1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #define EIGEN_TEST_NO_LONGDOUBLE 11 #define EIGEN_TEST_FUNC cxx11_tensor_complex 12 #define EIGEN_USE_GPU 13 14 #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 15 #include <cuda_fp16.h> 16 #endif 17 #include "main.h" 18 #include <unsupported/Eigen/CXX11/Tensor> 19 20 using Eigen::Tensor; 21 22 void test_cuda_nullary() { 23 Tensor<std::complex<float>, 1, 0, int> in1(2); 24 Tensor<std::complex<float>, 1, 0, int> in2(2); 25 in1.setRandom(); 26 in2.setRandom(); 27 28 std::size_t float_bytes = in1.size() * sizeof(float); 29 std::size_t complex_bytes = in1.size() * sizeof(std::complex<float>); 30 31 std::complex<float>* d_in1; 32 std::complex<float>* d_in2; 33 float* d_out2; 34 cudaMalloc((void**)(&d_in1), complex_bytes); 35 cudaMalloc((void**)(&d_in2), complex_bytes); 36 cudaMalloc((void**)(&d_out2), float_bytes); 37 cudaMemcpy(d_in1, in1.data(), complex_bytes, cudaMemcpyHostToDevice); 38 cudaMemcpy(d_in2, in2.data(), complex_bytes, cudaMemcpyHostToDevice); 39 40 Eigen::CudaStreamDevice stream; 41 Eigen::GpuDevice gpu_device(&stream); 42 43 Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in1( 44 d_in1, 2); 45 Eigen::TensorMap<Eigen::Tensor<std::complex<float>, 1, 0, int>, Eigen::Aligned> gpu_in2( 46 d_in2, 2); 47 Eigen::TensorMap<Eigen::Tensor<float, 1, 0, int>, Eigen::Aligned> gpu_out2( 48 d_out2, 2); 49 50 gpu_in1.device(gpu_device) = gpu_in1.constant(std::complex<float>(3.14f, 2.7f)); 51 gpu_out2.device(gpu_device) = gpu_in2.abs(); 52 53 Tensor<std::complex<float>, 1, 0, int> new1(2); 54 Tensor<float, 1, 0, int> new2(2); 55 56 assert(cudaMemcpyAsync(new1.data(), d_in1, complex_bytes, cudaMemcpyDeviceToHost, 57 gpu_device.stream()) == cudaSuccess); 58 assert(cudaMemcpyAsync(new2.data(), d_out2, float_bytes, cudaMemcpyDeviceToHost, 59 gpu_device.stream()) == cudaSuccess); 60 61 assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); 62 63 for (int i = 0; i < 2; ++i) { 64 VERIFY_IS_APPROX(new1(i), std::complex<float>(3.14f, 2.7f)); 65 VERIFY_IS_APPROX(new2(i), std::abs(in2(i))); 66 } 67 68 cudaFree(d_in1); 69 cudaFree(d_in2); 70 cudaFree(d_out2); 71 } 72 73 74 static void test_cuda_sum_reductions() { 75 76 Eigen::CudaStreamDevice stream; 77 Eigen::GpuDevice gpu_device(&stream); 78 79 const int num_rows = internal::random<int>(1024, 5*1024); 80 const int num_cols = internal::random<int>(1024, 5*1024); 81 82 Tensor<std::complex<float>, 2> in(num_rows, num_cols); 83 in.setRandom(); 84 85 Tensor<std::complex<float>, 0> full_redux; 86 full_redux = in.sum(); 87 88 std::size_t in_bytes = in.size() * sizeof(std::complex<float>); 89 std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>); 90 std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes)); 91 std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes)); 92 gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); 93 94 TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols); 95 TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr); 96 97 out_gpu.device(gpu_device) = in_gpu.sum(); 98 99 Tensor<std::complex<float>, 0> full_redux_gpu; 100 gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); 101 gpu_device.synchronize(); 102 103 // Check that the CPU and GPU reductions return the same result. 104 VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); 105 106 gpu_device.deallocate(gpu_in_ptr); 107 gpu_device.deallocate(gpu_out_ptr); 108 } 109 110 111 static void test_cuda_product_reductions() { 112 113 Eigen::CudaStreamDevice stream; 114 Eigen::GpuDevice gpu_device(&stream); 115 116 const int num_rows = internal::random<int>(1024, 5*1024); 117 const int num_cols = internal::random<int>(1024, 5*1024); 118 119 Tensor<std::complex<float>, 2> in(num_rows, num_cols); 120 in.setRandom(); 121 122 Tensor<std::complex<float>, 0> full_redux; 123 full_redux = in.prod(); 124 125 std::size_t in_bytes = in.size() * sizeof(std::complex<float>); 126 std::size_t out_bytes = full_redux.size() * sizeof(std::complex<float>); 127 std::complex<float>* gpu_in_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(in_bytes)); 128 std::complex<float>* gpu_out_ptr = static_cast<std::complex<float>*>(gpu_device.allocate(out_bytes)); 129 gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); 130 131 TensorMap<Tensor<std::complex<float>, 2> > in_gpu(gpu_in_ptr, num_rows, num_cols); 132 TensorMap<Tensor<std::complex<float>, 0> > out_gpu(gpu_out_ptr); 133 134 out_gpu.device(gpu_device) = in_gpu.prod(); 135 136 Tensor<std::complex<float>, 0> full_redux_gpu; 137 gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); 138 gpu_device.synchronize(); 139 140 // Check that the CPU and GPU reductions return the same result. 141 VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); 142 143 gpu_device.deallocate(gpu_in_ptr); 144 gpu_device.deallocate(gpu_out_ptr); 145 } 146 147 148 void test_cxx11_tensor_complex() 149 { 150 CALL_SUBTEST(test_cuda_nullary()); 151 CALL_SUBTEST(test_cuda_sum_reductions()); 152 CALL_SUBTEST(test_cuda_product_reductions()); 153 } 154