   package->SetProgress(0.0);
116 
117   // An archive with a whole-file signature will end in six bytes:
118   //
119   //   (2-byte signature start) $ff $ff (2-byte comment size)
120   //
121   // (As far as the ZIP format is concerned, these are part of the archive comment.) We start by
122   // reading this footer, this tells us how far back from the end we have to start reading to find
123   // the whole comment.
124 
125 #define FOOTER_SIZE 6
126   uint64_t length = package->GetPackageSize();
127 
128   if (length < FOOTER_SIZE) {
129     LOG(ERROR) << "not big enough to contain footer";
130     return VERIFY_FAILURE;
131   }
132 
133   uint8_t footer[FOOTER_SIZE];
134   if (!package->ReadFullyAtOffset(footer, FOOTER_SIZE, length - FOOTER_SIZE)) {
135     LOG(ERROR) << "Failed to read footer";
136     return VERIFY_FAILURE;
137   }
138 
139   if (footer[2] != 0xff || footer[3] != 0xff) {
140     LOG(ERROR) << "footer is wrong";
141     return VERIFY_FAILURE;
142   }
143 
144   size_t comment_size = footer[4] + (footer[5] << 8);
145   size_t signature_start = footer[0] + (footer[1] << 8);
146   LOG(INFO) << "comment is " << comment_size << " bytes; signature is " << signature_start
147             << " bytes from end";
148 
149   if (signature_start > comment_size) {
150     LOG(ERROR) << "signature start: " << signature_start
151                << " is larger than comment size: " << comment_size;
152     return VERIFY_FAILURE;
153   }
154 
155   if (signature_start <= FOOTER_SIZE) {
156     LOG(ERROR) << "Signature start is in the footer";
157     return VERIFY_FAILURE;
158   }
159 
160 #define EOCD_HEADER_SIZE 22
161 
162   // The end-of-central-directory record is 22 bytes plus any comment length.
163   size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
164 
165   if (length < eocd_size) {
166     LOG(ERROR) << "not big enough to contain EOCD";
167     return VERIFY_FAILURE;
168   }
169 
170   // Determine how much of the file is covered by the signature. This is everything except the
171   // signature data and length, which includes all of the EOCD except for the comment length field
172   // (2 bytes) and the comment data.
173   uint64_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
174 
175   uint8_t eocd[eocd_size];
176   if (!package->ReadFullyAtOffset(eocd, eocd_size, length - eocd_size)) {
177     LOG(ERROR) << "Failed to read EOCD of " << eocd_size << " bytes";
178     return VERIFY_FAILURE;
179   }
180 
181   // If this is really is the EOCD record, it will begin with the magic number $50 $4b $05 $06.
182   if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) {
183     LOG(ERROR) << "signature length doesn't match EOCD marker";
184     return VERIFY_FAILURE;
185   }
186 
187   for (size_t i = 4; i < eocd_size - 3; ++i) {
188     if (eocd[i] == 0x50 && eocd[i + 1] == 0x4b && eocd[i + 2] == 0x05 && eocd[i + 3] == 0x06) {
189       // If the sequence $50 $4b $05 $06 appears anywhere after the real one, libziparchive will
190       // find the later (wrong) one, which could be exploitable. Fail the verification if this
191       // sequence occurs anywhere after the real one.
192       LOG(ERROR) << "EOCD marker occurs after start of EOCD";
193       return VERIFY_FAILURE;
194     }
195   }
196 
197   bool need_sha1 = false;
198   bool need_sha256 = false;
199   for (const auto& key : keys) {
200     switch (key.hash_len) {
201       case SHA_DIGEST_LENGTH:
202         need_sha1 = true;
203         break;
204       case SHA256_DIGEST_LENGTH:
205         need_sha256 = true;
206         break;
207     }
208   }
209 
210   SHA_CTX sha1_ctx;
211   SHA256_CTX sha256_ctx;
212   SHA1_Init(&sha1_ctx);
213   SHA256_Init(&sha256_ctx);
214 
215   std::vector<HasherUpdateCallback> hashers;
216   if (need_sha1) {
217     hashers.emplace_back(
218         std::bind(&SHA1_Update, &sha1_ctx, std::placeholders::_1, std::placeholders::_2));
219   }
220   if (need_sha256) {
221     hashers.emplace_back(
222         std::bind(&SHA256_Update, &sha256_ctx, std::placeholders::_1, std::placeholders::_2));
223   }
224 
225   double frac = -1.0;
226   uint64_t so_far = 0;
227   while (so_far < signed_len) {
228     // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a 1196MiB full OTA and
229     // 60% for an 89MiB incremental OTA. http://b/28135231.
