1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
12 #include <Eigen/CXX11/Tensor>
13 
14 using Eigen::Tensor;
15 using Eigen::RowMajor;
16 
17 static void test_1d()
18 {
19   Tensor<float, 1> vec1(6);
20   Tensor<float, 1, RowMajor> vec2(6);
21 
22   vec1(0) = 4.0;  vec2(0) = 0.0;
23   vec1(1) = 8.0;  vec2(1) = 1.0;
24   vec1(2) = 15.0; vec2(2) = 2.0;
25   vec1(3) = 16.0; vec2(3) = 3.0;
26   vec1(4) = 23.0; vec2(4) = 4.0;
27   vec1(5) = 42.0; vec2(5) = 5.0;
28 
29   float data3[6];
30   TensorMap<Tensor<float, 1>> vec3(data3, 6);
31   vec3 = vec1.sqrt();
32   float data4[6];
33   TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6);
34   vec4 = vec2.square();
35   float data5[6];
36   TensorMap<Tensor<float, 1, RowMajor>> vec5(data5, 6);
37   vec5 = vec2.cube();
38 
39   VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
40   VERIFY_IS_APPROX(vec3(1), sqrtf(8.0));
41   VERIFY_IS_APPROX(vec3(2), sqrtf(15.0));
42   VERIFY_IS_APPROX(vec3(3), sqrtf(16.0));
43   VERIFY_IS_APPROX(vec3(4), sqrtf(23.0));
44   VERIFY_IS_APPROX(vec3(5), sqrtf(42.0));
45 
46   VERIFY_IS_APPROX(vec4(0), 0.0f);
47   VERIFY_IS_APPROX(vec4(1), 1.0f);
48   VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f);
49   VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f);
50   VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f);
51   VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f);
52 
53   VERIFY_IS_APPROX(vec5(0), 0.0f);
54   VERIFY_IS_APPROX(vec5(1), 1.0f);
55   VERIFY_IS_APPROX(vec5(2), 2.0f * 2.0f * 2.0f);
56   VERIFY_IS_APPROX(vec5(3), 3.0f * 3.0f * 3.0f);
57   VERIFY_IS_APPROX(vec5(4), 4.0f * 4.0f * 4.0f);
58   VERIFY_IS_APPROX(vec5(5), 5.0f * 5.0f * 5.0f);
59 
60   vec3 = vec1 + vec2;
61   VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f);
62   VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f);
63   VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f);
64   VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f);
65   VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f);
66   VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
67 }
68 
69 static void test_2d()
70 {
71   float data1[6];
72   TensorMap<Tensor<float, 2>> mat1(data1, 2, 3);
73   float data2[6];
74   TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3);
75 
76   mat1(0,0) = 0.0;
77   mat1(0,1) = 1.0;
78   mat1(0,2) = 2.0;
79   mat1(1,0) = 3.0;
80   mat1(1,1) = 4.0;
81   mat1(1,2) = 5.0;
82 
83   mat2(0,0) = -0.0;
84   mat2(0,1) = -1.0;
85   mat2(0,2) = -2.0;
86   mat2(1,0) = -3.0;
87   mat2(1,1) = -4.0;
88   mat2(1,2) = -5.0;
89 
90   Tensor<float, 2> mat3(2,3);
91   Tensor<float, 2, RowMajor> mat4(2,3);
92   mat3 = mat1.abs();
93   mat4 = mat2.abs();
94 
95   VERIFY_IS_APPROX(mat3(0,0), 0.0f);
96   VERIFY_IS_APPROX(mat3(0,1), 1.0f);
97   VERIFY_IS_APPROX(mat3(0,2), 2.0f);
98   VERIFY_IS_APPROX(mat3(1,0), 3.0f);
99   VERIFY_IS_APPROX(mat3(1,1), 4.0f);
100   VERIFY_IS_APPROX(mat3(1,2), 5.0f);
101 
102   VERIFY_IS_APPROX(mat4(0,0), 0.0f);
103   VERIFY_IS_APPROX(mat4(0,1), 1.0f);
104   VERIFY_IS_APPROX(mat4(0,2), 2.0f);
105   VERIFY_IS_APPROX(mat4(1,0), 3.0f);
106   VERIFY_IS_APPROX(mat4(1,1), 4.0f);
