1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
5 
6 #include <stdio.h>
7 
8 #include "main.h"
9 #include <unsupported/Eigen/NonLinearOptimization>
10 
11 // This disables some useless Warnings on MSVC.
12 // It is intended to be done for this test only.
13 #include <Eigen/src/Core/util/DisableStupidWarnings.h>
14 
15 // tolerance for chekcing number of iterations
16 #define LM_EVAL_COUNT_TOL 4/3
17 
18 int fcn_chkder(const VectorXd &x, VectorXd &fvec, MatrixXd &fjac, int iflag)
19 {
20     /*      subroutine fcn for chkder example. */
21 
22     int i;
23     assert(15 ==  fvec.size());
24     assert(3 ==  x.size());
25     double tmp1, tmp2, tmp3, tmp4;
26     static const double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
27         3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
28 
29 
30     if (iflag == 0)
31         return 0;
32 
33     if (iflag != 2)
34         for (i=0; i<15; i++) {
35             tmp1 = i+1;
36             tmp2 = 16-i-1;
37             tmp3 = tmp1;
38             if (i >= 8) tmp3 = tmp2;
39             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
40         }
41     else {
42         for (i = 0; i < 15; i++) {
43             tmp1 = i+1;
44             tmp2 = 16-i-1;
45 
46             /* error introduced into next statement for illustration. */
47             /* corrected statement should read    tmp3 = tmp1 . */
48 
49             tmp3 = tmp2;
50             if (i >= 8) tmp3 = tmp2;
51             tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4=tmp4*tmp4;
52             fjac(i,0) = -1.;
53             fjac(i,1) = tmp1*tmp2/tmp4;
54             fjac(i,2) = tmp1*tmp3/tmp4;
55         }
56     }
57     return 0;
58 }
59 
60 
61 void testChkder()
62 {
63   const int m=15, n=3;
64   VectorXd x(n), fvec(m), xp, fvecp(m), err;
65   MatrixXd fjac(m,n);
66   VectorXi ipvt;
67 
68   /*      the following values should be suitable for */
69   /*      checking the jacobian matrix. */
70   x << 9.2e-1, 1.3e-1, 5.4e-1;
71 
72   internal::chkder(x, fvec, fjac, xp, fvecp, 1, err);
73   fcn_chkder(x, fvec, fjac, 1);
74   fcn_chkder(x, fvec, fjac, 2);
75   fcn_chkder(xp, fvecp, fjac, 1);
76   internal::chkder(x, fvec, fjac, xp, fvecp, 2, err);
77 
78   fvecp -= fvec;
79 
80   // check those
81   VectorXd fvec_ref(m), fvecp_ref(m), err_ref(m);
82   fvec_ref <<
83       -1.181606, -1.429655, -1.606344,
84       -1.745269, -1.840654, -1.921586,
85       -1.984141, -2.022537, -2.468977,
86       -2.827562, -3.473582, -4.437612,
87       -6.047662, -9.267761, -18.91806;
88   fvecp_ref <<
89       -7.724666e-09, -3.432406e-09, -2.034843e-10,
90       2.313685e-09,  4.331078e-09,  5.984096e-09,
91       7.363281e-09,   8.53147e-09,  1.488591e-08,
92       2.33585e-08,  3.522012e-08,  5.301255e-08,
93       8.26666e-08,  1.419747e-07,   3.19899e-07;
94   err_ref <<
95       0.1141397,  0.09943516,  0.09674474,
96       0.09980447,  0.1073116, 0.1220445,
97       0.1526814, 1, 1,
98       1, 1, 1,
99       1, 1, 1;
100 
101   VERIFY_IS_APPROX(fvec, fvec_ref);
102   VERIFY_IS_APPROX(fvecp, fvecp_ref);
103   VERIFY_IS_APPROX(err, err_ref);
104 }
105 
106 // Generic functor
107 template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
108 struct Functor
109 {
110   typedef _Scalar Scalar;
111   enum {
112     InputsAtCompileTime = NX,
113     ValuesAtCompileTime = NY
114   };
115   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
116   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
117   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
118 
119   const int m_inputs, m_values;
120 
121   Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
122   Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
123 
124   int inputs() const { return m_inputs; }
125   int values() const { return m_values; }
126 
127   // you should define that in the subclass :
128 //  void operator() (const InputType& x, ValueType* v, JacobianType* _j=0) const;
129 };
130 
131 struct lmder_functor : Functor<double>
132 {
133     lmder_functor(void): Functor<double>(3,15) {}
134     int operator()(const VectorXd &x, VectorXd &fvec) const
135     {
136         double tmp1, tmp2, tmp3;
137         static const double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
138             3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
139 
140         for (int i = 0; i < values(); i++)
141         {
142             tmp1 = i+1;
143             tmp2 = 16 - i - 1;
144             tmp3 = (i>=8)? tmp2 : tmp1;
145             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
146         }
147         return 0;
148     }
149 
150     int df(const VectorXd &x, MatrixXd &fjac) const
151     {
152         double tmp1, tmp2, tmp3, tmp4;
153         for (int i = 0; i < values(); i++)
154         {
155             tmp1 = i+1;
156             tmp2 = 16 - i - 1;
157             tmp3 = (i>=8)? tmp2 : tmp1;
158             tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
159             fjac(i,0) = -1;
160             fjac(i,1) = tmp1*tmp2/tmp4;
161             fjac(i,2) = tmp1*tmp3/tmp4;
162         }
163         return 0;
164     }
165 };
166 
167 void testLmder1()
168 {
169   int n=3, info;
170 
171   VectorXd x;
172 
173   /* the following starting values provide a rough fit. */
174   x.setConstant(n, 1.);
175 
176   // do the computation
177   lmder_functor functor;
178   LevenbergMarquardt<lmder_functor> lm(functor);
179   info = lm.lmder1(x);
180 
181   // check return value
182   VERIFY_IS_EQUAL(info, 1);
183   VERIFY_IS_EQUAL(lm.nfev, 6);
184   VERIFY_IS_EQUAL(lm.njev, 5);
185 
186   // check norm
187   VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596);
188 
189   // check x
190   VectorXd x_ref(n);
191   x_ref << 0.08241058, 1.133037, 2.343695;
192   VERIFY_IS_APPROX(x, x_ref);
193 }
194 
195 void testLmder()
196 {
197   const int m=15, n=3;
198   int info;
199   double fnorm, covfac;
200   VectorXd x;
201 
202   /* the following starting values provide a rough fit. */
203   x.setConstant(n, 1.);
204 
205   // do the computation
206   lmder_functor functor;
207   LevenbergMarquardt<lmder_functor> lm(functor);
208   info = lm.minimize(x);
209 
210   // check return values
211   VERIFY_IS_EQUAL(info, 1);
212   VERIFY_IS_EQUAL(lm.nfev, 6);
213   VERIFY_IS_EQUAL(lm.njev, 5);
214 
215   // check norm
216   fnorm = lm.fvec.blueNorm();
217   VERIFY_IS_APPROX(fnorm, 0.09063596);
218 
219   // check x
220   VectorXd x_ref(n);
221   x_ref << 0.08241058, 1.133037, 2.343695;
222   VERIFY_IS_APPROX(x, x_ref);
223 
224   // check covariance
225   covfac = fnorm*fnorm/(m-n);
226   internal::covar(lm.fjac, lm.permutation.indices()); // TODO : move this as a function of lm
227 
228   MatrixXd cov_ref(n,n);
229   cov_ref <<
230       0.0001531202,   0.002869941,  -0.002656662,
231       0.002869941,    0.09480935,   -0.09098995,
232       -0.002656662,   -0.09098995,    0.08778727;
233 
234 //  std::cout << fjac*covfac << std::endl;
235 
236   MatrixXd cov;
237   cov =  covfac*lm.fjac.topLeftCorner<n,n>();
238   VERIFY_IS_APPROX( cov, cov_ref);
239   // TODO: why isn't this allowed ? :
240   // VERIFY_IS_APPROX( covfac*fjac.topLeftCorner<n,n>() , cov_ref);
241 }
242 
243 struct hybrj_functor : Functor<double>
244 {
245     hybrj_functor(void) : Functor<double>(9,9) {}
246 
247     int operator()(const VectorXd &x, VectorXd &fvec)
248     {
249         double temp, temp1, temp2;
250         const VectorXd::Index n = x.size();
251         assert(fvec.size()==n);
252         for (VectorXd::Index k = 0; k < n; k++)
253         {
254             temp = (3. - 2.*x[k])*x[k];
255             temp1 = 0.;
256             if (k) temp1 = x[k-1];
257             temp2 = 0.;
258             if (k != n-1) temp2 = x[k+1];
259             fvec[k] = temp - temp1 - 2.*temp2 + 1.;
260         }
261         return 0;
262     }
263     int df(const VectorXd &x, MatrixXd &fjac)
264     {
265         const VectorXd::Index n = x.size();
266         assert(fjac.rows()==n);
267         assert(fjac.cols()==n);
268         for (VectorXd::Index k = 0; k < n; k++)
269         {
270             for (VectorXd::Index j = 0; j < n; j++)
271                 fjac(k,j) = 0.;
272             fjac(k,k) = 3.- 4.*x[k];
273             if (k) fjac(k,k-1) = -1.;
274             if (k != n-1) fjac(k,k+1) = -2.;
275         }
276         return 0;
277     }
278 };
279 
280 
281 void testHybrj1()
282 {
283   const int n=9;
284   int info;
285   VectorXd x(n);
286 
287   /* the following starting values provide a rough fit. */
288   x.setConstant(n, -1.);
289 
290   // do the computation
291   hybrj_functor functor;
292   HybridNonLinearSolver<hybrj_functor> solver(functor);
293   info = solver.hybrj1(x);
294 
295   // check return value
296   VERIFY_IS_EQUAL(info, 1);
297   VERIFY_IS_EQUAL(solver.nfev, 11);
298   VERIFY_IS_EQUAL(solver.njev, 1);
299 
300   // check norm
301   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
302 
303 
304 // check x
305   VectorXd x_ref(n);
306   x_ref <<
307      -0.5706545,    -0.6816283,    -0.7017325,
308      -0.7042129,     -0.701369,    -0.6918656,
309      -0.665792,    -0.5960342,    -0.4164121;
310   VERIFY_IS_APPROX(x, x_ref);
