1namespace Eigen {
2
3/** \eigenManualPage QuickRefPage Quick reference guide
4
5\eigenAutoToc
6
7<hr>
8
9<a href="#" class="top">top</a>
10\section QuickRef_Headers Modules and Header files
11
12The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once.
13
14<table class="manual">
15<tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
16<tr            ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
17<tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr>
18<tr            ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr>
19<tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr>
20<tr            ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr>
21<tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr>
22<tr            ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr>
23<tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr>
24<tr            ><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr>
25<tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
26<tr            ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr>
27</table>
28
29<a href="#" class="top">top</a>
30\section QuickRef_Types Array, matrix and vector types
31
32
33\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
34\code
35typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
36typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType;
37\endcode
38
39\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.).
40\li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
41\li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
42
43All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
44\code
45Matrix<double, 6, Dynamic>                  // Dynamic number of columns (heap allocation)
46Matrix<double, Dynamic, 2>                  // Dynamic number of rows (heap allocation)
47Matrix<double, Dynamic, Dynamic, RowMajor>  // Fully dynamic, row major (heap allocation)
48Matrix<double, 13, 3>                       // Fully fixed (usually allocated on stack)
49\endcode
50
51In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples:
52<table class="example">
53<tr><th>Matrices</th><th>Arrays</th></tr>
54<tr><td>\code
55Matrix<float,Dynamic,Dynamic>   <=>   MatrixXf
56Matrix<double,Dynamic,1>        <=>   VectorXd
57Matrix<int,1,Dynamic>           <=>   RowVectorXi
58Matrix<float,3,3>               <=>   Matrix3f
59Matrix<float,4,1>               <=>   Vector4f
60\endcode</td><td>\code
61Array<float,Dynamic,Dynamic>    <=>   ArrayXXf
62Array<double,Dynamic,1>         <=>   ArrayXd
63Array<int,1,Dynamic>            <=>   RowArrayXi
64Array<float,3,3>                <=>   Array33f
65Array<float,4,1>                <=>   Array4f
66\endcode</td></tr>
67</table>
68
69Conversion between the matrix and array worlds:
70\code
71Array44f a1, a1;
72Matrix4f m1, m2;
73m1 = a1 * a2;                     // coeffwise product, implicit conversion from array to matrix.
74a1 = m1 * m2;                     // matrix product, implicit conversion from matrix to array.
75a2 = a1 + m1.array();             // mixing array and matrix is forbidden
76m2 = a1.matrix() + m1;            // and explicit conversion is required.
77ArrayWrapper<Matrix4f> m1a(m1);   // m1a is an alias for m1.array(), they share the same coefficients
78MatrixWrapper<Array44f> a1m(a1);
79\endcode
80
81In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object:
82\li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only
83\li <a name="arrayonly"></a>\arrayworld array objects only
84
85\subsection QuickRef_Basics Basic matrix manipulation
86
87<table class="manual">
88<tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr>
89<tr><td>Constructors</td>
90<td>\code
91Vector4d  v4;
92Vector2f  v1(x, y);
93Array3i   v2(x, y, z);