107   VERIFY_IS_APPROX(mat4(1,2), 5.0f);
108 }
109 
110 static void test_3d()
111 {
112   Tensor<float, 3> mat1(2,3,7);
113   Tensor<float, 3, RowMajor> mat2(2,3,7);
114 
115   float val = 1.0f;
116   for (int i = 0; i < 2; ++i) {
117     for (int j = 0; j < 3; ++j) {
118       for (int k = 0; k < 7; ++k) {
119         mat1(i,j,k) = val;
120         mat2(i,j,k) = val;
121         val += 1.0f;
122       }
123     }
124   }
125 
126   Tensor<float, 3> mat3(2,3,7);
127   mat3 = mat1 + mat1;
128   Tensor<float, 3, RowMajor> mat4(2,3,7);
129   mat4 = mat2 * 3.14f;
130   Tensor<float, 3> mat5(2,3,7);
131   mat5 = mat1.inverse().log();
132   Tensor<float, 3, RowMajor> mat6(2,3,7);
133   mat6 = mat2.pow(0.5f) * 3.14f;
134   Tensor<float, 3> mat7(2,3,7);
135   mat7 = mat1.cwiseMax(mat5 * 2.0f).exp();
136   Tensor<float, 3, RowMajor> mat8(2,3,7);
137   mat8 = (-mat2).exp() * 3.14f;
138   Tensor<float, 3, RowMajor> mat9(2,3,7);
139   mat9 = mat2 + 3.14f;
140   Tensor<float, 3, RowMajor> mat10(2,3,7);
141   mat10 = mat2 - 3.14f;
142   Tensor<float, 3, RowMajor> mat11(2,3,7);
143   mat11 = mat2 / 3.14f;
144 
145   val = 1.0f;
146   for (int i = 0; i < 2; ++i) {
147     for (int j = 0; j < 3; ++j) {
148       for (int k = 0; k < 7; ++k) {
149         VERIFY_IS_APPROX(mat3(i,j,k), val + val);
150         VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f);
151         VERIFY_IS_APPROX(mat5(i,j,k), logf(1.0f/val));
152         VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f);
153         VERIFY_IS_APPROX(mat7(i,j,k), expf((std::max)(val, mat5(i,j,k) * 2.0f)));
154         VERIFY_IS_APPROX(mat8(i,j,k), expf(-val) * 3.14f);
155         VERIFY_IS_APPROX(mat9(i,j,k), val + 3.14f);
156         VERIFY_IS_APPROX(mat10(i,j,k), val - 3.14f);
157         VERIFY_IS_APPROX(mat11(i,j,k), val / 3.14f);
158         val += 1.0f;
159       }
160     }
161   }
162 }
163 
164 static void test_constants()
165 {
166   Tensor<float, 3> mat1(2,3,7);
167   Tensor<float, 3> mat2(2,3,7);
168   Tensor<float, 3> mat3(2,3,7);
169 
170   float val = 1.0f;
171   for (int i = 0; i < 2; ++i) {
172     for (int j = 0; j < 3; ++j) {
173       for (int k = 0; k < 7; ++k) {
174         mat1(i,j,k) = val;
175         val += 1.0f;
176       }
177     }
178   }
179   mat2 = mat1.constant(3.14f);
180   mat3 = mat1.cwiseMax(7.3f).exp();
181 
182   val = 1.0f;
183   for (int i = 0; i < 2; ++i) {
184     for (int j = 0; j < 3; ++j) {
185       for (int k = 0; k < 7; ++k) {
186         VERIFY_IS_APPROX(mat2(i,j,k), 3.14f);
187         VERIFY_IS_APPROX(mat3(i,j,k), expf((std::max)(val, 7.3f)));
188         val += 1.0f;
189       }
190     }
191   }
192 }
193 
194 static void test_boolean()
195 {
196   Tensor<int, 1> vec(6);
197   std::copy_n(std::begin({0, 1, 2, 3, 4, 5}), 6, vec.data());
198 
199   // Test ||.
200   Tensor<bool, 1> bool1 = vec < vec.constant(1) || vec > vec.constant(4);
201   VERIFY_IS_EQUAL(bool1[0], true);
202   VERIFY_IS_EQUAL(bool1[1], false);
203   VERIFY_IS_EQUAL(bool1[2], false);
204   VERIFY_IS_EQUAL(bool1[3], false);
205   VERIFY_IS_EQUAL(bool1[4], false);
206   VERIFY_IS_EQUAL(bool1[5], true);
207 
208   // Test &&, including cast of operand vec.