311 }
312 
313 void testHybrj()
314 {
315   const int n=9;
316   int info;
317   VectorXd x(n);
318 
319   /* the following starting values provide a rough fit. */
320   x.setConstant(n, -1.);
321 
322 
323   // do the computation
324   hybrj_functor functor;
325   HybridNonLinearSolver<hybrj_functor> solver(functor);
326   solver.diag.setConstant(n, 1.);
327   solver.useExternalScaling = true;
328   info = solver.solve(x);
329 
330   // check return value
331   VERIFY_IS_EQUAL(info, 1);
332   VERIFY_IS_EQUAL(solver.nfev, 11);
333   VERIFY_IS_EQUAL(solver.njev, 1);
334 
335   // check norm
336   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
337 
338 
339 // check x
340   VectorXd x_ref(n);
341   x_ref <<
342      -0.5706545,    -0.6816283,    -0.7017325,
343      -0.7042129,     -0.701369,    -0.6918656,
344      -0.665792,    -0.5960342,    -0.4164121;
345   VERIFY_IS_APPROX(x, x_ref);
346 
347 }
348 
349 struct hybrd_functor : Functor<double>
350 {
351     hybrd_functor(void) : Functor<double>(9,9) {}
352     int operator()(const VectorXd &x, VectorXd &fvec) const
353     {
354         double temp, temp1, temp2;
355         const VectorXd::Index n = x.size();
356 
357         assert(fvec.size()==n);
358         for (VectorXd::Index k=0; k < n; k++)
359         {
360             temp = (3. - 2.*x[k])*x[k];
361             temp1 = 0.;
362             if (k) temp1 = x[k-1];
363             temp2 = 0.;
364             if (k != n-1) temp2 = x[k+1];
365             fvec[k] = temp - temp1 - 2.*temp2 + 1.;
366         }
367         return 0;
368     }
369 };
370 
371 void testHybrd1()
372 {
373   int n=9, info;
374   VectorXd x(n);
375 
376   /* the following starting values provide a rough solution. */
377   x.setConstant(n, -1.);
378 
379   // do the computation
380   hybrd_functor functor;
381   HybridNonLinearSolver<hybrd_functor> solver(functor);
382   info = solver.hybrd1(x);
383 
384   // check return value
385   VERIFY_IS_EQUAL(info, 1);
386   VERIFY_IS_EQUAL(solver.nfev, 20);
387 
388   // check norm
389   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
390 
391   // check x
392   VectorXd x_ref(n);
393   x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121;
394   VERIFY_IS_APPROX(x, x_ref);
395 }
396 
397 void testHybrd()
398 {
399   const int n=9;
400   int info;
401   VectorXd x;
402 
403   /* the following starting values provide a rough fit. */
404   x.setConstant(n, -1.);
405 
406   // do the computation
407   hybrd_functor functor;
408   HybridNonLinearSolver<hybrd_functor> solver(functor);
409   solver.parameters.nb_of_subdiagonals = 1;
410   solver.parameters.nb_of_superdiagonals = 1;
411   solver.diag.setConstant(n, 1.);
412   solver.useExternalScaling = true;
413   info = solver.solveNumericalDiff(x);
414 
415   // check return value
416   VERIFY_IS_EQUAL(info, 1);
417   VERIFY_IS_EQUAL(solver.nfev, 14);
418 
419   // check norm
420   VERIFY_IS_APPROX(solver.fvec.blueNorm(), 1.192636e-08);
421 
422   // check x
423   VectorXd x_ref(n);
424   x_ref <<
425       -0.5706545,    -0.6816283,    -0.7017325,
426       -0.7042129,     -0.701369,    -0.6918656,
427       -0.665792,    -0.5960342,    -0.4164121;
428   VERIFY_IS_APPROX(x, x_ref);
429 }
430 
431 struct lmstr_functor : Functor<double>
432 {
433     lmstr_functor(void) : Functor<double>(3,15) {}
434     int operator()(const VectorXd &x, VectorXd &fvec)
435     {
436         /*  subroutine fcn for lmstr1 example. */
437         double tmp1, tmp2, tmp3;
438         static const double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
439             3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
440 
441         assert(15==fvec.size());
442         assert(3==x.size());
443 
444         for (int i=0; i<15; i++)
445         {
446             tmp1 = i+1;
447             tmp2 = 16 - i - 1;
448             tmp3 = (i>=8)? tmp2 : tmp1;
449             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
450         }
451         return 0;
452     }
453     int df(const VectorXd &x, VectorXd &jac_row, VectorXd::Index rownb)
454     {
455         assert(x.size()==3);
456         assert(jac_row.size()==x.size());
457         double tmp1, tmp2, tmp3, tmp4;
458 
459         VectorXd::Index i = rownb-2;
460         tmp1 = i+1;
461         tmp2 = 16 - i - 1;
462         tmp3 = (i>=8)? tmp2 : tmp1;
463         tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4;
464         jac_row[0] = -1;
465         jac_row[1] = tmp1*tmp2/tmp4;
466         jac_row[2] = tmp1*tmp3/tmp4;
467         return 0;
468     }
469 };
470 
471 void testLmstr1()
472 {
473   const int n=3;
474   int info;
475 
476   VectorXd x(n);
477 
478   /* the following starting values provide a rough fit. */
479   x.setConstant(n, 1.);
480 
481   // do the computation
482   lmstr_functor functor;
483   LevenbergMarquardt<lmstr_functor> lm(functor);
484   info = lm.lmstr1(x);
485 
486   // check return value
487   VERIFY_IS_EQUAL(info, 1);
488   VERIFY_IS_EQUAL(lm.nfev, 6);
489   VERIFY_IS_EQUAL(lm.njev, 5);
490 
491   // check norm
492   VERIFY_IS_APPROX(lm.fvec.blueNorm(), 0.09063596);
493 
494   // check x
495   VectorXd x_ref(n);
496   x_ref << 0.08241058, 1.133037, 2.343695 ;
497   VERIFY_IS_APPROX(x, x_ref);
498 }
499 
500 void testLmstr()
501 {
502   const int n=3;
503   int info;
504   double fnorm;
505   VectorXd x(n);
506 
507   /* the following starting values provide a rough fit. */
508   x.setConstant(n, 1.);
509 
510   // do the computation
511   lmstr_functor functor;
512   LevenbergMarquardt<lmstr_functor> lm(functor);
513   info = lm.minimizeOptimumStorage(x);
514 
515   // check return values
516   VERIFY_IS_EQUAL(info, 1);
517   VERIFY_IS_EQUAL(lm.nfev, 6);
518   VERIFY_IS_EQUAL(lm.njev, 5);
519 
520   // check norm
521   fnorm = lm.fvec.blueNorm();
522   VERIFY_IS_APPROX(fnorm, 0.09063596);
523 
524   // check x
525   VectorXd x_ref(n);
526   x_ref << 0.08241058, 1.133037, 2.343695;
527   VERIFY_IS_APPROX(x, x_ref);
528 
529 }
530 
531 struct lmdif_functor : Functor<double>
532 {
533     lmdif_functor(void) : Functor<double>(3,15) {}
534     int operator()(const VectorXd &x, VectorXd &fvec) const
535     {
536         int i;
537         double tmp1,tmp2,tmp3;
538         static const double y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1,
539             3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0};
540 
541         assert(x.size()==3);
542         assert(fvec.size()==15);
543         for (i=0; i<15; i++)
544         {
545             tmp1 = i+1;
546             tmp2 = 15 - i;
547             tmp3 = tmp1;
548 
549             if (i >= 8) tmp3 = tmp2;
550             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
551         }
552         return 0;
553     }
554 };
555 
556 void testLmdif1()
557 {
558   const int n=3;
559   int info;
560 
561   VectorXd x(n), fvec(15);
562 
563   /* the following starting values provide a rough fit. */
564   x.setConstant(n, 1.);
565 
566   // do the computation
567   lmdif_functor functor;
568   DenseIndex nfev;
569   info = LevenbergMarquardt<lmdif_functor>::lmdif1(functor, x, &nfev);
570 
571   // check return value
572   VERIFY_IS_EQUAL(info, 1);
573   VERIFY_IS_EQUAL(nfev, 26);
574 
575   // check norm
576   functor(x, fvec);
577   VERIFY_IS_APPROX(fvec.blueNorm(), 0.09063596);
578 
579   // check x
580   VectorXd x_ref(n);
581   x_ref << 0.0824106, 1.1330366, 2.3436947;
582   VERIFY_IS_APPROX(x, x_ref);
583 
584 }
585 
586 void testLmdif()
587 {
588   const int m=15, n=3;
589   int info;
590   double fnorm, covfac;
591   VectorXd x(n);
592 
593   /* the following starting values provide a rough fit. */
594   x.setConstant(n, 1.);
595 
596   // do the computation
597   lmdif_functor functor;
598   NumericalDiff<lmdif_functor> numDiff(functor);
599   LevenbergMarquardt<NumericalDiff<lmdif_functor> > lm(numDiff);
600   info = lm.minimize(x);
601 
602   // check return values
603   VERIFY_IS_EQUAL(info, 1);
604   VERIFY_IS_EQUAL(lm.nfev, 26);
605 
606   // check norm
607   fnorm = lm.fvec.blueNorm();
608   VERIFY_IS_APPROX(fnorm, 0.09063596);
609 
610   // check x
611   VectorXd x_ref(n);
612   x_ref << 0.08241058, 1.133037, 2.343695;
613   VERIFY_IS_APPROX(x, x_ref);
614 
615   // check covariance
616   covfac = fnorm*fnorm/(m-n);
617   internal::covar(lm.fjac, lm.permutation.indices()); // TODO : move this as a function of lm
618 
619   MatrixXd cov_ref(n,n);
620   cov_ref <<
621       0.0001531202,   0.002869942,  -0.002656662,
622       0.002869942,    0.09480937,   -0.09098997,
623       -0.002656662,   -0.09098997,    0.08778729;
624 
625 //  std::cout << fjac*covfac << std::endl;
626 
627   MatrixXd cov;
628   cov =  covfac*lm.fjac.topLeftCorner<n,n>();
629   VERIFY_IS_APPROX( cov, cov_ref);
630   // TODO: why isn't this allowed ? :
631   // VERIFY_IS_APPROX( covfac*fjac.topLeftCorner<n,n>() , cov_ref);
632 }
633 
634 struct chwirut2_functor : Functor<double>
635 {
636     chwirut2_functor(void) : Functor<double>(3,54) {}
637     static const double m_x[54];
638     static const double m_y[54];
639     int operator()(const VectorXd &b, VectorXd &fvec)
640     {
641         int i;
642 
