1 #include <Eigen/Array>
2 
3 int main(int argc, char *argv[])
4 {
5   std::cout.precision(2);
6 
7   // demo static functions
8   Eigen::Matrix3f m3 = Eigen::Matrix3f::Random();
9   Eigen::Matrix4f m4 = Eigen::Matrix4f::Identity();
10 
11   std::cout << "*** Step 1 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
12 
13   // demo non-static set... functions
14   m4.setZero();
15   m3.diagonal().setOnes();
16 
17   std::cout << "*** Step 2 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
18 
19   // demo fixed-size block() expression as lvalue and as rvalue
20   m4.block<3,3>(0,1) = m3;
21   m3.row(2) = m4.block<1,3>(2,0);
22 
23   std::cout << "*** Step 3 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
24 
25   // demo dynamic-size block()
26   {
27     int rows = 3, cols = 3;
28     m4.block(0,1,3,3).setIdentity();
29     std::cout << "*** Step 4 ***\nm4:\n" << m4 << std::endl;
30   }
31 
32   // demo vector blocks
33   m4.diagonal().block(1,2).setOnes();
34   std::cout << "*** Step 5 ***\nm4.diagonal():\n" << m4.diagonal() << std::endl;
35   std::cout << "m4.diagonal().start(3)\n" << m4.diagonal().start(3) << std::endl;
36 
37   // demo coeff-wise operations
38   m4 = m4.cwise()*m4;
39   m3 = m3.cwise().cos();
40   std::cout << "*** Step 6 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
41 
42   // sums of coefficients
43   std::cout << "*** Step 7 ***\n m4.sum(): " << m4.sum() << std::endl;
44   std::cout << "m4.col(2).sum(): " << m4.col(2).sum() << std::endl;
45   std::cout << "m4.colwise().sum():\n" << m4.colwise().sum() << std::endl;
46   std::cout << "m4.rowwise().sum():\n" << m4.rowwise().sum() << std::endl;
47 
48   // demo intelligent auto-evaluation
49   m4 = m4 * m4; // auto-evaluates so no aliasing problem (performance penalty is low)
50   Eigen::Matrix4f other = (m4 * m4).lazy(); // forces lazy evaluation
51   m4 = m4 + m4; // here Eigen goes for lazy evaluation, as with most expressions
52   m4 = -m4 + m4 + 5 * m4; // same here, Eigen chooses lazy evaluation for all that.
53   m4 = m4 * (m4 + m4); // here Eigen chooses to first evaluate m4 + m4 into a temporary.
54                        // indeed, here it is an optimization to cache this intermediate result.
55   m3 = m3 * m4.block<3,3>(1,1); // here Eigen chooses NOT to evaluate block() into a temporary
56     // because accessing coefficients of that block expression is not more costly than accessing
57     // coefficients of a plain matrix.
58   m4 = m4 * m4.transpose(); // same here, lazy evaluation of the transpose.
59   m4 = m4 * m4.transpose().eval(); // forces immediate evaluation of the transpose
60 
61   std::cout << "*** Step 8 ***\nm3:\n" << m3 << "\nm4:\n" << m4 << std::endl;
62 }
63