209   Tensor<bool, 1> bool2 = vec.cast<bool>() && vec < vec.constant(4);
210   VERIFY_IS_EQUAL(bool2[0], false);
211   VERIFY_IS_EQUAL(bool2[1], true);
212   VERIFY_IS_EQUAL(bool2[2], true);
213   VERIFY_IS_EQUAL(bool2[3], true);
214   VERIFY_IS_EQUAL(bool2[4], false);
215   VERIFY_IS_EQUAL(bool2[5], false);
216 
217   // Compilation tests:
218   // Test Tensor<bool> against results of cast or comparison; verifies that
219   // CoeffReturnType is set to match Op return type of bool for Unary and Binary
220   // Ops.
221   Tensor<bool, 1> bool3 = vec.cast<bool>() && bool2;
222   bool3 = vec < vec.constant(4) && bool2;
223 }
224 
225 static void test_functors()
226 {
227   Tensor<float, 3> mat1(2,3,7);
228   Tensor<float, 3> mat2(2,3,7);
229   Tensor<float, 3> mat3(2,3,7);
230 
231   float val = 1.0f;
232   for (int i = 0; i < 2; ++i) {
233     for (int j = 0; j < 3; ++j) {
234       for (int k = 0; k < 7; ++k) {
235         mat1(i,j,k) = val;
236         val += 1.0f;
237       }
238     }
239   }
240   mat2 = mat1.inverse().unaryExpr(&asinf);
241   mat3 = mat1.unaryExpr(&tanhf);
242 
243   val = 1.0f;
244   for (int i = 0; i < 2; ++i) {
245     for (int j = 0; j < 3; ++j) {
246       for (int k = 0; k < 7; ++k) {
247         VERIFY_IS_APPROX(mat2(i,j,k), asinf(1.0f / mat1(i,j,k)));
248         VERIFY_IS_APPROX(mat3(i,j,k), tanhf(mat1(i,j,k)));
249         val += 1.0f;
250       }
251     }
252   }
253 }
254 
255 static void test_type_casting()
256 {
257   Tensor<bool, 3> mat1(2,3,7);
258   Tensor<float, 3> mat2(2,3,7);
259   Tensor<double, 3> mat3(2,3,7);
260   mat1.setRandom();
261   mat2.setRandom();
262 
263   mat3 = mat1.cast<double>();
264   for (int i = 0; i < 2; ++i) {
265     for (int j = 0; j < 3; ++j) {
266       for (int k = 0; k < 7; ++k) {
267         VERIFY_IS_APPROX(mat3(i,j,k), mat1(i,j,k) ? 1.0 : 0.0);
268       }
269     }
270   }
271 
272   mat3 = mat2.cast<double>();
273   for (int i = 0; i < 2; ++i) {
274     for (int j = 0; j < 3; ++j) {
275       for (int k = 0; k < 7; ++k) {
276         VERIFY_IS_APPROX(mat3(i,j,k), static_cast<double>(mat2(i,j,k)));
277       }
278     }
279   }
280 }
281 
282 static void test_select()
283 {
284   Tensor<float, 3> selector(2,3,7);
285   Tensor<float, 3> mat1(2,3,7);
286   Tensor<float, 3> mat2(2,3,7);
287   Tensor<float, 3> result(2,3,7);
288 
289   selector.setRandom();
290   mat1.setRandom();
291   mat2.setRandom();
292   result = (selector > selector.constant(0.5f)).select(mat1, mat2);
293 
294   for (int i = 0; i < 2; ++i) {
295     for (int j = 0; j < 3; ++j) {
296       for (int k = 0; k < 7; ++k) {
297         VERIFY_IS_APPROX(result(i,j,k), (selector(i,j,k) > 0.5f) ? mat1(i,j,k) : mat2(i,j,k));
298       }
299     }
300   }
301 }
302 
303 
304 void test_cxx11_tensor_expr()
305 {
306   CALL_SUBTEST(test_1d());
307   CALL_SUBTEST(test_2d());
308   CALL_SUBTEST(test_3d());
309   CALL_SUBTEST(test_constants());
310   CALL_SUBTEST(test_boolean());
311   CALL_SUBTEST(test_functors());
312   CALL_SUBTEST(test_type_casting());
313   CALL_SUBTEST(test_select());
314 }
315