94Vector4d  v3(x, y, z, w);
95
96VectorXf  v5; // empty object
97ArrayXf   v6(size);
98\endcode</td><td>\code
99Matrix4f  m1;
100
101
102
103
104MatrixXf  m5; // empty object
105MatrixXf  m6(nb_rows, nb_columns);
106\endcode</td><td class="note">
107By default, the coefficients \n are left uninitialized</td></tr>
108<tr class="alt"><td>Comma initializer</td>
109<td>\code
110Vector3f  v1;     v1 << x, y, z;
111ArrayXf   v2(4);  v2 << 1, 2, 3, 4;
112
113\endcode</td><td>\code
114Matrix3f  m1;   m1 << 1, 2, 3,
115                      4, 5, 6,
116                      7, 8, 9;
117\endcode</td><td></td></tr>
118
119<tr><td>Comma initializer (bis)</td>
120<td colspan="2">
121\include Tutorial_commainit_02.cpp
122</td>
123<td>
124output:
125\verbinclude Tutorial_commainit_02.out
126</td>
127</tr>
128
129<tr class="alt"><td>Runtime info</td>
130<td>\code
131vector.size();
132
133vector.innerStride();
134vector.data();
135\endcode</td><td>\code
136matrix.rows();          matrix.cols();
137matrix.innerSize();     matrix.outerSize();
138matrix.innerStride();   matrix.outerStride();
139matrix.data();
140\endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr>
141<tr><td>Compile-time info</td>
142<td colspan="2">\code
143ObjectType::Scalar              ObjectType::RowsAtCompileTime
144ObjectType::RealScalar          ObjectType::ColsAtCompileTime
145ObjectType::Index               ObjectType::SizeAtCompileTime
146\endcode</td><td></td></tr>
147<tr class="alt"><td>Resizing</td>
148<td>\code
149vector.resize(size);
150
151
152vector.resizeLike(other_vector);
153vector.conservativeResize(size);
154\endcode</td><td>\code
155matrix.resize(nb_rows, nb_cols);
156matrix.resize(Eigen::NoChange, nb_cols);
157matrix.resize(nb_rows, Eigen::NoChange);
158matrix.resizeLike(other_matrix);
159matrix.conservativeResize(nb_rows, nb_cols);
160\endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr>
161
162<tr><td>Coeff access with \n range checking</td>
163<td>\code
164vector(i)     vector.x()
165vector[i]     vector.y()
166              vector.z()
167              vector.w()
168\endcode</td><td>\code
169matrix(i,j)
170\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>
171
172<tr class="alt"><td>Coeff access without \n range checking</td>
173<td>\code
174vector.coeff(i)
175vector.coeffRef(i)
176\endcode</td><td>\code
177matrix.coeff(i,j)
178matrix.coeffRef(i,j)
179\endcode</td><td></td></tr>
180
181<tr><td>Assignment/copy</td>
182<td colspan="2">\code
183object = expression;
184object_of_float = expression_of_double.cast<float>();
185\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>
186
187</table>
188
189\subsection QuickRef_PredefMat Predefined Matrices
190
191<table class="manual">
192<tr>
193  <th>Fixed-size matrix or vector</th>
194  <th>Dynamic-size matrix</th>
195  <th>Dynamic-size vector</th>
196</tr>
197<tr style="border-bottom-style: none;">
198  <td>
199\code
200typedef {Matrix3f|Array33f} FixedXD;
201FixedXD x;
202
203x = FixedXD::Zero();
204x = FixedXD::Ones();
205x = FixedXD::Constant(value);
206x = FixedXD::Random();
207x = FixedXD::LinSpaced(size, low, high);
208
209x.setZero();
210x.setOnes();
211x.setConstant(value);
212x.setRandom();
213x.setLinSpaced(size, low, high);
214\endcode
215  </td>
216  <td>
217\code
218typedef {MatrixXf|ArrayXXf} Dynamic2D;
219Dynamic2D x;
220
221x = Dynamic2D::Zero(rows, cols);
222x = Dynamic2D::Ones(rows, cols);
223x = Dynamic2D::Constant(rows, cols, value);
224x = Dynamic2D::Random(rows, cols);
225N/A
226
227x.setZero(rows, cols);
228x.setOnes(rows, cols);
229x.setConstant(rows, cols, value);
230x.setRandom(rows, cols);
231N/A
232\endcode
233  </td>
234  <td>
235\code
236typedef {VectorXf|ArrayXf} Dynamic1D;
237Dynamic1D x;
238
239x = Dynamic1D::Zero(size);