643         assert(b.size()==3);
644         assert(fvec.size()==54);
645         for(i=0; i<54; i++) {
646             double x = m_x[i];
647             fvec[i] = exp(-b[0]*x)/(b[1]+b[2]*x) - m_y[i];
648         }
649         return 0;
650     }
651     int df(const VectorXd &b, MatrixXd &fjac)
652     {
653         assert(b.size()==3);
654         assert(fjac.rows()==54);
655         assert(fjac.cols()==3);
656         for(int i=0; i<54; i++) {
657             double x = m_x[i];
658             double factor = 1./(b[1]+b[2]*x);
659             double e = exp(-b[0]*x);
660             fjac(i,0) = -x*e*factor;
661             fjac(i,1) = -e*factor*factor;
662             fjac(i,2) = -x*e*factor*factor;
663         }
664         return 0;
665     }
666 };
667 const double chwirut2_functor::m_x[54] = { 0.500E0, 1.000E0, 1.750E0, 3.750E0, 5.750E0, 0.875E0, 2.250E0, 3.250E0, 5.250E0, 0.750E0, 1.750E0, 2.750E0, 4.750E0, 0.625E0, 1.250E0, 2.250E0, 4.250E0, .500E0, 3.000E0, .750E0, 3.000E0, 1.500E0, 6.000E0, 3.000E0, 6.000E0, 1.500E0, 3.000E0, .500E0, 2.000E0, 4.000E0, .750E0, 2.000E0, 5.000E0, .750E0, 2.250E0, 3.750E0, 5.750E0, 3.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .750E0, 2.500E0, 4.000E0, .500E0, 6.000E0, 3.000E0, .500E0, 2.750E0, .500E0, 1.750E0};
668 const double chwirut2_functor::m_y[54] = { 92.9000E0 ,57.1000E0 ,31.0500E0 ,11.5875E0 ,8.0250E0 ,63.6000E0 ,21.4000E0 ,14.2500E0 ,8.4750E0 ,63.8000E0 ,26.8000E0 ,16.4625E0 ,7.1250E0 ,67.3000E0 ,41.0000E0 ,21.1500E0 ,8.1750E0 ,81.5000E0 ,13.1200E0 ,59.9000E0 ,14.6200E0 ,32.9000E0 ,5.4400E0 ,12.5600E0 ,5.4400E0 ,32.0000E0 ,13.9500E0 ,75.8000E0 ,20.0000E0 ,10.4200E0 ,59.5000E0 ,21.6700E0 ,8.5500E0 ,62.0000E0 ,20.2000E0 ,7.7600E0 ,3.7500E0 ,11.8100E0 ,54.7000E0 ,23.7000E0 ,11.5500E0 ,61.3000E0 ,17.7000E0 ,8.7400E0 ,59.2000E0 ,16.3000E0 ,8.6200E0 ,81.0000E0 ,4.8700E0 ,14.6200E0 ,81.7000E0 ,17.1700E0 ,81.3000E0 ,28.9000E0  };
669 
670 // http://www.itl.nist.gov/div898/strd/nls/data/chwirut2.shtml
671 void testNistChwirut2(void)
672 {
673   const int n=3;
674   int info;
675 
676   VectorXd x(n);
677 
678   /*
679    * First try
680    */
681   x<< 0.1, 0.01, 0.02;
682   // do the computation
683   chwirut2_functor functor;
684   LevenbergMarquardt<chwirut2_functor> lm(functor);
685   info = lm.minimize(x);
686 
687   // check return value
688   VERIFY_IS_EQUAL(info, 1);
689   VERIFY_IS_EQUAL(lm.nfev, 10);
690   VERIFY_IS_EQUAL(lm.njev, 8);
691   // check norm^2
692   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02);
693   // check x
694   VERIFY_IS_APPROX(x[0], 1.6657666537E-01);
695   VERIFY_IS_APPROX(x[1], 5.1653291286E-03);
696   VERIFY_IS_APPROX(x[2], 1.2150007096E-02);
697 
698   /*
699    * Second try
700    */
701   x<< 0.15, 0.008, 0.010;
702   // do the computation
703   lm.resetParameters();
704   lm.parameters.ftol = 1.E6*NumTraits<double>::epsilon();
705   lm.parameters.xtol = 1.E6*NumTraits<double>::epsilon();
706   info = lm.minimize(x);
707 
708   // check return value
709   VERIFY_IS_EQUAL(info, 1);
710   VERIFY_IS_EQUAL(lm.nfev, 7);
711   VERIFY_IS_EQUAL(lm.njev, 6);
712   // check norm^2
713   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.1304802941E+02);
714   // check x
715   VERIFY_IS_APPROX(x[0], 1.6657666537E-01);
716   VERIFY_IS_APPROX(x[1], 5.1653291286E-03);
717   VERIFY_IS_APPROX(x[2], 1.2150007096E-02);
718 }
719 
720 
721 struct misra1a_functor : Functor<double>
722 {
723     misra1a_functor(void) : Functor<double>(2,14) {}
724     static const double m_x[14];
725     static const double m_y[14];
726     int operator()(const VectorXd &b, VectorXd &fvec)
727     {
728         assert(b.size()==2);
729         assert(fvec.size()==14);
730         for(int i=0; i<14; i++) {
731             fvec[i] = b[0]*(1.-exp(-b[1]*m_x[i])) - m_y[i] ;
732         }
733         return 0;
734     }
735     int df(const VectorXd &b, MatrixXd &fjac)
736     {
737         assert(b.size()==2);
738         assert(fjac.rows()==14);
739         assert(fjac.cols()==2);
740         for(int i=0; i<14; i++) {
741             fjac(i,0) = (1.-exp(-b[1]*m_x[i]));
742             fjac(i,1) = (b[0]*m_x[i]*exp(-b[1]*m_x[i]));
743         }
744         return 0;
745     }
746 };
747 const double misra1a_functor::m_x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0};
748 const double misra1a_functor::m_y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0};
749 
750 // http://www.itl.nist.gov/div898/strd/nls/data/misra1a.shtml
751 void testNistMisra1a(void)
752 {
753   const int n=2;
754   int info;
755 
756   VectorXd x(n);
757 
758   /*
759    * First try
760    */
761   x<< 500., 0.0001;
762   // do the computation
763   misra1a_functor functor;
764   LevenbergMarquardt<misra1a_functor> lm(functor);
765   info = lm.minimize(x);
766 
767   // check return value
768   VERIFY_IS_EQUAL(info, 1);
769   VERIFY_IS_EQUAL(lm.nfev, 19);
770   VERIFY_IS_EQUAL(lm.njev, 15);
771   // check norm^2
772   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01);
773   // check x
774   VERIFY_IS_APPROX(x[0], 2.3894212918E+02);
775   VERIFY_IS_APPROX(x[1], 5.5015643181E-04);
776 
777   /*
778    * Second try
779    */
780   x<< 250., 0.0005;
781   // do the computation
782   info = lm.minimize(x);
783 
784   // check return value
785   VERIFY_IS_EQUAL(info, 1);
786   VERIFY_IS_EQUAL(lm.nfev, 5);
787   VERIFY_IS_EQUAL(lm.njev, 4);
788   // check norm^2
789   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.2455138894E-01);
790   // check x
791   VERIFY_IS_APPROX(x[0], 2.3894212918E+02);
792   VERIFY_IS_APPROX(x[1], 5.5015643181E-04);
793 }
794 
795 struct hahn1_functor : Functor<double>
796 {
797     hahn1_functor(void) : Functor<double>(7,236) {}
798     static const double m_x[236];
799     int operator()(const VectorXd &b, VectorXd &fvec)
800     {
801         static const double m_y[236] = { .591E0 , 1.547E0 , 2.902E0 , 2.894E0 , 4.703E0 , 6.307E0 , 7.03E0  , 7.898E0 , 9.470E0 , 9.484E0 , 10.072E0 , 10.163E0 , 11.615E0 , 12.005E0 , 12.478E0 , 12.982E0 , 12.970E0 , 13.926E0 , 14.452E0 , 14.404E0 , 15.190E0 , 15.550E0 , 15.528E0 , 15.499E0 , 16.131E0 , 16.438E0 , 16.387E0 , 16.549E0 , 16.872E0 , 16.830E0 , 16.926E0 , 16.907E0 , 16.966E0 , 17.060E0 , 17.122E0 , 17.311E0 , 17.355E0 , 17.668E0 , 17.767E0 , 17.803E0 , 17.765E0 , 17.768E0 , 17.736E0 , 17.858E0 , 17.877E0 , 17.912E0 , 18.046E0 , 18.085E0 , 18.291E0 , 18.357E0 , 18.426E0 , 18.584E0 , 18.610E0 , 18.870E0 , 18.795E0 , 19.111E0 , .367E0 , .796E0 , 0.892E0 , 1.903E0 , 2.150E0 , 3.697E0 , 5.870E0 , 6.421E0 , 7.422E0 , 9.944E0 , 11.023E0 , 11.87E0  , 12.786E0 , 14.067E0 , 13.974E0 , 14.462E0 , 14.464E0 , 15.381E0 , 15.483E0 , 15.59E0  , 16.075E0 , 16.347E0 , 16.181E0 , 16.915E0 , 17.003E0 , 16.978E0 , 17.756E0 , 17.808E0 , 17.868E0 , 18.481E0 , 18.486E0 , 19.090E0 , 16.062E0 , 16.337E0 , 16.345E0 ,
802         16.388E0 , 17.159E0 , 17.116E0 , 17.164E0 , 17.123E0 , 17.979E0 , 17.974E0 , 18.007E0 , 17.993E0 , 18.523E0 , 18.669E0 , 18.617E0 , 19.371E0 , 19.330E0 , 0.080E0 , 0.248E0 , 1.089E0 , 1.418E0 , 2.278E0 , 3.624E0 , 4.574E0 , 5.556E0 , 7.267E0 , 7.695E0 , 9.136E0 , 9.959E0 , 9.957E0 , 11.600E0 , 13.138E0 , 13.564E0 , 13.871E0 , 13.994E0 , 14.947E0 , 15.473E0 , 15.379E0 , 15.455E0 , 15.908E0 , 16.114E0 , 17.071E0 , 17.135E0 , 17.282E0 , 17.368E0 , 17.483E0 , 17.764E0 , 18.185E0 , 18.271E0 , 18.236E0 , 18.237E0 , 18.523E0 , 18.627E0 , 18.665E0 , 19.086E0 , 0.214E0 , 0.943E0 , 1.429E0 , 2.241E0 , 2.951E0 , 3.782E0 , 4.757E0 , 5.602E0 , 7.169E0 , 8.920E0 , 10.055E0 , 12.035E0 , 12.861E0 , 13.436E0 , 14.167E0 , 14.755E0 , 15.168E0 , 15.651E0 , 15.746E0 , 16.216E0 , 16.445E0 , 16.965E0 , 17.121E0 , 17.206E0 , 17.250E0 , 17.339E0 , 17.793E0 , 18.123E0 , 18.49E0  , 18.566E0 , 18.645E0 , 18.706E0 , 18.924E0 , 19.1E0   , 0.375E0 , 0.471E0 , 1.504E0 , 2.204E0 , 2.813E0 , 4.765E0 , 9.835E0 , 10.040E0 , 11.946E0 , 12.596E0 ,
803 13.303E0 , 13.922E0 , 14.440E0 , 14.951E0 , 15.627E0 , 15.639E0 , 15.814E0 , 16.315E0 , 16.334E0 , 16.430E0 , 16.423E0 , 17.024E0 , 17.009E0 , 17.165E0 , 17.134E0 , 17.349E0 , 17.576E0 , 17.848E0 , 18.090E0 , 18.276E0 , 18.404E0 , 18.519E0 , 19.133E0 , 19.074E0 , 19.239E0 , 19.280E0 , 19.101E0 , 19.398E0 , 19.252E0 , 19.89E0  , 20.007E0 , 19.929E0 , 19.268E0 , 19.324E0 , 20.049E0 , 20.107E0 , 20.062E0 , 20.065E0 , 19.286E0 , 19.972E0 , 20.088E0 , 20.743E0 , 20.83E0  , 20.935E0 , 21.035E0 , 20.93E0  , 21.074E0 , 21.085E0 , 20.935E0 };
804 
805         //        int called=0; printf("call hahn1_functor with  iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++;
806 
807         assert(b.size()==7);
808         assert(fvec.size()==236);
809         for(int i=0; i<236; i++) {
810             double x=m_x[i], xx=x*x, xxx=xx*x;
811             fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - m_y[i];
812         }
813         return 0;
814     }
815 
816     int df(const VectorXd &b, MatrixXd &fjac)
817     {
818         assert(b.size()==7);
819         assert(fjac.rows()==236);
820         assert(fjac.cols()==7);
821         for(int i=0; i<236; i++) {
822             double x=m_x[i], xx=x*x, xxx=xx*x;
823             double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx);
824             fjac(i,0) = 1.*fact;
