1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_AUTODIFF_JACOBIAN_H 11 #define EIGEN_AUTODIFF_JACOBIAN_H 12 13 namespace Eigen 14 { 15 16 template<typename Functor> class AutoDiffJacobian : public Functor 17 { 18 public: 19 AutoDiffJacobian() : Functor() {} 20 AutoDiffJacobian(const Functor& f) : Functor(f) {} 21 22 // forward constructors 23 #if EIGEN_HAS_VARIADIC_TEMPLATES 24 template<typename... T> 25 AutoDiffJacobian(const T& ...Values) : Functor(Values...) {} 26 #else 27 template<typename T0> 28 AutoDiffJacobian(const T0& a0) : Functor(a0) {} 29 template<typename T0, typename T1> 30 AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {} 31 template<typename T0, typename T1, typename T2> 32 AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {} 33 #endif 34 35 typedef typename Functor::InputType InputType; 36 typedef typename Functor::ValueType ValueType; 37 typedef typename ValueType::Scalar Scalar; 38 39 enum { 40 InputsAtCompileTime = InputType::RowsAtCompileTime, 41 ValuesAtCompileTime = ValueType::RowsAtCompileTime 42 }; 43 44 typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; 45 typedef typename JacobianType::Index Index; 46 47 typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType; 48 typedef AutoDiffScalar<DerivativeType> ActiveScalar; 49 50 typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; 51 typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; 52 53 #if EIGEN_HAS_VARIADIC_TEMPLATES 54 // Some compilers don't accept variadic parameters after a default parameter, 55 // i.e., we can't just write _jac=0 but we need to overload operator(): 56 EIGEN_STRONG_INLINE 57 void operator() (const InputType& x, ValueType* v) const 58 { 59 this->operator()(x, v, 0); 60 } 61 template<typename... ParamsType> 62 void operator() (const InputType& x, ValueType* v, JacobianType* _jac, 63 const ParamsType&... Params) const 64 #else 65 void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const 66 #endif 67 { 68 eigen_assert(v!=0); 69 70 if (!_jac) 71 { 72 #if EIGEN_HAS_VARIADIC_TEMPLATES 73 Functor::operator()(x, v, Params...); 74 #else 75 Functor::operator()(x, v); 76 #endif 77 return; 78 } 79 80 JacobianType& jac = *_jac; 81 82 ActiveInput ax = x.template cast<ActiveScalar>(); 83 ActiveValue av(jac.rows()); 84 85 if(InputsAtCompileTime==Dynamic) 86 for (Index j=0; j<jac.rows(); j++) 87 av[j].derivatives().resize(x.rows()); 88 89 for (Index i=0; i<jac.cols(); i++) 90 ax[i].derivatives() = DerivativeType::Unit(x.rows(),i); 91 92 #if EIGEN_HAS_VARIADIC_TEMPLATES 93 Functor::operator()(ax, &av, Params...); 94 #else 95 Functor::operator()(ax, &av); 96 #endif 97 98 for (Index i=0; i<jac.rows(); i++) 99 { 100 (*v)[i] = av[i].value(); 101 jac.row(i) = av[i].derivatives(); 102 } 103 } 104 }; 105 106 } 107 108 #endif // EIGEN_AUTODIFF_JACOBIAN_H 109