240x = Dynamic1D::Ones(size);
241x = Dynamic1D::Constant(size, value);
242x = Dynamic1D::Random(size);
243x = Dynamic1D::LinSpaced(size, low, high);
244
245x.setZero(size);
246x.setOnes(size);
247x.setConstant(size, value);
248x.setRandom(size);
249x.setLinSpaced(size, low, high);
250\endcode
251  </td>
252</tr>
253
254<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr>
255<tr style="border-bottom-style: none;">
256  <td>
257\code
258x = FixedXD::Identity();
259x.setIdentity();
260
261Vector3f::UnitX() // 1 0 0
262Vector3f::UnitY() // 0 1 0
263Vector3f::UnitZ() // 0 0 1
264\endcode
265  </td>
266  <td>
267\code
268x = Dynamic2D::Identity(rows, cols);
269x.setIdentity(rows, cols);
270
271
272
273N/A
274\endcode
275  </td>
276  <td>\code
277N/A
278
279
280VectorXf::Unit(size,i)
281VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
282                    == Vector4f::UnitY()
283\endcode
284  </td>
285</tr>
286</table>
287
288
289
290\subsection QuickRef_Map Mapping external arrays
291
292<table class="manual">
293<tr>
294<td>Contiguous \n memory</td>
295<td>\code
296float data[] = {1,2,3,4};
297Map<Vector3f> v1(data);       // uses v1 as a Vector3f object
298Map<ArrayXf>  v2(data,3);     // uses v2 as a ArrayXf object
299Map<Array22f> m1(data);       // uses m1 as a Array22f object
300Map<MatrixXf> m2(data,2,2);   // uses m2 as a MatrixXf object
301\endcode</td>
302</tr>
303<tr>
304<td>Typical usage \n of strides</td>
305<td>\code
306float data[] = {1,2,3,4,5,6,7,8,9};
307Map<VectorXf,0,InnerStride<2> >  v1(data,3);                      // = [1,3,5]
308Map<VectorXf,0,InnerStride<> >   v2(data,3,InnerStride<>(3));     // = [1,4,7]
309Map<MatrixXf,0,OuterStride<3> >  m2(data,2,3);                    // both lines     |1,4,7|
310Map<MatrixXf,0,OuterStride<> >   m1(data,2,3,OuterStride<>(3));   // are equal to:  |2,5,8|
311\endcode</td>
312</tr>
313</table>
314
315
316<a href="#" class="top">top</a>
317\section QuickRef_ArithmeticOperators Arithmetic Operators
318
319<table class="manual">
320<tr><td>
321add \n subtract</td><td>\code
322mat3 = mat1 + mat2;           mat3 += mat1;
323mat3 = mat1 - mat2;           mat3 -= mat1;\endcode
324</td></tr>
325<tr class="alt"><td>
326scalar product</td><td>\code
327mat3 = mat1 * s1;             mat3 *= s1;           mat3 = s1 * mat1;
328mat3 = mat1 / s1;             mat3 /= s1;\endcode
329</td></tr>
330<tr><td>
331matrix/vector \n products \matrixworld</td><td>\code
332col2 = mat1 * col1;
333row2 = row1 * mat1;           row1 *= mat1;
334mat3 = mat1 * mat2;           mat3 *= mat1; \endcode
335</td></tr>
336<tr class="alt"><td>
337transposition \n adjoint \matrixworld</td><td>\code
338mat1 = mat2.transpose();      mat1.transposeInPlace();
339mat1 = mat2.adjoint();        mat1.adjointInPlace();
340\endcode
341</td></tr>
342<tr><td>
343\link MatrixBase::dot dot \endlink product \n inner product \matrixworld</td><td>\code
344scalar = vec1.dot(vec2);
345scalar = col1.adjoint() * col2;
346scalar = (col1.adjoint() * col2).value();\endcode
347</td></tr>
348<tr class="alt"><td>
349outer product \matrixworld</td><td>\code
350mat = col1 * col2.transpose();\endcode
351</td></tr>
352
353<tr><td>
354\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
355scalar = vec1.norm();         scalar = vec1.squaredNorm()
356vec2 = vec1.normalized();     vec1.normalize(); // inplace \endcode
357</td></tr>
358
359<tr class="alt"><td>
360\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code
361#include <Eigen/Geometry>
362vec3 = vec1.cross(vec2);\endcode</td></tr>
363</table>
364
365<a href="#" class="top">top</a>
366\section QuickRef_Coeffwise Coefficient-wise \& Array operators
367
368In addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions.
