1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Mark Borgerding mark a borgerding net
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/FFT>
12 
13 template <typename T>
14 std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
15 
16 using namespace std;
17 using namespace Eigen;
18 
19 
20 template < typename T>
21 complex<long double>  promote(complex<T> x) { return complex<long double>((long double)x.real(),(long double)x.imag()); }
22 
23 complex<long double>  promote(float x) { return complex<long double>((long double)x); }
24 complex<long double>  promote(double x) { return complex<long double>((long double)x); }
25 complex<long double>  promote(long double x) { return complex<long double>((long double)x); }
26 
27 
28     template <typename VT1,typename VT2>
29     long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
30     {
31         long double totalpower=0;
32         long double difpower=0;
33         long double pi = acos((long double)-1 );
34         for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
35             complex<long double> acc = 0;
36             long double phinc = (long double)(-2.)*k0* pi / timebuf.size();
37             for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
38                 acc +=  promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
39             }
40             totalpower += numext::abs2(acc);
41             complex<long double> x = promote(fftbuf[k0]);
42             complex<long double> dif = acc - x;
43             difpower += numext::abs2(dif);
44             //cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(numext::abs2(dif)) << endl;
45         }
46         cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
47         return sqrt(difpower/totalpower);
48     }
49 
50     template <typename VT1,typename VT2>
51     long double dif_rmse( const VT1 buf1,const VT2 buf2)
52     {
53         long double totalpower=0;
54         long double difpower=0;
55         size_t n = (min)( buf1.size(),buf2.size() );
56         for (size_t k=0;k<n;++k) {
57             totalpower += (long double)((numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2);
58             difpower += (long double)(numext::abs2(buf1[k] - buf2[k]));
59         }
60         return sqrt(difpower/totalpower);
61     }
62 
63 enum { StdVectorContainer, EigenVectorContainer };
64 
65 template<int Container, typename Scalar> struct VectorType;
66 
67 template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
68 {
69   typedef vector<Scalar> type;
70 };
71 
72 template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
73 {
74   typedef Matrix<Scalar,Dynamic,1> type;
75 };
76 
77 template <int Container, typename T>
78 void test_scalar_generic(int nfft)
79 {
80     typedef typename FFT<T>::Complex Complex;
81     typedef typename FFT<T>::Scalar Scalar;
82     typedef typename VectorType<Container,Scalar>::type ScalarVector;
83     typedef typename VectorType<Container,Complex>::type ComplexVector;
84 
85     FFT<T> fft;
86     ScalarVector tbuf(nfft);
87     ComplexVector freqBuf;
88     for (int k=0;k<nfft;++k)
89         tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
90 
91     // make sure it DOESN'T give the right full spectrum answer
92     // if we've asked for half-spectrum
93     fft.SetFlag(fft.HalfSpectrum );
94     fft.fwd( freqBuf,tbuf);
95     VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
96     VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>()  );// gross check
97 
98     fft.ClearFlag(fft.HalfSpectrum );
99     fft.fwd( freqBuf,tbuf);
100     VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
101     VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>()  );// gross check
102 
103     if (nfft&1)
104         return; // odd FFTs get the wrong size inverse FFT
105 
106     ScalarVector tbuf2;
107     fft.inv( tbuf2 , freqBuf);
108     VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>()  );// gross check
109 
110 
111     // verify that the Unscaled flag takes effect
112     ScalarVector tbuf3;
113     fft.SetFlag(fft.Unscaled);
114 
115     fft.inv( tbuf3 , freqBuf);
116 
117     for (int k=0;k<nfft;++k)
118         tbuf3[k] *= T(1./nfft);
119 
120 
121     //for (size_t i=0;i<(size_t) tbuf.size();++i)
122     //    cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) <<  endl;
123 
124     VERIFY( T(dif_rmse(tbuf,tbuf3)) < test_precision<T>()  );// gross check
125 
126     // verify that ClearFlag works
127     fft.ClearFlag(fft.Unscaled);
128     fft.inv( tbuf2 , freqBuf);
129     VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>()  );// gross check