825             fjac(i,1) = x*fact;
826             fjac(i,2) = xx*fact;
827             fjac(i,3) = xxx*fact;
828             fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact;
829             fjac(i,4) = x*fact;
830             fjac(i,5) = xx*fact;
831             fjac(i,6) = xxx*fact;
832         }
833         return 0;
834     }
835 };
836 const double hahn1_functor::m_x[236] = { 24.41E0 , 34.82E0 , 44.09E0 , 45.07E0 , 54.98E0 , 65.51E0 , 70.53E0 , 75.70E0 , 89.57E0 , 91.14E0 , 96.40E0 , 97.19E0 , 114.26E0 , 120.25E0 , 127.08E0 , 133.55E0 , 133.61E0 , 158.67E0 , 172.74E0 , 171.31E0 , 202.14E0 , 220.55E0 , 221.05E0 , 221.39E0 , 250.99E0 , 268.99E0 , 271.80E0 , 271.97E0 , 321.31E0 , 321.69E0 , 330.14E0 , 333.03E0 , 333.47E0 , 340.77E0 , 345.65E0 , 373.11E0 , 373.79E0 , 411.82E0 , 419.51E0 , 421.59E0 , 422.02E0 , 422.47E0 , 422.61E0 , 441.75E0 , 447.41E0 , 448.7E0  , 472.89E0 , 476.69E0 , 522.47E0 , 522.62E0 , 524.43E0 , 546.75E0 , 549.53E0 , 575.29E0 , 576.00E0 , 625.55E0 , 20.15E0 , 28.78E0 , 29.57E0 , 37.41E0 , 39.12E0 , 50.24E0 , 61.38E0 , 66.25E0 , 73.42E0 , 95.52E0 , 107.32E0 , 122.04E0 , 134.03E0 , 163.19E0 , 163.48E0 , 175.70E0 , 179.86E0 , 211.27E0 , 217.78E0 , 219.14E0 , 262.52E0 , 268.01E0 , 268.62E0 , 336.25E0 , 337.23E0 , 339.33E0 , 427.38E0 , 428.58E0 , 432.68E0 , 528.99E0 , 531.08E0 , 628.34E0 , 253.24E0 , 273.13E0 , 273.66E0 ,
837 282.10E0 , 346.62E0 , 347.19E0 , 348.78E0 , 351.18E0 , 450.10E0 , 450.35E0 , 451.92E0 , 455.56E0 , 552.22E0 , 553.56E0 , 555.74E0 , 652.59E0 , 656.20E0 , 14.13E0 , 20.41E0 , 31.30E0 , 33.84E0 , 39.70E0 , 48.83E0 , 54.50E0 , 60.41E0 , 72.77E0 , 75.25E0 , 86.84E0 , 94.88E0 , 96.40E0 , 117.37E0 , 139.08E0 , 147.73E0 , 158.63E0 , 161.84E0 , 192.11E0 , 206.76E0 , 209.07E0 , 213.32E0 , 226.44E0 , 237.12E0 , 330.90E0 , 358.72E0 , 370.77E0 , 372.72E0 , 396.24E0 , 416.59E0 , 484.02E0 , 495.47E0 , 514.78E0 , 515.65E0 , 519.47E0 , 544.47E0 , 560.11E0 , 620.77E0 , 18.97E0 , 28.93E0 , 33.91E0 , 40.03E0 , 44.66E0 , 49.87E0 , 55.16E0 , 60.90E0 , 72.08E0 , 85.15E0 , 97.06E0 , 119.63E0 , 133.27E0 , 143.84E0 , 161.91E0 , 180.67E0 , 198.44E0 , 226.86E0 , 229.65E0 , 258.27E0 , 273.77E0 , 339.15E0 , 350.13E0 , 362.75E0 , 371.03E0 , 393.32E0 , 448.53E0 , 473.78E0 , 511.12E0 , 524.70E0 , 548.75E0 , 551.64E0 , 574.02E0 , 623.86E0 , 21.46E0 , 24.33E0 , 33.43E0 , 39.22E0 , 44.18E0 , 55.02E0 , 94.33E0 , 96.44E0 , 118.82E0 , 128.48E0 ,
838 141.94E0 , 156.92E0 , 171.65E0 , 190.00E0 , 223.26E0 , 223.88E0 , 231.50E0 , 265.05E0 , 269.44E0 , 271.78E0 , 273.46E0 , 334.61E0 , 339.79E0 , 349.52E0 , 358.18E0 , 377.98E0 , 394.77E0 , 429.66E0 , 468.22E0 , 487.27E0 , 519.54E0 , 523.03E0 , 612.99E0 , 638.59E0 , 641.36E0 , 622.05E0 , 631.50E0 , 663.97E0 , 646.9E0  , 748.29E0 , 749.21E0 , 750.14E0 , 647.04E0 , 646.89E0 , 746.9E0  , 748.43E0 , 747.35E0 , 749.27E0 , 647.61E0 , 747.78E0 , 750.51E0 , 851.37E0 , 845.97E0 , 847.54E0 , 849.93E0 , 851.61E0 , 849.75E0 , 850.98E0 , 848.23E0};
839 
840 // http://www.itl.nist.gov/div898/strd/nls/data/hahn1.shtml
841 void testNistHahn1(void)
842 {
843   const int  n=7;
844   int info;
845 
846   VectorXd x(n);
847 
848   /*
849    * First try
850    */
851   x<< 10., -1., .05, -.00001, -.05, .001, -.000001;
852   // do the computation
853   hahn1_functor functor;
854   LevenbergMarquardt<hahn1_functor> lm(functor);
855   info = lm.minimize(x);
856 
857   // check return value
858   VERIFY_IS_EQUAL(info, 1);
859   VERIFY_IS_EQUAL(lm.nfev, 11);
860   VERIFY_IS_EQUAL(lm.njev, 10);
861   // check norm^2
862   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00);
863   // check x
864   VERIFY_IS_APPROX(x[0], 1.0776351733E+00);
865   VERIFY_IS_APPROX(x[1],-1.2269296921E-01);
866   VERIFY_IS_APPROX(x[2], 4.0863750610E-03);
867   VERIFY_IS_APPROX(x[3],-1.426264e-06); // shoulde be : -1.4262662514E-06
868   VERIFY_IS_APPROX(x[4],-5.7609940901E-03);
869   VERIFY_IS_APPROX(x[5], 2.4053735503E-04);
870   VERIFY_IS_APPROX(x[6],-1.2314450199E-07);
871 
872   /*
873    * Second try
874    */
875   x<< .1, -.1, .005, -.000001, -.005, .0001, -.0000001;
876   // do the computation
877   info = lm.minimize(x);
878 
879   // check return value
880   VERIFY_IS_EQUAL(info, 1);
881   VERIFY_IS_EQUAL(lm.nfev, 11);
882   VERIFY_IS_EQUAL(lm.njev, 10);
883   // check norm^2
884   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.5324382854E+00);
885   // check x
886   VERIFY_IS_APPROX(x[0], 1.077640); // should be :  1.0776351733E+00
887   VERIFY_IS_APPROX(x[1], -0.1226933); // should be : -1.2269296921E-01
888   VERIFY_IS_APPROX(x[2], 0.004086383); // should be : 4.0863750610E-03
889   VERIFY_IS_APPROX(x[3], -1.426277e-06); // shoulde be : -1.4262662514E-06
890   VERIFY_IS_APPROX(x[4],-5.7609940901E-03);
891   VERIFY_IS_APPROX(x[5], 0.00024053772); // should be : 2.4053735503E-04
892   VERIFY_IS_APPROX(x[6], -1.231450e-07); // should be : -1.2314450199E-07
893 
894 }
895 
896 struct misra1d_functor : Functor<double>
897 {
898     misra1d_functor(void) : Functor<double>(2,14) {}
899     static const double x[14];
900     static const double y[14];
901     int operator()(const VectorXd &b, VectorXd &fvec)
902     {
903         assert(b.size()==2);
904         assert(fvec.size()==14);
905         for(int i=0; i<14; i++) {
906             fvec[i] = b[0]*b[1]*x[i]/(1.+b[1]*x[i]) - y[i];
907         }
908         return 0;
909     }
910     int df(const VectorXd &b, MatrixXd &fjac)
911     {
912         assert(b.size()==2);
913         assert(fjac.rows()==14);
914         assert(fjac.cols()==2);
915         for(int i=0; i<14; i++) {
916             double den = 1.+b[1]*x[i];
917             fjac(i,0) = b[1]*x[i] / den;
918             fjac(i,1) = b[0]*x[i]*(den-b[1]*x[i])/den/den;
919         }
920         return 0;
921     }
922 };
923 const double misra1d_functor::x[14] = { 77.6E0, 114.9E0, 141.1E0, 190.8E0, 239.9E0, 289.0E0, 332.8E0, 378.4E0, 434.8E0, 477.3E0, 536.8E0, 593.1E0, 689.1E0, 760.0E0};
924 const double misra1d_functor::y[14] = { 10.07E0, 14.73E0, 17.94E0, 23.93E0, 29.61E0, 35.18E0, 40.02E0, 44.82E0, 50.76E0, 55.05E0, 61.01E0, 66.40E0, 75.47E0, 81.78E0};
925 
926 // http://www.itl.nist.gov/div898/strd/nls/data/misra1d.shtml
927 void testNistMisra1d(void)
928 {
929   const int n=2;
930   int info;
931 
932   VectorXd x(n);
933 
934   /*
935    * First try
936    */
937   x<< 500., 0.0001;
938   // do the computation
939   misra1d_functor functor;
940   LevenbergMarquardt<misra1d_functor> lm(functor);
941   info = lm.minimize(x);
942 
943   // check return value
944   VERIFY_IS_EQUAL(info, 3);
945   VERIFY_IS_EQUAL(lm.nfev, 9);
946   VERIFY_IS_EQUAL(lm.njev, 7);
947   // check norm^2
948   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02);
949   // check x
950   VERIFY_IS_APPROX(x[0], 4.3736970754E+02);
951   VERIFY_IS_APPROX(x[1], 3.0227324449E-04);
952 
953   /*
954    * Second try
955    */
956   x<< 450., 0.0003;
957   // do the computation
958   info = lm.minimize(x);
959 
960   // check return value
961   VERIFY_IS_EQUAL(info, 1);
962   VERIFY_IS_EQUAL(lm.nfev, 4);
963   VERIFY_IS_EQUAL(lm.njev, 3);
964   // check norm^2
965   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6419295283E-02);
966   // check x
967   VERIFY_IS_APPROX(x[0], 4.3736970754E+02);
968   VERIFY_IS_APPROX(x[1], 3.0227324449E-04);
969 }
970 
971 
972 struct lanczos1_functor : Functor<double>
973 {
974     lanczos1_functor(void) : Functor<double>(6,24) {}
975     static const double x[24];
976     static const double y[24];
977     int operator()(const VectorXd &b, VectorXd &fvec)
978     {
979         assert(b.size()==6);
980         assert(fvec.size()==24);
981         for(int i=0; i<24; i++)
982             fvec[i] = b[0]*exp(-b[1]*x[i]) + b[2]*exp(-b[3]*x[i]) + b[4]*exp(-b[5]*x[i])  - y[i];
983         return 0;
984     }
985     int df(const VectorXd &b, MatrixXd &fjac)
986     {
987         assert(b.size()==6);
988         assert(fjac.rows()==24);
989         assert(fjac.cols()==6);
990         for(int i=0; i<24; i++) {
991             fjac(i,0) = exp(-b[1]*x[i]);
992             fjac(i,1) = -b[0]*x[i]*exp(-b[1]*x[i]);
993             fjac(i,2) = exp(-b[3]*x[i]);
994             fjac(i,3) = -b[2]*x[i]*exp(-b[3]*x[i]);
995             fjac(i,4) = exp(-b[5]*x[i]);
996             fjac(i,5) = -b[4]*x[i]*exp(-b[5]*x[i]);
997         }
998         return 0;
999     }
1000 };
1001 const double lanczos1_functor::x[24] = { 0.000000000000E+00, 5.000000000000E-02, 1.000000000000E-01, 1.500000000000E-01, 2.000000000000E-01, 2.500000000000E-01, 3.000000000000E-01, 3.500000000000E-01, 4.000000000000E-01, 4.500000000000E-01, 5.000000000000E-01, 5.500000000000E-01, 6.000000000000E-01, 6.500000000000E-01, 7.000000000000E-01, 7.500000000000E-01, 8.000000000000E-01, 8.500000000000E-01, 9.000000000000E-01, 9.500000000000E-01, 1.000000000000E+00, 1.050000000000E+00, 1.100000000000E+00, 1.150000000000E+00 };
1002 const double lanczos1_functor::y[24] = { 2.513400000000E+00 ,2.044333373291E+00 ,1.668404436564E+00 ,1.366418021208E+00 ,1.123232487372E+00 ,9.268897180037E-01 ,7.679338563728E-01 ,6.388775523106E-01 ,5.337835317402E-01 ,4.479363617347E-01 ,3.775847884350E-01 ,3.197393199326E-01 ,2.720130773746E-01 ,2.324965529032E-01 ,1.996589546065E-01 ,1.722704126914E-01 ,1.493405660168E-01 ,1.300700206922E-01 ,1.138119324644E-01 ,1.000415587559E-01 ,8.833209084540E-02 ,7.833544019350E-02 ,6.976693743449E-02 ,6.239312536719E-02 };