369Most of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays,
370or available through .array() for vectors and matrices:
371
372<table class="manual">
373<tr><td>Arithmetic operators</td><td>\code
374array1 * array2     array1 / array2     array1 *= array2    array1 /= array2
375array1 + scalar     array1 - scalar     array1 += scalar    array1 -= scalar
376\endcode</td></tr>
377<tr><td>Comparisons</td><td>\code
378array1 < array2     array1 > array2     array1 < scalar     array1 > scalar
379array1 <= array2    array1 >= array2    array1 <= scalar    array1 >= scalar
380array1 == array2    array1 != array2    array1 == scalar    array1 != scalar
381array1.min(array2)  array1.max(array2)  array1.min(scalar)  array1.max(scalar)
382\endcode</td></tr>
383<tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code
384array1.abs2()
385array1.abs()                  abs(array1)
386array1.sqrt()                 sqrt(array1)
387array1.log()                  log(array1)
388array1.log10()                log10(array1)
389array1.exp()                  exp(array1)
390array1.pow(array2)            pow(array1,array2)
391array1.pow(scalar)            pow(array1,scalar)
392                              pow(scalar,array2)
393array1.square()
394array1.cube()
395array1.inverse()
396
397array1.sin()                  sin(array1)
398array1.cos()                  cos(array1)
399array1.tan()                  tan(array1)
400array1.asin()                 asin(array1)
401array1.acos()                 acos(array1)
402array1.atan()                 atan(array1)
403array1.sinh()                 sinh(array1)
404array1.cosh()                 cosh(array1)
405array1.tanh()                 tanh(array1)
406array1.arg()                  arg(array1)
407
408array1.floor()                floor(array1)
409array1.ceil()                 ceil(array1)
410array1.round()                round(aray1)
411
412array1.isFinite()             isfinite(array1)
413array1.isInf()                isinf(array1)
414array1.isNaN()                isnan(array1)
415\endcode
416</td></tr>
417</table>
418
419
420The following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types:
421
422<table class="manual">
423<tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr>
424<tr><td>\code
425mat1.real()
426mat1.imag()
427mat1.conjugate()
428\endcode
429</td><td>\code
430real(array1)
431imag(array1)
432conj(array1)
433\endcode
434</td><td>
435\code
436 // read-write, no-op for real expressions
437 // read-only for real, read-write for complexes
438 // no-op for real expressions
439\endcode
440</td></tr>
441</table>
442
443Some coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods:
444<table class="manual">
445<tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr>
446<tr><td>\code
447mat1.cwiseMin(mat2)         mat1.cwiseMin(scalar)
448mat1.cwiseMax(mat2)         mat1.cwiseMax(scalar)
449mat1.cwiseAbs2()
450mat1.cwiseAbs()
451mat1.cwiseSqrt()
452mat1.cwiseInverse()
453mat1.cwiseProduct(mat2)
454mat1.cwiseQuotient(mat2)
455mat1.cwiseEqual(mat2)       mat1.cwiseEqual(scalar)
456mat1.cwiseNotEqual(mat2)
457\endcode
458</td><td>\code
459mat1.array().min(mat2.array())    mat1.array().min(scalar)
460mat1.array().max(mat2.array())    mat1.array().max(scalar)
461mat1.array().abs2()
462mat1.array().abs()
463mat1.array().sqrt()
464mat1.array().inverse()
465mat1.array() * mat2.array()
466mat1.array() / mat2.array()
467mat1.array() == mat2.array()      mat1.array() == scalar
468mat1.array() != mat2.array()
469\endcode</td></tr>
470</table>
471The main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world,
472while the second one (based on .array()) returns an array expression.
473Recall that .array() has no cost, it only changes the available API and interpretation of the data.
474
475It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11):
476\code
477mat1.unaryExpr(std::ptr_fun(foo));
478mat1.unaryExpr(std::ref(foo));
479mat1.unaryExpr([](double x) { return foo(x); });
480\endcode
481
482
483<a href="#" class="top">top</a>
484\section QuickRef_Reductions Reductions
485
486Eigen provides several reduction methods such as:
487\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
488\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink,
489\link MatrixBase::trace() trace() \endlink \matrixworld,
490\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld,
491\link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink.
492All reduction operations can be done matrix-wise,
493\link DenseBase::colwise() column-wise \endlink or
494\link DenseBase::rowwise() row-wise \endlink. Usage example:
495<table class="manual">
496<tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code
497      5 3 1
498mat = 2 7 8
499      9 4 6 \endcode
500</td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr>
501<tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr>
502<tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code
5031
5042
5054
506\endcode</td></tr>
507</table>
508
509Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink:
510\code
511int i, j;
512s = vector.minCoeff(&i);        // s == vector[i]
513s = matrix.maxCoeff(&i, &j);    // s == matrix(i,j)
514\endcode
515Typical use cases of all() and any():
516\code
517if((array1 > 0).all()) ...      // if all coefficients of array1 are greater than 0 ...
