1/*
2 Copyright (c) 2011, Intel Corporation. All rights reserved.
3 Copyright (C) 2011-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
4
5 Redistribution and use in source and binary forms, with or without modification,
6 are permitted provided that the following conditions are met:
7
8 * Redistributions of source code must retain the above copyright notice, this
9   list of conditions and the following disclaimer.
10 * Redistributions in binary form must reproduce the above copyright notice,
11   this list of conditions and the following disclaimer in the documentation
12   and/or other materials provided with the distribution.
13 * Neither the name of Intel Corporation nor the names of its contributors may
14   be used to endorse or promote products derived from this software without
15   specific prior written permission.
16
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
18 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
21 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
24 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 ********************************************************************************
29 *   Content : Documentation on the use of BLAS/LAPACK libraries through Eigen
30 ********************************************************************************
31*/
32
33namespace Eigen {
34
35/** \page TopicUsingBlasLapack Using BLAS/LAPACK from %Eigen
36
37
38Since %Eigen version 3.3 and later, any F77 compatible BLAS or LAPACK libraries can be used as backends for dense matrix products and dense matrix decompositions.
39For instance, one can use <a href="http://eigen.tuxfamily.org/Counter/redirect_to_mkl.php">Intel® MKL</a>, Apple's Accelerate framework on OSX, <a href="http://www.openblas.net/">OpenBLAS</a>, <a href="http://www.netlib.org/lapack">Netlib LAPACK</a>, etc.
40
41Do not miss this \link TopicUsingIntelMKL page \endlink for further discussions on the specific use of Intel® MKL (also includes VML, PARDISO, etc.)
42
43In order to use an external BLAS and/or LAPACK library, you must link you own application to the respective libraries and their dependencies.
44For LAPACK, you must also link to the standard <a href="http://www.netlib.org/lapack/lapacke.html">Lapacke</a> library, which is used as a convenient think layer between %Eigen's C++ code and LAPACK F77 interface. Then you must activate their usage by defining one or multiple of the following macros (\b before including any %Eigen's header):
45
46\note For Mac users, in order to use the lapack version shipped with the Accelerate framework, you also need the lapacke library.
47Using <a href="https://www.macports.org/">MacPorts</a>, this is as easy as:
48\code
49sudo port install lapack
50\endcode
51and then use the following link flags: \c -framework \c Accelerate \c /opt/local/lib/lapack/liblapacke.dylib
52
53<table class="manual">
54<tr><td>\c EIGEN_USE_BLAS </td><td>Enables the use of external BLAS level 2 and 3 routines (compatible with any F77 BLAS interface)</td></tr>
55<tr class="alt"><td>\c EIGEN_USE_LAPACKE </td><td>Enables the use of external Lapack routines via the <a href="http://www.netlib.org/lapack/lapacke.html">Lapacke</a> C interface to Lapack (compatible with any F77 LAPACK interface)</td></tr>
56<tr><td>\c EIGEN_USE_LAPACKE_STRICT </td><td>Same as \c EIGEN_USE_LAPACKE but algorithms of lower numerical robustness are disabled. \n This currently concerns only JacobiSVD which otherwise would be replaced by \c gesvd that is less robust than Jacobi rotations.</td></tr>
57</table>
58
59When doing so, a number of %Eigen's algorithms are silently substituted with calls to BLAS or LAPACK routines.
60These substitutions apply only for \b Dynamic \b or \b large enough objects with one of the following four standard scalar types: \c float, \c double, \c complex<float>, and \c complex<double>.
61Operations on other scalar types or mixing reals and complexes will continue to use the built-in algorithms.
62
63The breadth of %Eigen functionality that can be substituted is listed in the table below.
64<table class="manual">
65<tr><th>Functional domain</th><th>Code example</th><th>BLAS/LAPACK routines</th></tr>
66<tr><td>Matrix-matrix operations \n \c EIGEN_USE_BLAS </td><td>\code
67m1*m2.transpose();
68m1.selfadjointView<Lower>()*m2;
69m1*m2.triangularView<Upper>();
70m1.selfadjointView<Lower>().rankUpdate(m2,1.0);
71\endcode</td><td>\code
72?gemm
73?symm/?hemm
74?trmm
75dsyrk/ssyrk
76\endcode</td></tr>
77<tr class="alt"><td>Matrix-vector operations \n \c EIGEN_USE_BLAS </td><td>\code
78m1.adjoint()*b;
79m1.selfadjointView<Lower>()*b;
80m1.triangularView<Upper>()*b;
81\endcode</td><td>\code
82?gemv
83?symv/?hemv
84?trmv
85\endcode</td></tr>
86<tr><td>LU decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
87v1 = m1.lu().solve(v2);
88\endcode</td><td>\code
89?getrf
90\endcode</td></tr>
91<tr class="alt"><td>Cholesky decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
92v1 = m2.selfadjointView<Upper>().llt().solve(v2);
93\endcode</td><td>\code
94?potrf
95\endcode</td></tr>
96<tr><td>QR decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
97m1.householderQr();
98m1.colPivHouseholderQr();
99\endcode</td><td>\code
100?geqrf
101?geqp3
102\endcode</td></tr>
103<tr class="alt"><td>Singular value decomposition \n \c EIGEN_USE_LAPACKE </td><td>\code
104JacobiSVD<MatrixXd> svd;
105svd.compute(m1, ComputeThinV);
106\endcode</td><td>\code
107?gesvd
108\endcode</td></tr>
109<tr><td>Eigen-value decompositions \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
110EigenSolver<MatrixXd> es(m1);
111ComplexEigenSolver<MatrixXcd> ces(m1);
112SelfAdjointEigenSolver<MatrixXd> saes(m1+m1.transpose());
113GeneralizedSelfAdjointEigenSolver<MatrixXd>
114    gsaes(m1+m1.transpose(),m2+m2.transpose());
115\endcode</td><td>\code
116?gees
117?gees
118?syev/?heev
119?syev/?heev,
120?potrf
121\endcode</td></tr>
122<tr class="alt"><td>Schur decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
123RealSchur<MatrixXd> schurR(m1);
124ComplexSchur<MatrixXcd> schurC(m1);
125\endcode</td><td>\code
126?gees
127\endcode</td></tr>
128</table>
129In the examples, m1 and m2 are dense matrices and v1 and v2 are dense vectors.
130
131*/
132
133}
134