1003 
1004 // http://www.itl.nist.gov/div898/strd/nls/data/lanczos1.shtml
1005 void testNistLanczos1(void)
1006 {
1007   const int n=6;
1008   int info;
1009 
1010   VectorXd x(n);
1011 
1012   /*
1013    * First try
1014    */
1015   x<< 1.2, 0.3, 5.6, 5.5, 6.5, 7.6;
1016   // do the computation
1017   lanczos1_functor functor;
1018   LevenbergMarquardt<lanczos1_functor> lm(functor);
1019   info = lm.minimize(x);
1020 
1021   // check return value
1022   VERIFY_IS_EQUAL(info, 2);
1023   VERIFY_IS_EQUAL(lm.nfev, 79);
1024   VERIFY_IS_EQUAL(lm.njev, 72);
1025   // check norm^2
1026   std::cout.precision(30);
1027   std::cout << lm.fvec.squaredNorm() << "\n";
1028   VERIFY(lm.fvec.squaredNorm() <= 1.4307867721E-25);
1029   // check x
1030   VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
1031   VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
1032   VERIFY_IS_APPROX(x[2], 8.6070000013E-01);
1033   VERIFY_IS_APPROX(x[3], 3.0000000002E+00);
1034   VERIFY_IS_APPROX(x[4], 1.5575999998E+00);
1035   VERIFY_IS_APPROX(x[5], 5.0000000001E+00);
1036 
1037   /*
1038    * Second try
1039    */
1040   x<< 0.5, 0.7, 3.6, 4.2, 4., 6.3;
1041   // do the computation
1042   info = lm.minimize(x);
1043 
1044   // check return value
1045   VERIFY_IS_EQUAL(info, 2);
1046   VERIFY_IS_EQUAL(lm.nfev, 9);
1047   VERIFY_IS_EQUAL(lm.njev, 8);
1048   // check norm^2
1049   VERIFY(lm.fvec.squaredNorm() <= 1.4307867721E-25);
1050   // check x
1051   VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
1052   VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
1053   VERIFY_IS_APPROX(x[2], 8.6070000013E-01);
1054   VERIFY_IS_APPROX(x[3], 3.0000000002E+00);
1055   VERIFY_IS_APPROX(x[4], 1.5575999998E+00);
1056   VERIFY_IS_APPROX(x[5], 5.0000000001E+00);
1057 
1058 }
1059 
1060 struct rat42_functor : Functor<double>
1061 {
1062     rat42_functor(void) : Functor<double>(3,9) {}
1063     static const double x[9];
1064     static const double y[9];
1065     int operator()(const VectorXd &b, VectorXd &fvec)
1066     {
1067         assert(b.size()==3);
1068         assert(fvec.size()==9);
1069         for(int i=0; i<9; i++) {
1070             fvec[i] = b[0] / (1.+exp(b[1]-b[2]*x[i])) - y[i];
1071         }
1072         return 0;
1073     }
1074 
1075     int df(const VectorXd &b, MatrixXd &fjac)
1076     {
1077         assert(b.size()==3);
1078         assert(fjac.rows()==9);
1079         assert(fjac.cols()==3);
1080         for(int i=0; i<9; i++) {
1081             double e = exp(b[1]-b[2]*x[i]);
1082             fjac(i,0) = 1./(1.+e);
1083             fjac(i,1) = -b[0]*e/(1.+e)/(1.+e);
1084             fjac(i,2) = +b[0]*e*x[i]/(1.+e)/(1.+e);
1085         }
1086         return 0;
1087     }
1088 };
1089 const double rat42_functor::x[9] = { 9.000E0, 14.000E0, 21.000E0, 28.000E0, 42.000E0, 57.000E0, 63.000E0, 70.000E0, 79.000E0 };
1090 const double rat42_functor::y[9] = { 8.930E0 ,10.800E0 ,18.590E0 ,22.330E0 ,39.350E0 ,56.110E0 ,61.730E0 ,64.620E0 ,67.080E0 };
1091 
1092 // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml
1093 void testNistRat42(void)
1094 {
1095   const int n=3;
1096   int info;
1097 
1098   VectorXd x(n);
1099 
1100   /*
1101    * First try
1102    */
1103   x<< 100., 1., 0.1;
1104   // do the computation
1105   rat42_functor functor;
1106   LevenbergMarquardt<rat42_functor> lm(functor);
1107   info = lm.minimize(x);
1108 
1109   // check return value
1110   VERIFY_IS_EQUAL(info, 1);
1111   VERIFY_IS_EQUAL(lm.nfev, 10);
1112   VERIFY_IS_EQUAL(lm.njev, 8);
1113   // check norm^2
1114   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00);
1115   // check x
1116   VERIFY_IS_APPROX(x[0], 7.2462237576E+01);
1117   VERIFY_IS_APPROX(x[1], 2.6180768402E+00);
1118   VERIFY_IS_APPROX(x[2], 6.7359200066E-02);
1119 
1120   /*
1121    * Second try
1122    */
1123   x<< 75., 2.5, 0.07;
1124   // do the computation
1125   info = lm.minimize(x);
1126 
1127   // check return value
1128   VERIFY_IS_EQUAL(info, 1);
1129   VERIFY_IS_EQUAL(lm.nfev, 6);
1130   VERIFY_IS_EQUAL(lm.njev, 5);
1131   // check norm^2
1132   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.0565229338E+00);
1133   // check x
1134   VERIFY_IS_APPROX(x[0], 7.2462237576E+01);
1135   VERIFY_IS_APPROX(x[1], 2.6180768402E+00);
1136   VERIFY_IS_APPROX(x[2], 6.7359200066E-02);
1137 }
1138 
1139 struct MGH10_functor : Functor<double>
1140 {
1141     MGH10_functor(void) : Functor<double>(3,16) {}
1142     static const double x[16];
1143     static const double y[16];
1144     int operator()(const VectorXd &b, VectorXd &fvec)
1145     {
1146         assert(b.size()==3);
1147         assert(fvec.size()==16);
1148         for(int i=0; i<16; i++)
1149             fvec[i] =  b[0] * exp(b[1]/(x[i]+b[2])) - y[i];
1150         return 0;
1151     }
1152     int df(const VectorXd &b, MatrixXd &fjac)
1153     {
1154         assert(b.size()==3);
1155         assert(fjac.rows()==16);
1156         assert(fjac.cols()==3);
1157         for(int i=0; i<16; i++) {
1158             double factor = 1./(x[i]+b[2]);
1159             double e = exp(b[1]*factor);
1160             fjac(i,0) = e;
1161             fjac(i,1) = b[0]*factor*e;
1162             fjac(i,2) = -b[1]*b[0]*factor*factor*e;
1163         }
1164         return 0;
1165     }
1166 };
1167 const double MGH10_functor::x[16] = { 5.000000E+01, 5.500000E+01, 6.000000E+01, 6.500000E+01, 7.000000E+01, 7.500000E+01, 8.000000E+01, 8.500000E+01, 9.000000E+01, 9.500000E+01, 1.000000E+02, 1.050000E+02, 1.100000E+02, 1.150000E+02, 1.200000E+02, 1.250000E+02 };
1168 const double MGH10_functor::y[16] = { 3.478000E+04, 2.861000E+04, 2.365000E+04, 1.963000E+04, 1.637000E+04, 1.372000E+04, 1.154000E+04, 9.744000E+03, 8.261000E+03, 7.030000E+03, 6.005000E+03, 5.147000E+03, 4.427000E+03, 3.820000E+03, 3.307000E+03, 2.872000E+03 };
1169 
1170 // http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml
1171 void testNistMGH10(void)
1172 {
1173   const int n=3;
1174   int info;
1175 
1176   VectorXd x(n);
1177 
1178   /*
1179    * First try
1180    */
1181   x<< 2., 400000., 25000.;
1182   // do the computation
1183   MGH10_functor functor;
1184   LevenbergMarquardt<MGH10_functor> lm(functor);
1185   info = lm.minimize(x);
1186 
1187   // check return value
1188   VERIFY_IS_EQUAL(info, 2);
1189   VERIFY_IS_EQUAL(lm.nfev, 284 );
1190   VERIFY_IS_EQUAL(lm.njev, 249 );
1191   // check norm^2
1192   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01);
1193   // check x
1194   VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
1195   VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
1196   VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
1197 
1198   /*
1199    * Second try
1200    */
1201   x<< 0.02, 4000., 250.;
1202   // do the computation
1203   info = lm.minimize(x);
1204 
1205   // check return value
1206   VERIFY_IS_EQUAL(info, 3);
1207   VERIFY_IS_EQUAL(lm.nfev, 126);
1208   VERIFY_IS_EQUAL(lm.njev, 116);
1209   // check norm^2
1210   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7945855171E+01);
1211   // check x
1212   VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
1213   VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
1214   VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
1215 }
1216 
1217 
1218 struct BoxBOD_functor : Functor<double>
1219 {
1220     BoxBOD_functor(void) : Functor<double>(2,6) {}
1221     static const double x[6];
1222     int operator()(const VectorXd &b, VectorXd &fvec)
1223     {
1224         static const double y[6] = { 109., 149., 149., 191., 213., 224. };
1225         assert(b.size()==2);
1226         assert(fvec.size()==6);
1227         for(int i=0; i<6; i++)
1228             fvec[i] =  b[0]*(1.-exp(-b[1]*x[i])) - y[i];
1229         return 0;
1230     }
1231     int df(const VectorXd &b, MatrixXd &fjac)
1232     {
1233         assert(b.size()==2);
1234         assert(fjac.rows()==6);
1235         assert(fjac.cols()==2);
1236         for(int i=0; i<6; i++) {
1237             double e = exp(-b[1]*x[i]);
1238             fjac(i,0) = 1.-e;
1239             fjac(i,1) = b[0]*x[i]*e;
1240         }
1241         return 0;
1242     }
1243 };
1244 const double BoxBOD_functor::x[6] = { 1., 2., 3., 5., 7., 10. };
1245 
1246 // http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml
1247 void testNistBoxBOD(void)
1248 {
1249   const int n=2;
1250   int info;
1251 
1252   VectorXd x(n);
1253 
1254   /*
1255    * First try
1256    */
1257   x<< 1., 1.;
1258   // do the computation
1259   BoxBOD_functor functor;
1260   LevenbergMarquardt<BoxBOD_functor> lm(functor);
1261   lm.parameters.ftol = 1.E6*NumTraits<double>::epsilon();
1262   lm.parameters.xtol = 1.E6*NumTraits<double>::epsilon();
1263   lm.parameters.factor = 10.;
1264   info = lm.minimize(x);
1265 
1266   // check return value
1267   VERIFY_IS_EQUAL(info, 1);
1268   VERIFY(lm.nfev < 31); // 31
1269   VERIFY(lm.njev < 25); // 25
1270   // check norm^2
1271   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03);
1272   // check x
