1namespace Eigen { 2 3/** \eigenManualPage TutorialGeometry Space transformations 4 5In this page, we will introduce the many possibilities offered by the \ref Geometry_Module "geometry module" to deal with 2D and 3D rotations and projective or affine transformations. 6 7\eigenAutoToc 8 9Eigen's Geometry module provides two different kinds of geometric transformations: 10 - Abstract transformations, such as rotations (represented by \ref AngleAxis "angle and axis" or by a \ref Quaternion "quaternion"), \ref Translation "translations", \ref Scaling "scalings". These transformations are NOT represented as matrices, but you can nevertheless mix them with matrices and vectors in expressions, and convert them to matrices if you wish. 11 - Projective or affine transformation matrices: see the Transform class. These are really matrices. 12 13\note If you are working with OpenGL 4x4 matrices then Affine3f and Affine3d are what you want. Since Eigen defaults to column-major storage, you can directly use the Transform::data() method to pass your transformation matrix to OpenGL. 14 15You can construct a Transform from an abstract transformation, like this: 16\code 17 Transform t(AngleAxis(angle,axis)); 18\endcode 19or like this: 20\code 21 Transform t; 22 t = AngleAxis(angle,axis); 23\endcode 24But note that unfortunately, because of how C++ works, you can \b not do this: 25\code 26 Transform t = AngleAxis(angle,axis); 27\endcode 28<span class="note">\b Explanation: In the C++ language, this would require Transform to have a non-explicit conversion constructor from AngleAxis, but we really don't want to allow implicit casting here. 29</span> 30 31\section TutorialGeoElementaryTransformations Transformation types 32 33<table class="manual"> 34<tr><th>Transformation type</th><th>Typical initialization code</th></tr> 35<tr><td> 36\ref Rotation2D "2D rotation" from an angle</td><td>\code 37Rotation2D<float> rot2(angle_in_radian);\endcode</td></tr> 38<tr class="alt"><td> 393D rotation as an \ref AngleAxis "angle + axis"</td><td>\code 40AngleAxis<float> aa(angle_in_radian, Vector3f(ax,ay,az));\endcode 41<span class="note">The axis vector must be normalized.</span></td></tr> 42<tr><td> 433D rotation as a \ref Quaternion "quaternion"</td><td>\code 44Quaternion<float> q; q = AngleAxis<float>(angle_in_radian, axis);\endcode</td></tr> 45<tr class="alt"><td> 46N-D Scaling</td><td>\code 47Scaling(sx, sy) 48Scaling(sx, sy, sz) 49Scaling(s) 50Scaling(vecN)\endcode</td></tr> 51<tr><td> 52N-D Translation</td><td>\code 53Translation<float,2>(tx, ty) 54Translation<float,3>(tx, ty, tz) 55Translation<float,N>(s) 56Translation<float,N>(vecN)\endcode</td></tr> 57<tr class="alt"><td> 58N-D \ref TutorialGeoTransform "Affine transformation"</td><td>\code 59Transform<float,N,Affine> t = concatenation_of_any_transformations; 60Transform<float,3,Affine> t = Translation3f(p) * AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr> 61<tr><td> 62N-D Linear transformations \n 63<em class=note>(pure rotations, \n scaling, etc.)</em></td><td>\code 64Matrix<float,N> t = concatenation_of_rotations_and_scalings; 65Matrix<float,2> t = Rotation2Df(a) * Scaling(s); 66Matrix<float,3> t = AngleAxisf(a,axis) * Scaling(s);\endcode</td></tr> 67</table> 68 69<strong>Notes on rotations</strong>\n To transform more than a single vector the preferred 70representations are rotation matrices, while for other usages Quaternion is the 71representation of choice as they are compact, fast and stable. Finally Rotation2D and 72AngleAxis are mainly convenient types to create other rotation objects. 73 74<strong>Notes on Translation and Scaling</strong>\n Like AngleAxis, these classes were 75designed to simplify the creation/initialization of linear (Matrix) and affine (Transform) 76transformations. Nevertheless, unlike AngleAxis which is inefficient to use, these classes 77might still be interesting to write generic and efficient algorithms taking as input any 78kind of transformations. 79 80Any of the above transformation types can be converted to any other types of the same nature, 81or to a more generic type. Here are some additional examples: 82<table class="manual"> 83<tr><td>\code 84Rotation2Df r; r = Matrix2f(..); // assumes a pure rotation matrix 85AngleAxisf aa; aa = Quaternionf(..); 86AngleAxisf aa; aa = Matrix3f(..); // assumes a pure rotation matrix 87Matrix2f m; m = Rotation2Df(..); 88Matrix3f m; m = Quaternionf(..); Matrix3f m; m = Scaling(..); 89Affine3f m; m = AngleAxis3f(..); Affine3f m; m = Scaling(..); 90Affine3f m; m = Translation3f(..); Affine3f m; m = Matrix3f(..); 91\endcode</td></tr> 92</table> 93 94 95<a href="#" class="top">top</a>\section TutorialGeoCommontransformationAPI Common API across transformation types 96 97To some extent, Eigen's \ref Geometry_Module "geometry module" allows you to write 98generic algorithms working on any kind of transformation representations: 99<table class="manual"> 100<tr><td> 101Concatenation of two transformations</td><td>\code 102gen1 * gen2;\endcode</td></tr> 103<tr class="alt"><td>Apply the transformation to a vector</td><td>\code 104vec2 = gen1 * vec1;\endcode</td></tr> 105<tr><td>Get the inverse of the transformation</td><td>\code 106gen2 = gen1.inverse();\endcode</td></tr> 107<tr class="alt"><td>Spherical interpolation \n (Rotation2D and Quaternion only)</td><td>\code 108rot3 = rot1.slerp(alpha,rot2);\endcode</td></tr> 109</table> 110 111 112 113<a href="#" class="top">top</a>\section TutorialGeoTransform Affine transformations 114Generic affine transformations are represented by the Transform class which internaly 115is a (Dim+1)^2 matrix. In Eigen we have chosen to not distinghish between points and 116vectors such that all points are actually represented by displacement vectors from the 117origin ( \f$ \mathbf{p} \equiv \mathbf{p}-0 \f$ ). With that in mind, real points and 118vector distinguish when the transformation is applied. 119<table class="manual"> 120<tr><td> 121Apply the transformation to a \b point </td><td>\code 122VectorNf p1, p2; 123p2 = t * p1;\endcode</td></tr> 124<tr class="alt"><td> 125Apply the transformation to a \b vector </td><td>\code 126VectorNf vec1, vec2; 127vec2 = t.linear() * vec1;\endcode</td></tr> 128<tr><td> 129Apply a \em general transformation \n to a \b normal \b vector \n 130</td><td>\code 131VectorNf n1, n2; 132MatrixNf normalMatrix = t.linear().inverse().transpose(); 133n2 = (normalMatrix * n1).normalized();\endcode</td></tr> 134<tr><td colspan="2">(See subject 5.27 of this <a href="http://www.faqs.org/faqs/graphics/algorithms-faq">faq</a> for the explanations)</td></tr> 135<tr class="alt"><td> 136Apply a transformation with \em pure \em rotation \n to a \b normal \b vector 137(no scaling, no shear)</td><td>\code 138n2 = t.linear() * n1;\endcode</td></tr> 139<tr><td> 140OpenGL compatibility \b 3D </td><td>\code 141glLoadMatrixf(t.data());\endcode</td></tr> 142<tr class="alt"><td> 143OpenGL compatibility \b 2D </td><td>\code 144Affine3f aux(Affine3f::Identity()); 145aux.linear().topLeftCorner<2,2>() = t.linear(); 146aux.translation().start<2>() = t.translation(); 147glLoadMatrixf(aux.data());\endcode</td></tr> 148</table> 149 150\b Component \b accessors 151<table class="manual"> 152<tr><td> 153full read-write access to the internal matrix</td><td>\code 154t.matrix() = matN1xN1; // N1 means N+1 155matN1xN1 = t.matrix(); 156\endcode</td></tr> 157<tr class="alt"><td> 158coefficient accessors</td><td>\code 159t(i,j) = scalar; <=> t.matrix()(i,j) = scalar; 160scalar = t(i,j); <=> scalar = t.matrix()(i,j); 161\endcode</td></tr> 162<tr><td> 163translation part</td><td>\code 164t.translation() = vecN; 165vecN = t.translation(); 166\endcode</td></tr> 167<tr class="alt"><td> 168linear part</td><td>\code 169t.linear() = matNxN; 170matNxN = t.linear(); 171\endcode</td></tr> 172<tr><td> 173extract the rotation matrix</td><td>\code 174matNxN = t.rotation(); 175\endcode</td></tr> 176</table> 177 178 179\b Transformation \b creation \n 180While transformation objects can be created and updated concatenating elementary transformations, 181the Transform class also features a procedural API: 182<table class="manual"> 183<tr><th></th><th>procedural API</th><th>equivalent natural API </th></tr> 184<tr><td>Translation</td><td>\code 185t.translate(Vector_(tx,ty,..)); 186t.pretranslate(Vector_(tx,ty,..)); 187\endcode</td><td>\code 188t *= Translation_(tx,ty,..); 189t = Translation_(tx,ty,..) * t; 190\endcode</td></tr> 191<tr class="alt"><td>\b Rotation \n <em class="note">In 2D and for the procedural API, any_rotation can also \n be an angle in radian</em></td><td>\code 192t.rotate(any_rotation); 193t.prerotate(any_rotation); 194\endcode</td><td>\code 195t *= any_rotation; 196t = any_rotation * t; 197\endcode</td></tr> 198<tr><td>Scaling</td><td>\code 199t.scale(Vector_(sx,sy,..)); 200t.scale(s); 201t.prescale(Vector_(sx,sy,..)); 202t.prescale(s); 203\endcode</td><td>\code 204t *= Scaling(sx,sy,..); 205t *= Scaling(s); 206t = Scaling(sx,sy,..) * t; 207t = Scaling(s) * t; 208\endcode</td></tr> 209<tr class="alt"><td>Shear transformation \n ( \b 2D \b only ! )</td><td>\code 210t.shear(sx,sy); 211t.preshear(sx,sy); 212\endcode</td><td></td></tr> 213</table> 214 215Note that in both API, any many transformations can be concatenated in a single expression as shown in the two following equivalent examples: 216<table class="manual"> 217<tr><td>\code 218t.pretranslate(..).rotate(..).translate(..).scale(..); 219\endcode</td></tr> 220<tr><td>\code 221t = Translation_(..) * t * RotationType(..) * Translation_(..) * Scaling(..); 222\endcode</td></tr> 223</table> 224 225 226 227<a href="#" class="top">top</a>\section TutorialGeoEulerAngles Euler angles 228<table class="manual"> 229<tr><td style="max-width:30em;"> 230Euler angles might be convenient to create rotation objects. 231On the other hand, since there exist 24 different conventions, they are pretty confusing to use. This example shows how 232to create a rotation matrix according to the 2-1-2 convention.</td><td>\code 233Matrix3f m; 234m = AngleAxisf(angle1, Vector3f::UnitZ()) 235 * AngleAxisf(angle2, Vector3f::UnitY()) 236 * AngleAxisf(angle3, Vector3f::UnitZ()); 237\endcode</td></tr> 238</table> 239 240*/ 241 242} 243