230     uint64_t read_size = std::min<uint64_t>(signed_len - so_far, 16 * MiB);
231     package->UpdateHashAtOffset(hashers, so_far, read_size);
232     so_far += read_size;
233 
234     double f = so_far / static_cast<double>(signed_len);
235     if (f > frac + 0.02 || read_size == so_far) {
236       package->SetProgress(f);
237       frac = f;
238     }
239   }
240 
241   uint8_t sha1[SHA_DIGEST_LENGTH];
242   SHA1_Final(sha1, &sha1_ctx);
243   uint8_t sha256[SHA256_DIGEST_LENGTH];
244   SHA256_Final(sha256, &sha256_ctx);
245 
246   const uint8_t* signature = eocd + eocd_size - signature_start;
247   size_t signature_size = signature_start - FOOTER_SIZE;
248 
249   LOG(INFO) << "signature (offset: " << std::hex << (length - signature_start)
250             << ", length: " << signature_size << "): " << print_hex(signature, signature_size);
251 
252   std::vector<uint8_t> sig_der;
253   if (!read_pkcs7(signature, signature_size, &sig_der)) {
254     LOG(ERROR) << "Could not find signature DER block";
255     return VERIFY_FAILURE;
256   }
257 
258   // Check to make sure at least one of the keys matches the signature. Since any key can match,
259   // we need to try each before determining a verification failure has happened.
260   size_t i = 0;
261   for (const auto& key : keys) {
262     const uint8_t* hash;
263     int hash_nid;
264     switch (key.hash_len) {
265       case SHA_DIGEST_LENGTH:
266         hash = sha1;
267         hash_nid = NID_sha1;
268         break;
269       case SHA256_DIGEST_LENGTH:
270         hash = sha256;
271         hash_nid = NID_sha256;
272         break;
273       default:
274         continue;
275     }
276 
277     // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that the signing tool appends
278     // after the signature itself.
279     if (key.key_type == Certificate::KEY_TYPE_RSA) {
280       if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der.data(), sig_der.size(),
281                       key.rsa.get())) {
282         LOG(INFO) << "failed to verify against RSA key " << i;
283         continue;
284       }
285 
286       LOG(INFO) << "whole-file signature verified against RSA key " << i;
287       return VERIFY_SUCCESS;
288     } else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) {
289       if (!ECDSA_verify(0, hash, key.hash_len, sig_der.data(), sig_der.size(), key.ec.get())) {
290         LOG(INFO) << "failed to verify against EC key " << i;
291         continue;
292       }
293 
294       LOG(INFO) << "whole-file signature verified against EC key " << i;
295       return VERIFY_SUCCESS;
296     } else {
297       LOG(INFO) << "Unknown key type " << key.key_type;
298     }
299     i++;
300   }
301 
302   if (need_sha1) {
303     LOG(INFO) << "SHA-1 digest: " << print_hex(sha1, SHA_DIGEST_LENGTH);
304   }
305   if (need_sha256) {
306     LOG(INFO) << "SHA-256 digest: " << print_hex(sha256, SHA256_DIGEST_LENGTH);
307   }
308   LOG(ERROR) << "failed to verify whole-file signature";
309   return VERIFY_FAILURE;
310 }
311 
IterateZipEntriesAndSearchForKeys(const ZipArchiveHandle & handle)312 static std::vector<Certificate> IterateZipEntriesAndSearchForKeys(const ZipArchiveHandle& handle) {
313   void* cookie;
314   int32_t iter_status = StartIteration(handle, &cookie, "", "x509.pem");
315   if (iter_status != 0) {
316     LOG(ERROR) << "Failed to iterate over entries in the certificate zipfile: "
317                << ErrorCodeString(iter_status);
318     return {};
319   }
320 
321   std::vector<Certificate> result;
322 
323   std::string_view name;
324   ZipEntry entry;
325   while ((iter_status = Next(cookie, &entry, &name)) == 0) {
326     std::vector<uint8_t> pem_content(entry.uncompressed_length);
327     if (int32_t extract_status =
328             ExtractToMemory(handle, &entry, pem_content.data(), pem_content.size());
329         extract_status != 0) {
330       LOG(ERROR) << "Failed to extract " << name;
331       return {};
332     }
333 
334     Certificate cert(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr);
335     // Aborts the parsing if we fail to load one of the key file.