1273   VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
1274   VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
1275 
1276   /*
1277    * Second try
1278    */
1279   x<< 100., 0.75;
1280   // do the computation
1281   lm.resetParameters();
1282   lm.parameters.ftol = NumTraits<double>::epsilon();
1283   lm.parameters.xtol = NumTraits<double>::epsilon();
1284   info = lm.minimize(x);
1285 
1286   // check return value
1287   VERIFY_IS_EQUAL(info, 1);
1288   VERIFY_IS_EQUAL(lm.nfev, 15 );
1289   VERIFY_IS_EQUAL(lm.njev, 14 );
1290   // check norm^2
1291   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03);
1292   // check x
1293   VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
1294   VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
1295 }
1296 
1297 struct MGH17_functor : Functor<double>
1298 {
1299     MGH17_functor(void) : Functor<double>(5,33) {}
1300     static const double x[33];
1301     static const double y[33];
1302     int operator()(const VectorXd &b, VectorXd &fvec)
1303     {
1304         assert(b.size()==5);
1305         assert(fvec.size()==33);
1306         for(int i=0; i<33; i++)
1307             fvec[i] =  b[0] + b[1]*exp(-b[3]*x[i]) +  b[2]*exp(-b[4]*x[i]) - y[i];
1308         return 0;
1309     }
1310     int df(const VectorXd &b, MatrixXd &fjac)
1311     {
1312         assert(b.size()==5);
1313         assert(fjac.rows()==33);
1314         assert(fjac.cols()==5);
1315         for(int i=0; i<33; i++) {
1316             fjac(i,0) = 1.;
1317             fjac(i,1) = exp(-b[3]*x[i]);
1318             fjac(i,2) = exp(-b[4]*x[i]);
1319             fjac(i,3) = -x[i]*b[1]*exp(-b[3]*x[i]);
1320             fjac(i,4) = -x[i]*b[2]*exp(-b[4]*x[i]);
1321         }
1322         return 0;
1323     }
1324 };
1325 const double MGH17_functor::x[33] = { 0.000000E+00, 1.000000E+01, 2.000000E+01, 3.000000E+01, 4.000000E+01, 5.000000E+01, 6.000000E+01, 7.000000E+01, 8.000000E+01, 9.000000E+01, 1.000000E+02, 1.100000E+02, 1.200000E+02, 1.300000E+02, 1.400000E+02, 1.500000E+02, 1.600000E+02, 1.700000E+02, 1.800000E+02, 1.900000E+02, 2.000000E+02, 2.100000E+02, 2.200000E+02, 2.300000E+02, 2.400000E+02, 2.500000E+02, 2.600000E+02, 2.700000E+02, 2.800000E+02, 2.900000E+02, 3.000000E+02, 3.100000E+02, 3.200000E+02 };
1326 const double MGH17_functor::y[33] = { 8.440000E-01, 9.080000E-01, 9.320000E-01, 9.360000E-01, 9.250000E-01, 9.080000E-01, 8.810000E-01, 8.500000E-01, 8.180000E-01, 7.840000E-01, 7.510000E-01, 7.180000E-01, 6.850000E-01, 6.580000E-01, 6.280000E-01, 6.030000E-01, 5.800000E-01, 5.580000E-01, 5.380000E-01, 5.220000E-01, 5.060000E-01, 4.900000E-01, 4.780000E-01, 4.670000E-01, 4.570000E-01, 4.480000E-01, 4.380000E-01, 4.310000E-01, 4.240000E-01, 4.200000E-01, 4.140000E-01, 4.110000E-01, 4.060000E-01 };
1327 
1328 // http://www.itl.nist.gov/div898/strd/nls/data/mgh17.shtml
1329 void testNistMGH17(void)
1330 {
1331   const int n=5;
1332   int info;
1333 
1334   VectorXd x(n);
1335 
1336   /*
1337    * First try
1338    */
1339   x<< 50., 150., -100., 1., 2.;
1340   // do the computation
1341   MGH17_functor functor;
1342   LevenbergMarquardt<MGH17_functor> lm(functor);
1343   lm.parameters.ftol = NumTraits<double>::epsilon();
1344   lm.parameters.xtol = NumTraits<double>::epsilon();
1345   lm.parameters.maxfev = 1000;
1346   info = lm.minimize(x);
1347 
1348   // check norm^2
1349   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05);
1350   // check x
1351   VERIFY_IS_APPROX(x[0], 3.7541005211E-01);
1352   VERIFY_IS_APPROX(x[1], 1.9358469127E+00);
1353   VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
1354   VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
1355   VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
1356 
1357   // check return value
1358   VERIFY_IS_EQUAL(info, 2);
1359   ++g_test_level;
1360   VERIFY_IS_EQUAL(lm.nfev, 602);  // 602
1361   VERIFY_IS_EQUAL(lm.njev, 545);  // 545
1362   --g_test_level;
1363   VERIFY(lm.nfev < 602 * LM_EVAL_COUNT_TOL);
1364   VERIFY(lm.njev < 545 * LM_EVAL_COUNT_TOL);
1365 
1366   /*
1367    * Second try
1368    */
1369   x<< 0.5  ,1.5  ,-1   ,0.01 ,0.02;
1370   // do the computation
1371   lm.resetParameters();
1372   info = lm.minimize(x);
1373 
1374   // check return value
1375   VERIFY_IS_EQUAL(info, 1);
1376   VERIFY_IS_EQUAL(lm.nfev, 18);
1377   VERIFY_IS_EQUAL(lm.njev, 15);
1378   // check norm^2
1379   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05);
1380   // check x
1381   VERIFY_IS_APPROX(x[0], 3.7541005211E-01);
1382   VERIFY_IS_APPROX(x[1], 1.9358469127E+00);
1383   VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
1384   VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
1385   VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
1386 }
1387 
1388 struct MGH09_functor : Functor<double>
1389 {
1390     MGH09_functor(void) : Functor<double>(4,11) {}
1391     static const double _x[11];
1392     static const double y[11];
1393     int operator()(const VectorXd &b, VectorXd &fvec)
1394     {
1395         assert(b.size()==4);
1396         assert(fvec.size()==11);
1397         for(int i=0; i<11; i++) {
1398             double x = _x[i], xx=x*x;
1399             fvec[i] = b[0]*(xx+x*b[1])/(xx+x*b[2]+b[3]) - y[i];
1400         }
1401         return 0;
1402     }
1403     int df(const VectorXd &b, MatrixXd &fjac)
1404     {
1405         assert(b.size()==4);
1406         assert(fjac.rows()==11);
1407         assert(fjac.cols()==4);
1408         for(int i=0; i<11; i++) {
1409             double x = _x[i], xx=x*x;
1410             double factor = 1./(xx+x*b[2]+b[3]);
1411             fjac(i,0) = (xx+x*b[1]) * factor;
1412             fjac(i,1) = b[0]*x* factor;
1413             fjac(i,2) = - b[0]*(xx+x*b[1]) * x * factor * factor;
1414             fjac(i,3) = - b[0]*(xx+x*b[1]) * factor * factor;
1415         }
1416         return 0;
1417     }
1418 };
1419 const double MGH09_functor::_x[11] = { 4., 2., 1., 5.E-1 , 2.5E-01, 1.670000E-01, 1.250000E-01,  1.E-01, 8.330000E-02, 7.140000E-02, 6.250000E-02 };
1420 const double MGH09_functor::y[11] = { 1.957000E-01, 1.947000E-01, 1.735000E-01, 1.600000E-01, 8.440000E-02, 6.270000E-02, 4.560000E-02, 3.420000E-02, 3.230000E-02, 2.350000E-02, 2.460000E-02 };
1421 
1422 // http://www.itl.nist.gov/div898/strd/nls/data/mgh09.shtml
1423 void testNistMGH09(void)
1424 {
1425   const int n=4;
1426   int info;
1427 
1428   VectorXd x(n);
1429 
1430   /*
1431    * First try
1432    */
1433   x<< 25., 39, 41.5, 39.;
1434   // do the computation
1435   MGH09_functor functor;
1436   LevenbergMarquardt<MGH09_functor> lm(functor);
1437   lm.parameters.maxfev = 1000;
1438   info = lm.minimize(x);
1439 
1440   // check return value
1441   VERIFY_IS_EQUAL(info, 1);
1442   VERIFY_IS_EQUAL(lm.nfev, 490 );
1443   VERIFY_IS_EQUAL(lm.njev, 376 );
1444   // check norm^2
1445   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04);
1446   // check x
1447   VERIFY_IS_APPROX(x[0], 0.1928077089); // should be 1.9280693458E-01
1448   VERIFY_IS_APPROX(x[1], 0.19126423573); // should be 1.9128232873E-01
1449   VERIFY_IS_APPROX(x[2], 0.12305309914); // should be 1.2305650693E-01
1450   VERIFY_IS_APPROX(x[3], 0.13605395375); // should be 1.3606233068E-01
1451 
1452   /*
1453    * Second try
1454    */
1455   x<< 0.25, 0.39, 0.415, 0.39;
1456   // do the computation
1457   lm.resetParameters();
1458   info = lm.minimize(x);
1459 
1460   // check return value
1461   VERIFY_IS_EQUAL(info, 1);
1462   VERIFY_IS_EQUAL(lm.nfev, 18);
1463   VERIFY_IS_EQUAL(lm.njev, 16);
1464   // check norm^2
1465   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 3.0750560385E-04);
1466   // check x
1467   VERIFY_IS_APPROX(x[0], 0.19280781); // should be 1.9280693458E-01
1468   VERIFY_IS_APPROX(x[1], 0.19126265); // should be 1.9128232873E-01
1469   VERIFY_IS_APPROX(x[2], 0.12305280); // should be 1.2305650693E-01
1470   VERIFY_IS_APPROX(x[3], 0.13605322); // should be 1.3606233068E-01
1471 }
1472 
1473 
1474 
1475 struct Bennett5_functor : Functor<double>
1476 {
1477     Bennett5_functor(void) : Functor<double>(3,154) {}
1478     static const double x[154];
1479     static const double y[154];
1480     int operator()(const VectorXd &b, VectorXd &fvec)
1481     {
1482         assert(b.size()==3);
1483         assert(fvec.size()==154);
1484         for(int i=0; i<154; i++)
1485             fvec[i] = b[0]* pow(b[1]+x[i],-1./b[2]) - y[i];
1486         return 0;
1487     }
1488     int df(const VectorXd &b, MatrixXd &fjac)
1489     {
1490         assert(b.size()==3);
1491         assert(fjac.rows()==154);
1492         assert(fjac.cols()==3);
1493         for(int i=0; i<154; i++) {
1494             double e = pow(b[1]+x[i],-1./b[2]);
1495             fjac(i,0) = e;
1496             fjac(i,1) = - b[0]*e/b[2]/(b[1]+x[i]);
1497             fjac(i,2) = b[0]*e*log(b[1]+x[i])/b[2]/b[2];
1498         }
1499         return 0;
1500     }
1501 };