130 }
131 
132 template <typename T>
133 void test_scalar(int nfft)
134 {
135   test_scalar_generic<StdVectorContainer,T>(nfft);
136   //test_scalar_generic<EigenVectorContainer,T>(nfft);
137 }
138 
139 
140 template <int Container, typename T>
141 void test_complex_generic(int nfft)
142 {
143     typedef typename FFT<T>::Complex Complex;
144     typedef typename VectorType<Container,Complex>::type ComplexVector;
145 
146     FFT<T> fft;
147 
148     ComplexVector inbuf(nfft);
149     ComplexVector outbuf;
150     ComplexVector buf3;
151     for (int k=0;k<nfft;++k)
152         inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
153     fft.fwd( outbuf , inbuf);
154 
155     VERIFY( T(fft_rmse(outbuf,inbuf)) < test_precision<T>()  );// gross check
156     fft.inv( buf3 , outbuf);
157 
158     VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>()  );// gross check
159 
160     // verify that the Unscaled flag takes effect
161     ComplexVector buf4;
162     fft.SetFlag(fft.Unscaled);
163     fft.inv( buf4 , outbuf);
164     for (int k=0;k<nfft;++k)
165         buf4[k] *= T(1./nfft);
166     VERIFY( T(dif_rmse(inbuf,buf4)) < test_precision<T>()  );// gross check
167 
168     // verify that ClearFlag works
169     fft.ClearFlag(fft.Unscaled);
170     fft.inv( buf3 , outbuf);
171     VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>()  );// gross check
172 }
173 
174 template <typename T>
175 void test_complex(int nfft)
176 {
177   test_complex_generic<StdVectorContainer,T>(nfft);
178   test_complex_generic<EigenVectorContainer,T>(nfft);
179 }
180 /*
181 template <typename T,int nrows,int ncols>
182 void test_complex2d()
183 {
184     typedef typename Eigen::FFT<T>::Complex Complex;
185     FFT<T> fft;
186     Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
187 
188     src = Eigen::Matrix<Complex,nrows,ncols>::Random();
189     //src =  Eigen::Matrix<Complex,nrows,ncols>::Identity();
190 
191     for (int k=0;k<ncols;k++) {
192         Eigen::Matrix<Complex,nrows,1> tmpOut;
193         fft.fwd( tmpOut,src.col(k) );
194         dst2.col(k) = tmpOut;
195     }
196 
197     for (int k=0;k<nrows;k++) {
198         Eigen::Matrix<Complex,1,ncols> tmpOut;
199         fft.fwd( tmpOut,  dst2.row(k) );
200         dst2.row(k) = tmpOut;
201     }
202 
203     fft.fwd2(dst.data(),src.data(),ncols,nrows);
204     fft.inv2(src2.data(),dst.data(),ncols,nrows);
205     VERIFY( (src-src2).norm() < test_precision<T>() );
206     VERIFY( (dst-dst2).norm() < test_precision<T>() );
207 }
208 */
209 
210 
211 void test_return_by_value(int len)
212 {
213     VectorXf in;
214     VectorXf in1;
215     in.setRandom( len );
216     VectorXcf out1,out2;
217     FFT<float> fft;
218 
219     fft.SetFlag(fft.HalfSpectrum );
220 
221     fft.fwd(out1,in);
222     out2 = fft.fwd(in);
223     VERIFY( (out1-out2).norm() < test_precision<float>() );
224     in1 = fft.inv(out1);
225     VERIFY( (in1-in).norm() < test_precision<float>() );
226 }
227 
228 void test_FFTW()
229 {
230   CALL_SUBTEST( test_return_by_value(32) );
231   //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
232   //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
233   CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
234   CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
235   CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
236   CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
237   CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
238   CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
239   CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
240 
241   CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
242   CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
243   CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
244   CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
245   CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
246 
247   #ifdef EIGEN_HAS_FFTWL
248   CALL_SUBTEST( test_complex<long double>(32) );
249   CALL_SUBTEST( test_complex<long double>(256) );
250   CALL_SUBTEST( test_complex<long double>(3*8) );
251   CALL_SUBTEST( test_complex<long double>(5*32) );
252   CALL_SUBTEST( test_complex<long double>(2*3*4) );
253   CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
254   CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
255 
256   CALL_SUBTEST( test_scalar<long double>(32) );
257   CALL_SUBTEST( test_scalar<long double>(45) );
258   CALL_SUBTEST( test_scalar<long double>(50) );
259   CALL_SUBTEST( test_scalar<long double>(256) );
260   CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
261   #endif
262 }
263