518if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
519\endcode
520
521
522<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices
523
524Read-write access to a \link DenseBase::col(Index) column \endlink
525or a \link DenseBase::row(Index) row \endlink of a matrix (or array):
526\code
527mat1.row(i) = mat2.col(j);
528mat1.col(j1).swap(mat1.col(j2));
529\endcode
530
531Read-write access to sub-vectors:
532<table class="manual">
533<tr>
534<th>Default versions</th>
535<th>Optimized versions when the size \n is known at compile time</th></tr>
536<th></th>
537
538<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr>
539<tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr>
540<tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td>
541    <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr>
542<tr class="alt"><td colspan="3">
543
544Read-write access to sub-matrices:</td></tr>
545<tr>
546  <td>\code mat1.block(i,j,rows,cols)\endcode
547      \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td>
548  <td>\code mat1.block<rows,cols>(i,j)\endcode
549      \link DenseBase::block(Index,Index) (more) \endlink</td>
550  <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
551<tr><td>\code
552 mat1.topLeftCorner(rows,cols)
553 mat1.topRightCorner(rows,cols)
554 mat1.bottomLeftCorner(rows,cols)
555 mat1.bottomRightCorner(rows,cols)\endcode
556 <td>\code
557 mat1.topLeftCorner<rows,cols>()
558 mat1.topRightCorner<rows,cols>()
559 mat1.bottomLeftCorner<rows,cols>()
560 mat1.bottomRightCorner<rows,cols>()\endcode
561 <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
562 <tr><td>\code
563 mat1.topRows(rows)
564 mat1.bottomRows(rows)
565 mat1.leftCols(cols)
566 mat1.rightCols(cols)\endcode
567 <td>\code
568 mat1.topRows<rows>()
569 mat1.bottomRows<rows>()
570 mat1.leftCols<cols>()
571 mat1.rightCols<cols>()\endcode
572 <td>specialized versions of block() \n when the block fit two corners</td></tr>
573</table>
574
575
576
577<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations
578
579\subsection QuickRef_Reverse Reverse
580Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()).
581\code
582vec.reverse()           mat.colwise().reverse()   mat.rowwise().reverse()
583vec.reverseInPlace()
584\endcode
585
586\subsection QuickRef_Replicate Replicate
587Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate())
588\code
589vec.replicate(times)                                          vec.replicate<Times>
590mat.replicate(vertical_times, horizontal_times)               mat.replicate<VerticalTimes, HorizontalTimes>()
591mat.colwise().replicate(vertical_times, horizontal_times)     mat.colwise().replicate<VerticalTimes, HorizontalTimes>()
592mat.rowwise().replicate(vertical_times, horizontal_times)     mat.rowwise().replicate<VerticalTimes, HorizontalTimes>()
593\endcode
594
595
596<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
597(matrix world \matrixworld)
598
599\subsection QuickRef_Diagonal Diagonal matrices
600
601<table class="example">
602<tr><th>Operation</th><th>Code</th></tr>
603<tr><td>
604view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
605mat1 = vec1.asDiagonal();\endcode
606</td></tr>
607<tr><td>
608Declare a diagonal matrix</td><td>\code
609DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
610diag1.diagonal() = vector;\endcode
611</td></tr>
612<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
613 <td>\code
614vec1 = mat1.diagonal();        mat1.diagonal() = vec1;      // main diagonal
615vec1 = mat1.diagonal(+n);      mat1.diagonal(+n) = vec1;    // n-th super diagonal
616vec1 = mat1.diagonal(-n);      mat1.diagonal(-n) = vec1;    // n-th sub diagonal
617vec1 = mat1.diagonal<1>();     mat1.diagonal<1>() = vec1;   // first super diagonal
618vec1 = mat1.diagonal<-2>();    mat1.diagonal<-2>() = vec1;  // second sub diagonal
619\endcode</td>
620</tr>
621
622<tr><td>Optimized products and inverse</td>
623 <td>\code
624mat3  = scalar * diag1 * mat1;
625mat3 += scalar * mat1 * vec1.asDiagonal();
626mat3 = vec1.asDiagonal().inverse() * mat1
627mat3 = mat1 * diag1.inverse()
628\endcode</td>
629</tr>
630
631</table>
632
633\subsection QuickRef_TriangularView Triangular views
634
635TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
636
637\note The .triangularView() template member function requires the \c template keyword if it is used on an
638object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
639
640<table class="example">
641<tr><th>Operation</th><th>Code</th></tr>
642<tr><td>
643Reference to a triangular with optional \n
644unit or null diagonal (read/write):
645</td><td>\code
646m.triangularView<Xxx>()
647\endcode \n
648\c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower
649</td></tr>
650<tr><td>
651Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
652</td><td>\code
653m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode
654</td></tr>
655<tr><td>
656Conversion to a dense matrix setting the opposite triangular part to zero:
657</td><td>\code
658m2 = m1.triangularView<Eigen::UnitUpper>()\endcode
659</td></tr>
660<tr><td>
661Products:
662</td><td>\code
663m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
664m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
665</td></tr>
666<tr><td>
667Solving linear equations:\n
668\f$ M_2 := L_1^{-1} M_2 \f$ \n
669\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n
670\f$ M_4 := M_4 U_1^{-1} \f$
671</td><td>\n \code
672L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
673L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
674U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode
675</td></tr>
676</table>
677
678\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
679
680Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
681matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
682used to store other information.
683
684\note The .selfadjointView() template member function requires the \c template keyword if it is used on an
685object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
686
687<table class="example">
688<tr><th>Operation</th><th>Code</th></tr>
689<tr><td>
690Conversion to a dense matrix:
691</td><td>\code
692m2 = m.selfadjointView<Eigen::Lower>();\endcode
693</td></tr>
694<tr><td>
695Product with another general matrix or vector:
696</td><td>\code
697m3  = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
698m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
699</td></tr>
700<tr><td>
701Rank 1 and rank K update: \n
702\f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n
703\f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$
704</td><td>\n \code
705M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
706M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode
707</td></tr>
708<tr><td>
709Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$)
710</td><td>\code
711M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
712\endcode
713</td></tr>
714<tr><td>
715Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$)
716</td><td>\code
717// via a standard Cholesky factorization
718m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
719// via a Cholesky factorization with pivoting
720m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
721\endcode
722</td></tr>
723</table>
724
725*/
726
727/*
728<table class="tutorial_code">
729<tr><td>
730\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
731mat1 = vec1.asDiagonal();\endcode
732</td></tr>
733<tr><td>
734Declare a diagonal matrix</td><td>\code
735DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
736diag1.diagonal() = vector;\endcode
737</td></tr>
738<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
739 <td>\code
740vec1 = mat1.diagonal();            mat1.diagonal() = vec1;      // main diagonal
741vec1 = mat1.diagonal(+n);          mat1.diagonal(+n) = vec1;    // n-th super diagonal
742vec1 = mat1.diagonal(-n);          mat1.diagonal(-n) = vec1;    // n-th sub diagonal
743vec1 = mat1.diagonal<1>();         mat1.diagonal<1>() = vec1;   // first super diagonal
744vec1 = mat1.diagonal<-2>();        mat1.diagonal<-2>() = vec1;  // second sub diagonal
745\endcode</td>
746</tr>
747
748<tr><td>View on a triangular part of a matrix (read/write)</td>
749 <td>\code
750mat2 = mat1.triangularView<Xxx>();
751// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
752mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced
753\endcode</td></tr>
754
755<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>
756 <td>\code
757mat2 = mat1.selfadjointView<Xxx>();     // Xxx = Upper or Lower
758mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint();  // evaluated and write to the upper triangular part only
759\endcode</td></tr>
760
761</table>
762
763Optimized products:
764\code
765mat3 += scalar * vec1.asDiagonal() * mat1
766mat3 += scalar * mat1 * vec1.asDiagonal()
767mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2
768mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>()
769mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2
770mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>()
771mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2);
772mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar);
773\endcode
774
775Inverse products: (all are optimized)
776\code
777mat3 = vec1.asDiagonal().inverse() * mat1
778mat3 = mat1 * diag1.inverse()
779mat1.triangularView<Xxx>().solveInPlace(mat2)
780mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2)
781mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2)
782\endcode
783
784*/
785}
786