1502 const double Bennett5_functor::x[154] = { 7.447168E0, 8.102586E0, 8.452547E0, 8.711278E0, 8.916774E0, 9.087155E0, 9.232590E0, 9.359535E0, 9.472166E0, 9.573384E0, 9.665293E0, 9.749461E0, 9.827092E0, 9.899128E0, 9.966321E0, 10.029280E0, 10.088510E0, 10.144430E0, 10.197380E0, 10.247670E0, 10.295560E0, 10.341250E0, 10.384950E0, 10.426820E0, 10.467000E0, 10.505640E0, 10.542830E0, 10.578690E0, 10.613310E0, 10.646780E0, 10.679150E0, 10.710520E0, 10.740920E0, 10.770440E0, 10.799100E0, 10.826970E0, 10.854080E0, 10.880470E0, 10.906190E0, 10.931260E0, 10.955720E0, 10.979590E0, 11.002910E0, 11.025700E0, 11.047980E0, 11.069770E0, 11.091100E0, 11.111980E0, 11.132440E0, 11.152480E0, 11.172130E0, 11.191410E0, 11.210310E0, 11.228870E0, 11.247090E0, 11.264980E0, 11.282560E0, 11.299840E0, 11.316820E0, 11.333520E0, 11.349940E0, 11.366100E0, 11.382000E0, 11.397660E0, 11.413070E0, 11.428240E0, 11.443200E0, 11.457930E0, 11.472440E0, 11.486750E0, 11.500860E0, 11.514770E0, 11.528490E0, 11.542020E0, 11.555380E0, 11.568550E0,
1503 11.581560E0, 11.594420E0, 11.607121E0, 11.619640E0, 11.632000E0, 11.644210E0, 11.656280E0, 11.668200E0, 11.679980E0, 11.691620E0, 11.703130E0, 11.714510E0, 11.725760E0, 11.736880E0, 11.747890E0, 11.758780E0, 11.769550E0, 11.780200E0, 11.790730E0, 11.801160E0, 11.811480E0, 11.821700E0, 11.831810E0, 11.841820E0, 11.851730E0, 11.861550E0, 11.871270E0, 11.880890E0, 11.890420E0, 11.899870E0, 11.909220E0, 11.918490E0, 11.927680E0, 11.936780E0, 11.945790E0, 11.954730E0, 11.963590E0, 11.972370E0, 11.981070E0, 11.989700E0, 11.998260E0, 12.006740E0, 12.015150E0, 12.023490E0, 12.031760E0, 12.039970E0, 12.048100E0, 12.056170E0, 12.064180E0, 12.072120E0, 12.080010E0, 12.087820E0, 12.095580E0, 12.103280E0, 12.110920E0, 12.118500E0, 12.126030E0, 12.133500E0, 12.140910E0, 12.148270E0, 12.155570E0, 12.162830E0, 12.170030E0, 12.177170E0, 12.184270E0, 12.191320E0, 12.198320E0, 12.205270E0, 12.212170E0, 12.219030E0, 12.225840E0, 12.232600E0, 12.239320E0, 12.245990E0, 12.252620E0, 12.259200E0, 12.265750E0, 12.272240E0 };
1504 const double Bennett5_functor::y[154] = { -34.834702E0 ,-34.393200E0 ,-34.152901E0 ,-33.979099E0 ,-33.845901E0 ,-33.732899E0 ,-33.640301E0 ,-33.559200E0 ,-33.486801E0 ,-33.423100E0 ,-33.365101E0 ,-33.313000E0 ,-33.260899E0 ,-33.217400E0 ,-33.176899E0 ,-33.139198E0 ,-33.101601E0 ,-33.066799E0 ,-33.035000E0 ,-33.003101E0 ,-32.971298E0 ,-32.942299E0 ,-32.916302E0 ,-32.890202E0 ,-32.864101E0 ,-32.841000E0 ,-32.817799E0 ,-32.797501E0 ,-32.774300E0 ,-32.757000E0 ,-32.733799E0 ,-32.716400E0 ,-32.699100E0 ,-32.678799E0 ,-32.661400E0 ,-32.644001E0 ,-32.626701E0 ,-32.612202E0 ,-32.597698E0 ,-32.583199E0 ,-32.568699E0 ,-32.554298E0 ,-32.539799E0 ,-32.525299E0 ,-32.510799E0 ,-32.499199E0 ,-32.487598E0 ,-32.473202E0 ,-32.461601E0 ,-32.435501E0 ,-32.435501E0 ,-32.426800E0 ,-32.412300E0 ,-32.400799E0 ,-32.392101E0 ,-32.380501E0 ,-32.366001E0 ,-32.357300E0 ,-32.348598E0 ,-32.339901E0 ,-32.328400E0 ,-32.319698E0 ,-32.311001E0 ,-32.299400E0 ,-32.290699E0 ,-32.282001E0 ,-32.273300E0 ,-32.264599E0 ,-32.256001E0 ,-32.247299E0
1505 ,-32.238602E0 ,-32.229900E0 ,-32.224098E0 ,-32.215401E0 ,-32.203800E0 ,-32.198002E0 ,-32.189400E0 ,-32.183601E0 ,-32.174900E0 ,-32.169102E0 ,-32.163300E0 ,-32.154598E0 ,-32.145901E0 ,-32.140099E0 ,-32.131401E0 ,-32.125599E0 ,-32.119801E0 ,-32.111198E0 ,-32.105400E0 ,-32.096699E0 ,-32.090900E0 ,-32.088001E0 ,-32.079300E0 ,-32.073502E0 ,-32.067699E0 ,-32.061901E0 ,-32.056099E0 ,-32.050301E0 ,-32.044498E0 ,-32.038799E0 ,-32.033001E0 ,-32.027199E0 ,-32.024300E0 ,-32.018501E0 ,-32.012699E0 ,-32.004002E0 ,-32.001099E0 ,-31.995300E0 ,-31.989500E0 ,-31.983700E0 ,-31.977900E0 ,-31.972099E0 ,-31.969299E0 ,-31.963501E0 ,-31.957701E0 ,-31.951900E0 ,-31.946100E0 ,-31.940300E0 ,-31.937401E0 ,-31.931601E0 ,-31.925800E0 ,-31.922899E0 ,-31.917101E0 ,-31.911301E0 ,-31.908400E0 ,-31.902599E0 ,-31.896900E0 ,-31.893999E0 ,-31.888201E0 ,-31.885300E0 ,-31.882401E0 ,-31.876600E0 ,-31.873699E0 ,-31.867901E0 ,-31.862101E0 ,-31.859200E0 ,-31.856300E0 ,-31.850500E0 ,-31.844700E0 ,-31.841801E0 ,-31.838900E0 ,-31.833099E0 ,-31.830200E0 ,
1506 -31.827299E0 ,-31.821600E0 ,-31.818701E0 ,-31.812901E0 ,-31.809999E0 ,-31.807100E0 ,-31.801300E0 ,-31.798401E0 ,-31.795500E0 ,-31.789700E0 ,-31.786800E0 };
1507 
1508 // http://www.itl.nist.gov/div898/strd/nls/data/bennett5.shtml
1509 void testNistBennett5(void)
1510 {
1511   const int  n=3;
1512   int info;
1513 
1514   VectorXd x(n);
1515 
1516   /*
1517    * First try
1518    */
1519   x<< -2000., 50., 0.8;
1520   // do the computation
1521   Bennett5_functor functor;
1522   LevenbergMarquardt<Bennett5_functor> lm(functor);
1523   lm.parameters.maxfev = 1000;
1524   info = lm.minimize(x);
1525 
1526   // check return value
1527   VERIFY_IS_EQUAL(info, 1);
1528   VERIFY_IS_EQUAL(lm.nfev, 758);
1529   VERIFY_IS_EQUAL(lm.njev, 744);
1530   // check norm^2
1531   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04);
1532   // check x
1533   VERIFY_IS_APPROX(x[0], -2.5235058043E+03);
1534   VERIFY_IS_APPROX(x[1], 4.6736564644E+01);
1535   VERIFY_IS_APPROX(x[2], 9.3218483193E-01);
1536   /*
1537    * Second try
1538    */
1539   x<< -1500., 45., 0.85;
1540   // do the computation
1541   lm.resetParameters();
1542   info = lm.minimize(x);
1543 
1544   // check return value
1545   VERIFY_IS_EQUAL(info, 1);
1546   VERIFY_IS_EQUAL(lm.nfev, 203);
1547   VERIFY_IS_EQUAL(lm.njev, 192);
1548   // check norm^2
1549   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.2404744073E-04);
1550   // check x
1551   VERIFY_IS_APPROX(x[0], -2523.3007865); // should be -2.5235058043E+03
1552   VERIFY_IS_APPROX(x[1], 46.735705771); // should be 4.6736564644E+01);
1553   VERIFY_IS_APPROX(x[2], 0.93219881891); // should be 9.3218483193E-01);
1554 }
1555 
1556 struct thurber_functor : Functor<double>
1557 {
1558     thurber_functor(void) : Functor<double>(7,37) {}
1559     static const double _x[37];
1560     static const double _y[37];
1561     int operator()(const VectorXd &b, VectorXd &fvec)
1562     {
1563         //        int called=0; printf("call hahn1_functor with  iflag=%d, called=%d\n", iflag, called); if (iflag==1) called++;
1564         assert(b.size()==7);
1565         assert(fvec.size()==37);
1566         for(int i=0; i<37; i++) {
1567             double x=_x[i], xx=x*x, xxx=xx*x;
1568             fvec[i] = (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) / (1.+b[4]*x+b[5]*xx+b[6]*xxx) - _y[i];
1569         }
1570         return 0;
1571     }
1572     int df(const VectorXd &b, MatrixXd &fjac)
1573     {
1574         assert(b.size()==7);
1575         assert(fjac.rows()==37);
1576         assert(fjac.cols()==7);
1577         for(int i=0; i<37; i++) {
1578             double x=_x[i], xx=x*x, xxx=xx*x;
1579             double fact = 1./(1.+b[4]*x+b[5]*xx+b[6]*xxx);
1580             fjac(i,0) = 1.*fact;
1581             fjac(i,1) = x*fact;
1582             fjac(i,2) = xx*fact;
1583             fjac(i,3) = xxx*fact;
1584             fact = - (b[0]+b[1]*x+b[2]*xx+b[3]*xxx) * fact * fact;
1585             fjac(i,4) = x*fact;
1586             fjac(i,5) = xx*fact;
1587             fjac(i,6) = xxx*fact;
1588         }
1589         return 0;
1590     }
1591 };
1592 const double thurber_functor::_x[37] = { -3.067E0, -2.981E0, -2.921E0, -2.912E0, -2.840E0, -2.797E0, -2.702E0, -2.699E0, -2.633E0, -2.481E0, -2.363E0, -2.322E0, -1.501E0, -1.460E0, -1.274E0, -1.212E0, -1.100E0, -1.046E0, -0.915E0, -0.714E0, -0.566E0, -0.545E0, -0.400E0, -0.309E0, -0.109E0, -0.103E0, 0.010E0, 0.119E0, 0.377E0, 0.790E0, 0.963E0, 1.006E0, 1.115E0, 1.572E0, 1.841E0, 2.047E0, 2.200E0 };
1593 const double thurber_functor::_y[37] = { 80.574E0, 84.248E0, 87.264E0, 87.195E0, 89.076E0, 89.608E0, 89.868E0, 90.101E0, 92.405E0, 95.854E0, 100.696E0, 101.060E0, 401.672E0, 390.724E0, 567.534E0, 635.316E0, 733.054E0, 759.087E0, 894.206E0, 990.785E0, 1090.109E0, 1080.914E0, 1122.643E0, 1178.351E0, 1260.531E0, 1273.514E0, 1288.339E0, 1327.543E0, 1353.863E0, 1414.509E0, 1425.208E0, 1421.384E0, 1442.962E0, 1464.350E0, 1468.705E0, 1447.894E0, 1457.628E0};
1594 
1595 // http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml
1596 void testNistThurber(void)
1597 {
1598   const int n=7;
1599   int info;
1600 
1601   VectorXd x(n);
1602 
1603   /*
1604    * First try
1605    */
1606   x<< 1000 ,1000 ,400 ,40 ,0.7,0.3,0.0 ;
1607   // do the computation
1608   thurber_functor functor;
1609   LevenbergMarquardt<thurber_functor> lm(functor);
1610   lm.parameters.ftol = 1.E4*NumTraits<double>::epsilon();
1611   lm.parameters.xtol = 1.E4*NumTraits<double>::epsilon();
1612   info = lm.minimize(x);
1613 
1614   // check return value
1615   VERIFY_IS_EQUAL(info, 1);
1616   VERIFY_IS_EQUAL(lm.nfev, 39);
1617   VERIFY_IS_EQUAL(lm.njev, 36);
1618   // check norm^2
1619   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03);
1620   // check x
1621   VERIFY_IS_APPROX(x[0], 1.2881396800E+03);
1622   VERIFY_IS_APPROX(x[1], 1.4910792535E+03);
1623   VERIFY_IS_APPROX(x[2], 5.8323836877E+02);
1624   VERIFY_IS_APPROX(x[3], 7.5416644291E+01);
1625   VERIFY_IS_APPROX(x[4], 9.6629502864E-01);
1626   VERIFY_IS_APPROX(x[5], 3.9797285797E-01);
1627   VERIFY_IS_APPROX(x[6], 4.9727297349E-02);
1628 
1629   /*
1630    * Second try
1631    */
1632   x<< 1300 ,1500 ,500  ,75   ,1    ,0.4  ,0.05  ;
1633   // do the computation
1634   lm.resetParameters();
1635   lm.parameters.ftol = 1.E4*NumTraits<double>::epsilon();
1636   lm.parameters.xtol = 1.E4*NumTraits<double>::epsilon();
1637   info = lm.minimize(x);
