1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_MATRIX_SQUARE_ROOT
11 #define EIGEN_MATRIX_SQUARE_ROOT
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // pre:  T.block(i,i,2,2) has complex conjugate eigenvalues
18 // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
19 template <typename MatrixType, typename ResultType>
20 void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
21 {
22   // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
23   //       in EigenSolver. If we expose it, we could call it directly from here.
24   typedef typename traits<MatrixType>::Scalar Scalar;
25   Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
26   EigenSolver<Matrix<Scalar,2,2> > es(block);
27   sqrtT.template block<2,2>(i,i)
28     = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
29 }
30 
31 // pre:  block structure of T is such that (i,j) is a 1x1 block,
32 //       all blocks of sqrtT to left of and below (i,j) are correct
33 // post: sqrtT(i,j) has the correct value
34 template <typename MatrixType, typename ResultType>
35 void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
36 {
37   typedef typename traits<MatrixType>::Scalar Scalar;
38   Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
39   sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
40 }
41 
42 // similar to compute1x1offDiagonalBlock()
43 template <typename MatrixType, typename ResultType>
44 void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
45 {
46   typedef typename traits<MatrixType>::Scalar Scalar;
47   Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
48   if (j-i > 1)
49     rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
50   Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
51   A += sqrtT.template block<2,2>(j,j).transpose();
52   sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
53 }
54 
55 // similar to compute1x1offDiagonalBlock()
56 template <typename MatrixType, typename ResultType>
57 void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
58 {
59   typedef typename traits<MatrixType>::Scalar Scalar;
60   Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
61   if (j-i > 2)
62     rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
63   Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
64   A += sqrtT.template block<2,2>(i,i);
65   sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
66 }
67 
68 // solves the equation A X + X B = C where all matrices are 2-by-2
69 template <typename MatrixType>
70 void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
71 {
72   typedef typename traits<MatrixType>::Scalar Scalar;
73   Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
74   coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
75   coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
76   coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
77   coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
78   coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
79   coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
80   coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
81   coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
82   coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
83   coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
84   coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
85   coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
86 
87   Matrix<Scalar,4,1> rhs;
88   rhs.coeffRef(0) = C.coeff(0,0);
89   rhs.coeffRef(1) = C.coeff(0,1);
90   rhs.coeffRef(2) = C.coeff(1,0);
91   rhs.coeffRef(3) = C.coeff(1,1);
92 
93   Matrix<Scalar,4,1> result;
94   result = coeffMatrix.fullPivLu().solve(rhs);
95 
96   X.coeffRef(0,0) = result.coeff(0);
97   X.coeffRef(0,1) = result.coeff(1);
98   X.coeffRef(1,0) = result.coeff(2);
99   X.coeffRef(1,1) = result.coeff(3);
100 }
101 
102 // similar to compute1x1offDiagonalBlock()
103 template <typename MatrixType, typename ResultType>
104 void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
105 {
106   typedef typename traits<MatrixType>::Scalar Scalar;
107   Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
108   Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
109   Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
110   if (j-i > 2)
111     C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
112   Matrix<Scalar,2,2> X;
113   matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
114   sqrtT.template block<2,2>(i,j) = X;
115 }
116 
117 // pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
118 // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
119 template <typename MatrixType, typename ResultType>
120 void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
121 {
122   using std::sqrt;
123   typedef typename MatrixType::Index Index;
124   const Index size = T.rows();
125   for (Index i = 0; i < size; i++) {
126     if (i == size - 1 || T.coeff(i+1, i) == 0) {
127       eigen_assert(T(i,i) >= 0);
128       sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
129     }
130     else {
131       matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
132       ++i;
133     }
134   }
135 }
136 
137 // pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
138 // post: sqrtT is the square root of T.
139 template <typename MatrixType, typename ResultType>
140 void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
141 {
142   typedef typename MatrixType::Index Index;
143   const Index size = T.rows();
144   for (Index j = 1; j < size; j++) {
145       if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block
146 	continue;
147     for (Index i = j-1; i >= 0; i--) {
148       if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block
149 	continue;
150       bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
151       bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
152       if (iBlockIs2x2 && jBlockIs2x2)
153         matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
154       else if (iBlockIs2x2 && !jBlockIs2x2)
155         matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
156       else if (!iBlockIs2x2 && jBlockIs2x2)
157         matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
158       else if (!iBlockIs2x2 && !jBlockIs2x2)
159         matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
160     }
161   }
162 }
163 
164 } // end of namespace internal
165 
166 /** \ingroup MatrixFunctions_Module
167   * \brief Compute matrix square root of quasi-triangular matrix.
168   *
169   * \tparam  MatrixType  type of \p arg, the argument of matrix square root,
170   *                      expected to be an instantiation of the Matrix class template.
171   * \tparam  ResultType  type of \p result, where result is to be stored.
172   * \param[in]  arg      argument of matrix square root.
173   * \param[out] result   matrix square root of upper Hessenberg part of \p arg.
174   *
175   * This function computes the square root of the upper quasi-triangular matrix stored in the upper
176   * Hessenberg part of \p arg.  Only the upper Hessenberg part of \p result is updated, the rest is
177   * not touched.  See MatrixBase::sqrt() for details on how this computation is implemented.
178   *
179   * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
180   */
181 template <typename MatrixType, typename ResultType>
182 void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
183 {
184   eigen_assert(arg.rows() == arg.cols());
185   result.resize(arg.rows(), arg.cols());
186   internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
187   internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
188 }
189 
190 
191 /** \ingroup MatrixFunctions_Module
192   * \brief Compute matrix square root of triangular matrix.