336     if (!LoadCertificateFromBuffer(pem_content, &cert)) {
337       LOG(ERROR) << "Failed to load keys from " << name;
338       return {};
339     }
340 
341     result.emplace_back(std::move(cert));
342   }
343 
344   if (iter_status != -1) {
345     LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(iter_status);
346     return {};
347   }
348 
349   return result;
350 }
351 
LoadKeysFromZipfile(const std::string & zip_name)352 std::vector<Certificate> LoadKeysFromZipfile(const std::string& zip_name) {
353   ZipArchiveHandle handle;
354   if (int32_t open_status = OpenArchive(zip_name.c_str(), &handle); open_status != 0) {
355     LOG(ERROR) << "Failed to open " << zip_name << ": " << ErrorCodeString(open_status);
356     return {};
357   }
358 
359   std::vector<Certificate> result = IterateZipEntriesAndSearchForKeys(handle);
360   CloseArchive(handle);
361   return result;
362 }
363 
CheckRSAKey(const std::unique_ptr<RSA,RSADeleter> & rsa)364 bool CheckRSAKey(const std::unique_ptr<RSA, RSADeleter>& rsa) {
365   if (!rsa) {
366     return false;
367   }
368 
369   const BIGNUM* out_n;
370   const BIGNUM* out_e;
371   RSA_get0_key(rsa.get(), &out_n, &out_e, nullptr /* private exponent */);
372   auto modulus_bits = BN_num_bits(out_n);
373   if (modulus_bits != 2048 && modulus_bits != 4096) {
374     LOG(ERROR) << "Modulus should be 2048 or 4096 bits long, actual: " << modulus_bits;
375     return false;
376   }
377 
378   BN_ULONG exponent = BN_get_word(out_e);
379   if (exponent != 3 && exponent != 65537) {
380     LOG(ERROR) << "Public exponent should be 3 or 65537, actual: " << exponent;
381     return false;
382   }
383 
384   return true;
385 }
386 
CheckECKey(const std::unique_ptr<EC_KEY,ECKEYDeleter> & ec_key)387 bool CheckECKey(const std::unique_ptr<EC_KEY, ECKEYDeleter>& ec_key) {
388   if (!ec_key) {
389     return false;
390   }
391 
392   const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key.get());
393   if (!ec_group) {
394     LOG(ERROR) << "Failed to get the ec_group from the ec_key";
395     return false;
396   }
397   auto degree = EC_GROUP_get_degree(ec_group);
398   if (degree != 256) {
399     LOG(ERROR) << "Field size of the ec key should be 256 bits long, actual: " << degree;
400     return false;
401   }
402 
403   return true;
404 }
405 
LoadCertificateFromBuffer(const std::vector<uint8_t> & pem_content,Certificate * cert)406 bool LoadCertificateFromBuffer(const std::vector<uint8_t>& pem_content, Certificate* cert) {
407   std::unique_ptr<BIO, decltype(&BIO_free)> content(
408       BIO_new_mem_buf(pem_content.data(), pem_content.size()), BIO_free);
409 
410   std::unique_ptr<X509, decltype(&X509_free)> x509(
411       PEM_read_bio_X509(content.get(), nullptr, nullptr, nullptr), X509_free);
412   if (!x509) {
413     LOG(ERROR) << "Failed to read x509 certificate";
414     return false;
415   }
416 
417   int nid = X509_get_signature_nid(x509.get());
418   switch (nid) {
419     // SignApk has historically accepted md5WithRSA certificates, but treated them as
420     // sha1WithRSA anyway. Continue to do so for backwards compatibility.
421     case NID_md5WithRSA:
422     case NID_md5WithRSAEncryption:
423     case NID_sha1WithRSA:
424     case NID_sha1WithRSAEncryption:
425       cert->hash_len = SHA_DIGEST_LENGTH;
426       break;
427     case NID_sha256WithRSAEncryption:
428     case NID_ecdsa_with_SHA256:
429       cert->hash_len = SHA256_DIGEST_LENGTH;
430       break;
431     default:
432       LOG(ERROR) << "Unrecognized signature nid " << OBJ_nid2ln(nid);
433       return false;
434   }
435 
436   std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)> public_key(X509_get_pubkey(x509.get()),
437                                                                  EVP_PKEY_free);
438   if (!public_key) {
439     LOG(ERROR) << "Failed to extract the public key from x509 certificate";
440     return false;
441   }
442 
443   int key_type = EVP_PKEY_id(public_key.get());
444   if (key_type == EVP_PKEY_RSA) {
445     cert->key_type = Certificate::KEY_TYPE_RSA;
446     cert->ec.reset();
447     cert->rsa.reset(EVP_PKEY_get1_RSA(public_key.get()));
448     if (!cert->rsa || !CheckRSAKey(cert->rsa)) {
449       LOG(ERROR) << "Failed to validate the rsa key info from public key";
450       return false;
451     }
452   } else if (key_type == EVP_PKEY_EC) {
453     cert->key_type = Certificate::KEY_TYPE_EC;
454     cert->rsa.reset();
455     cert->ec.reset(EVP_PKEY_get1_EC_KEY(public_key.get()));
456     if (!cert->ec || !CheckECKey(cert->ec)) {
457       LOG(ERROR) << "Failed to validate the ec key info from the public key";
458       return false;
459     }
460   } else {
461     LOG(ERROR) << "Unrecognized public key type " << OBJ_nid2ln(key_type);
462     return false;
463   }
464 
465   return true;
466 }
467