1638 
1639   // check return value
1640   VERIFY_IS_EQUAL(info, 1);
1641   VERIFY_IS_EQUAL(lm.nfev, 29);
1642   VERIFY_IS_EQUAL(lm.njev, 28);
1643   // check norm^2
1644   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.6427082397E+03);
1645   // check x
1646   VERIFY_IS_APPROX(x[0], 1.2881396800E+03);
1647   VERIFY_IS_APPROX(x[1], 1.4910792535E+03);
1648   VERIFY_IS_APPROX(x[2], 5.8323836877E+02);
1649   VERIFY_IS_APPROX(x[3], 7.5416644291E+01);
1650   VERIFY_IS_APPROX(x[4], 9.6629502864E-01);
1651   VERIFY_IS_APPROX(x[5], 3.9797285797E-01);
1652   VERIFY_IS_APPROX(x[6], 4.9727297349E-02);
1653 }
1654 
1655 struct rat43_functor : Functor<double>
1656 {
1657     rat43_functor(void) : Functor<double>(4,15) {}
1658     static const double x[15];
1659     static const double y[15];
1660     int operator()(const VectorXd &b, VectorXd &fvec)
1661     {
1662         assert(b.size()==4);
1663         assert(fvec.size()==15);
1664         for(int i=0; i<15; i++)
1665             fvec[i] = b[0] * pow(1.+exp(b[1]-b[2]*x[i]),-1./b[3]) - y[i];
1666         return 0;
1667     }
1668     int df(const VectorXd &b, MatrixXd &fjac)
1669     {
1670         assert(b.size()==4);
1671         assert(fjac.rows()==15);
1672         assert(fjac.cols()==4);
1673         for(int i=0; i<15; i++) {
1674             double e = exp(b[1]-b[2]*x[i]);
1675             double power = -1./b[3];
1676             fjac(i,0) = pow(1.+e, power);
1677             fjac(i,1) = power*b[0]*e*pow(1.+e, power-1.);
1678             fjac(i,2) = -power*b[0]*e*x[i]*pow(1.+e, power-1.);
1679             fjac(i,3) = b[0]*power*power*log(1.+e)*pow(1.+e, power);
1680         }
1681         return 0;
1682     }
1683 };
1684 const double rat43_functor::x[15] = { 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15. };
1685 const double rat43_functor::y[15] = { 16.08, 33.83, 65.80, 97.20, 191.55, 326.20, 386.87, 520.53, 590.03, 651.92, 724.93, 699.56, 689.96, 637.56, 717.41 };
1686 
1687 // http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml
1688 void testNistRat43(void)
1689 {
1690   const int n=4;
1691   int info;
1692 
1693   VectorXd x(n);
1694 
1695   /*
1696    * First try
1697    */
1698   x<< 100., 10., 1., 1.;
1699   // do the computation
1700   rat43_functor functor;
1701   LevenbergMarquardt<rat43_functor> lm(functor);
1702   lm.parameters.ftol = 1.E6*NumTraits<double>::epsilon();
1703   lm.parameters.xtol = 1.E6*NumTraits<double>::epsilon();
1704   info = lm.minimize(x);
1705 
1706   // check return value
1707   VERIFY_IS_EQUAL(info, 1);
1708   VERIFY_IS_EQUAL(lm.nfev, 27);
1709   VERIFY_IS_EQUAL(lm.njev, 20);
1710   // check norm^2
1711   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03);
1712   // check x
1713   VERIFY_IS_APPROX(x[0], 6.9964151270E+02);
1714   VERIFY_IS_APPROX(x[1], 5.2771253025E+00);
1715   VERIFY_IS_APPROX(x[2], 7.5962938329E-01);
1716   VERIFY_IS_APPROX(x[3], 1.2792483859E+00);
1717 
1718   /*
1719    * Second try
1720    */
1721   x<< 700., 5., 0.75, 1.3;
1722   // do the computation
1723   lm.resetParameters();
1724   lm.parameters.ftol = 1.E5*NumTraits<double>::epsilon();
1725   lm.parameters.xtol = 1.E5*NumTraits<double>::epsilon();
1726   info = lm.minimize(x);
1727 
1728   // check return value
1729   VERIFY_IS_EQUAL(info, 1);
1730   VERIFY_IS_EQUAL(lm.nfev, 9);
1731   VERIFY_IS_EQUAL(lm.njev, 8);
1732   // check norm^2
1733   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 8.7864049080E+03);
1734   // check x
1735   VERIFY_IS_APPROX(x[0], 6.9964151270E+02);
1736   VERIFY_IS_APPROX(x[1], 5.2771253025E+00);
1737   VERIFY_IS_APPROX(x[2], 7.5962938329E-01);
1738   VERIFY_IS_APPROX(x[3], 1.2792483859E+00);
1739 }
1740 
1741 
1742 
1743 struct eckerle4_functor : Functor<double>
1744 {
1745     eckerle4_functor(void) : Functor<double>(3,35) {}
1746     static const double x[35];
1747     static const double y[35];
1748     int operator()(const VectorXd &b, VectorXd &fvec)
1749     {
1750         assert(b.size()==3);
1751         assert(fvec.size()==35);
1752         for(int i=0; i<35; i++)
1753             fvec[i] = b[0]/b[1] * exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/(b[1]*b[1])) - y[i];
1754         return 0;
1755     }
1756     int df(const VectorXd &b, MatrixXd &fjac)
1757     {
1758         assert(b.size()==3);
1759         assert(fjac.rows()==35);
1760         assert(fjac.cols()==3);
1761         for(int i=0; i<35; i++) {
1762             double b12 = b[1]*b[1];
1763             double e = exp(-0.5*(x[i]-b[2])*(x[i]-b[2])/b12);
1764             fjac(i,0) = e / b[1];
1765             fjac(i,1) = ((x[i]-b[2])*(x[i]-b[2])/b12-1.) * b[0]*e/b12;
1766             fjac(i,2) = (x[i]-b[2])*e*b[0]/b[1]/b12;
1767         }
1768         return 0;
1769     }
1770 };
1771 const double eckerle4_functor::x[35] = { 400.0, 405.0, 410.0, 415.0, 420.0, 425.0, 430.0, 435.0, 436.5, 438.0, 439.5, 441.0, 442.5, 444.0, 445.5, 447.0, 448.5, 450.0, 451.5, 453.0, 454.5, 456.0, 457.5, 459.0, 460.5, 462.0, 463.5, 465.0, 470.0, 475.0, 480.0, 485.0, 490.0, 495.0, 500.0};
1772 const double eckerle4_functor::y[35] = { 0.0001575, 0.0001699, 0.0002350, 0.0003102, 0.0004917, 0.0008710, 0.0017418, 0.0046400, 0.0065895, 0.0097302, 0.0149002, 0.0237310, 0.0401683, 0.0712559, 0.1264458, 0.2073413, 0.2902366, 0.3445623, 0.3698049, 0.3668534, 0.3106727, 0.2078154, 0.1164354, 0.0616764, 0.0337200, 0.0194023, 0.0117831, 0.0074357, 0.0022732, 0.0008800, 0.0004579, 0.0002345, 0.0001586, 0.0001143, 0.0000710 };
1773 
1774 // http://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml
1775 void testNistEckerle4(void)
1776 {
1777   const int n=3;
1778   int info;
1779 
1780   VectorXd x(n);
1781 
1782   /*
1783    * First try
1784    */
1785   x<< 1., 10., 500.;
1786   // do the computation
1787   eckerle4_functor functor;
1788   LevenbergMarquardt<eckerle4_functor> lm(functor);
1789   info = lm.minimize(x);
1790 
1791   // check return value
1792   VERIFY_IS_EQUAL(info, 1);
1793   VERIFY_IS_EQUAL(lm.nfev, 18);
1794   VERIFY_IS_EQUAL(lm.njev, 15);
1795   // check norm^2
1796   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03);
1797   // check x
1798   VERIFY_IS_APPROX(x[0], 1.5543827178);
1799   VERIFY_IS_APPROX(x[1], 4.0888321754);
1800   VERIFY_IS_APPROX(x[2], 4.5154121844E+02);
1801 
1802   /*
1803    * Second try
1804    */
1805   x<< 1.5, 5., 450.;
1806   // do the computation
1807   info = lm.minimize(x);
1808 
1809   // check return value
1810   VERIFY_IS_EQUAL(info, 1);
1811   VERIFY_IS_EQUAL(lm.nfev, 7);
1812   VERIFY_IS_EQUAL(lm.njev, 6);
1813   // check norm^2
1814   VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4635887487E-03);
1815   // check x
1816   VERIFY_IS_APPROX(x[0], 1.5543827178);
1817   VERIFY_IS_APPROX(x[1], 4.0888321754);
1818   VERIFY_IS_APPROX(x[2], 4.5154121844E+02);
1819 }
1820 
1821 void test_NonLinearOptimization()
1822 {
1823     // Tests using the examples provided by (c)minpack
1824     CALL_SUBTEST/*_1*/(testChkder());
1825     CALL_SUBTEST/*_1*/(testLmder1());
1826     CALL_SUBTEST/*_1*/(testLmder());
1827     CALL_SUBTEST/*_2*/(testHybrj1());
1828     CALL_SUBTEST/*_2*/(testHybrj());
1829     CALL_SUBTEST/*_2*/(testHybrd1());
1830     CALL_SUBTEST/*_2*/(testHybrd());
1831     CALL_SUBTEST/*_3*/(testLmstr1());
1832     CALL_SUBTEST/*_3*/(testLmstr());
1833     CALL_SUBTEST/*_3*/(testLmdif1());
1834     CALL_SUBTEST/*_3*/(testLmdif());
1835 
1836     // NIST tests, level of difficulty = "Lower"
1837     CALL_SUBTEST/*_4*/(testNistMisra1a());
1838     CALL_SUBTEST/*_4*/(testNistChwirut2());
1839 
1840     // NIST tests, level of difficulty = "Average"
1841     CALL_SUBTEST/*_5*/(testNistHahn1());
1842     CALL_SUBTEST/*_6*/(testNistMisra1d());
1843     CALL_SUBTEST/*_7*/(testNistMGH17());
1844     CALL_SUBTEST/*_8*/(testNistLanczos1());
1845 
1846 //     // NIST tests, level of difficulty = "Higher"
1847     CALL_SUBTEST/*_9*/(testNistRat42());
1848 //     CALL_SUBTEST/*_10*/(testNistMGH10());
1849     CALL_SUBTEST/*_11*/(testNistBoxBOD());
1850 //     CALL_SUBTEST/*_12*/(testNistMGH09());
1851     CALL_SUBTEST/*_13*/(testNistBennett5());
1852     CALL_SUBTEST/*_14*/(testNistThurber());
1853     CALL_SUBTEST/*_15*/(testNistRat43());
1854     CALL_SUBTEST/*_16*/(testNistEckerle4());
1855 }
1856 
1857 /*
1858  * Can be useful for debugging...
1859   printf("info, nfev : %d, %d\n", info, lm.nfev);
1860   printf("info, nfev, njev : %d, %d, %d\n", info, solver.nfev, solver.njev);
1861   printf("info, nfev : %d, %d\n", info, solver.nfev);
1862   printf("x[0] : %.32g\n", x[0]);
1863   printf("x[1] : %.32g\n", x[1]);
1864   printf("x[2] : %.32g\n", x[2]);
1865   printf("x[3] : %.32g\n", x[3]);
1866   printf("fvec.blueNorm() : %.32g\n", solver.fvec.blueNorm());
1867   printf("fvec.blueNorm() : %.32g\n", lm.fvec.blueNorm());
1868 
1869   printf("info, nfev, njev : %d, %d, %d\n", info, lm.nfev, lm.njev);
1870   printf("fvec.squaredNorm() : %.13g\n", lm.fvec.squaredNorm());
1871   std::cout << x << std::endl;
1872   std::cout.precision(9);
1873   std::cout << x[0] << std::endl;
1874   std::cout << x[1] << std::endl;
1875   std::cout << x[2] << std::endl;
1876   std::cout << x[3] << std::endl;
1877 */
1878 
1879