193   *
194   * \tparam  MatrixType  type of \p arg, the argument of matrix square root,
195   *                      expected to be an instantiation of the Matrix class template.
196   * \tparam  ResultType  type of \p result, where result is to be stored.
197   * \param[in]  arg      argument of matrix square root.
198   * \param[out] result   matrix square root of upper triangular part of \p arg.
199   *
200   * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
201   * touched.  See MatrixBase::sqrt() for details on how this computation is implemented.
202   *
203   * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
204   */
205 template <typename MatrixType, typename ResultType>
206 void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
207 {
208   using std::sqrt;
209   typedef typename MatrixType::Index Index;
210       typedef typename MatrixType::Scalar Scalar;
211 
212   eigen_assert(arg.rows() == arg.cols());
213 
214   // Compute square root of arg and store it in upper triangular part of result
215   // This uses that the square root of triangular matrices can be computed directly.
216   result.resize(arg.rows(), arg.cols());
217   for (Index i = 0; i < arg.rows(); i++) {
218     result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
219   }
220   for (Index j = 1; j < arg.cols(); j++) {
221     for (Index i = j-1; i >= 0; i--) {
222       // if i = j-1, then segment has length 0 so tmp = 0
223       Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
224       // denominator may be zero if original matrix is singular
225       result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
226     }
227   }
228 }
229 
230 
231 namespace internal {
232 
233 /** \ingroup MatrixFunctions_Module
234   * \brief Helper struct for computing matrix square roots of general matrices.
235   * \tparam  MatrixType  type of the argument of the matrix square root,
236   *                      expected to be an instantiation of the Matrix class template.
237   *
238   * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
239   */
240 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
241 struct matrix_sqrt_compute
242 {
243   /** \brief Compute the matrix square root
244     *
245     * \param[in]  arg     matrix whose square root is to be computed.
246     * \param[out] result  square root of \p arg.
247     *
248     * See MatrixBase::sqrt() for details on how this computation is implemented.
249     */
250   template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
251 };
252 
253 
254 // ********** Partial specialization for real matrices **********
255 
256 template <typename MatrixType>
257 struct matrix_sqrt_compute<MatrixType, 0>
258 {
259   template <typename ResultType>
260   static void run(const MatrixType &arg, ResultType &result)
261   {
262     eigen_assert(arg.rows() == arg.cols());
263 
264     // Compute Schur decomposition of arg
265     const RealSchur<MatrixType> schurOfA(arg);
266     const MatrixType& T = schurOfA.matrixT();
267     const MatrixType& U = schurOfA.matrixU();
268 
269     // Compute square root of T
270     MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
271     matrix_sqrt_quasi_triangular(T, sqrtT);
272 
273     // Compute square root of arg
274     result = U * sqrtT * U.adjoint();
275   }
276 };
277 
278 
279 // ********** Partial specialization for complex matrices **********
280 
281 template <typename MatrixType>
282 struct matrix_sqrt_compute<MatrixType, 1>
283 {
284   template <typename ResultType>
285   static void run(const MatrixType &arg, ResultType &result)
286   {
287     eigen_assert(arg.rows() == arg.cols());
288 
289     // Compute Schur decomposition of arg
290     const ComplexSchur<MatrixType> schurOfA(arg);
291     const MatrixType& T = schurOfA.matrixT();
292     const MatrixType& U = schurOfA.matrixU();
293 
294     // Compute square root of T
295     MatrixType sqrtT;
296     matrix_sqrt_triangular(T, sqrtT);
297 
298     // Compute square root of arg
299     result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
300   }
301 };
302 
303 } // end namespace internal
304 
305 /** \ingroup MatrixFunctions_Module
306   *
307   * \brief Proxy for the matrix square root of some matrix (expression).
308   *
309   * \tparam Derived  Type of the argument to the matrix square root.
310   *
311   * This class holds the argument to the matrix square root until it
312   * is assigned or evaluated for some other reason (so the argument
313   * should not be changed in the meantime). It is the return type of
314   * MatrixBase::sqrt() and most of the time this is the only way it is
315   * used.
316   */
317 template<typename Derived> class MatrixSquareRootReturnValue
318 : public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
319 {
320   protected:
321     typedef typename Derived::Index Index;
322     typedef typename internal::ref_selector<Derived>::type DerivedNested;
323 
324   public:
325     /** \brief Constructor.
326       *
327       * \param[in]  src  %Matrix (expression) forming the argument of the
328       * matrix square root.
329       */
330     explicit MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
331 
332     /** \brief Compute the matrix square root.
333       *
334       * \param[out]  result  the matrix square root of \p src in the
335       * constructor.
336       */
337     template <typename ResultType>
338     inline void evalTo(ResultType& result) const
339     {
340       typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
341       typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
342       DerivedEvalType tmp(m_src);
343       internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
344     }
345 
346     Index rows() const { return m_src.rows(); }
347     Index cols() const { return m_src.cols(); }
348 
349   protected:
350     const DerivedNested m_src;
351 };
352 
353 namespace internal {
354 template<typename Derived>
355 struct traits<MatrixSquareRootReturnValue<Derived> >
356 {
357   typedef typename Derived::PlainObject ReturnType;
358 };
359 }
360 
361 template <typename Derived>
362 const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
363 {
364   eigen_assert(rows() == cols());
365   return MatrixSquareRootReturnValue<Derived>(derived());
366 }
367 
368 } // end namespace Eigen
369 
370 #endif // EIGEN_MATRIX_FUNCTION
371