1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
12 #include <Eigen/CXX11/Tensor>
13 
14 using Eigen::Tensor;
15 
16 template<typename>
17 static void test_simple_reshape()
18 {
19   Tensor<float, 5> tensor1(2,3,1,7,1);
20   tensor1.setRandom();
21 
22   Tensor<float, 3> tensor2(2,3,7);
23   Tensor<float, 2> tensor3(6,7);
24   Tensor<float, 2> tensor4(2,21);
25 
26   Tensor<float, 3>::Dimensions dim1(2,3,7);
27   tensor2 = tensor1.reshape(dim1);
28   Tensor<float, 2>::Dimensions dim2(6,7);
29   tensor3 = tensor1.reshape(dim2);
30   Tensor<float, 2>::Dimensions dim3(2,21);
31   tensor4 = tensor1.reshape(dim1).reshape(dim3);
32 
33   for (int i = 0; i < 2; ++i) {
34     for (int j = 0; j < 3; ++j) {
35       for (int k = 0; k < 7; ++k) {
36         VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k));
37         VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i+2*j,k));
38         VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j+3*k));
39       }
40     }
41   }
42 }
43 
44 template<typename>
45 static void test_reshape_in_expr() {
46   MatrixXf m1(2,3*5*7*11);
47   MatrixXf m2(3*5*7*11,13);
48   m1.setRandom();
49   m2.setRandom();
50   MatrixXf m3 = m1 * m2;
51 
52   TensorMap<Tensor<float, 5>> tensor1(m1.data(), 2,3,5,7,11);
53   TensorMap<Tensor<float, 5>> tensor2(m2.data(), 3,5,7,11,13);
54   Tensor<float, 2>::Dimensions newDims1(2,3*5*7*11);
55   Tensor<float, 2>::Dimensions newDims2(3*5*7*11,13);
56   typedef Tensor<float, 1>::DimensionPair DimPair;
57   array<DimPair, 1> contract_along{{DimPair(1, 0)}};
58   Tensor<float, 2> tensor3(2,13);
59   tensor3 = tensor1.reshape(newDims1).contract(tensor2.reshape(newDims2), contract_along);
60 
61   Map<MatrixXf> res(tensor3.data(), 2, 13);
62   for (int i = 0; i < 2; ++i) {
63     for (int j = 0; j < 13; ++j) {
64       VERIFY_IS_APPROX(res(i,j), m3(i,j));
65     }
66   }
67 }
68 
69 template<typename>
70 static void test_reshape_as_lvalue()
71 {
72   Tensor<float, 3> tensor(2,3,7);
73   tensor.setRandom();
74 
75   Tensor<float, 2> tensor2d(6,7);
76   Tensor<float, 3>::Dimensions dim(2,3,7);
77   tensor2d.reshape(dim) = tensor;
78 
79   float scratch[2*3*1*7*1];
80   TensorMap<Tensor<float, 5>> tensor5d(scratch, 2,3,1,7,1);
81   tensor5d.reshape(dim).device(Eigen::DefaultDevice()) = tensor;
82 
83   for (int i = 0; i < 2; ++i) {
84     for (int j = 0; j < 3; ++j) {
85       for (int k = 0; k < 7; ++k) {
86         VERIFY_IS_EQUAL(tensor2d(i+2*j,k), tensor(i,j,k));
87         VERIFY_IS_EQUAL(tensor5d(i,j,0,k,0), tensor(i,j,k));
88       }
89     }
90   }
91 }
92 
93 template<int DataLayout>
94 static void test_simple_slice()
95 {
96   Tensor<float, 5, DataLayout> tensor(2,3,5,7,11);
97   tensor.setRandom();
98 
99   Tensor<float, 5, DataLayout> slice1(1,1,1,1,1);
100   Eigen::DSizes<ptrdiff_t, 5> indices(1,2,3,4,5);
101   Eigen::DSizes<ptrdiff_t, 5> sizes(1,1,1,1,1);
102   slice1 = tensor.slice(indices, sizes);
103   VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
104 
105   Tensor<float, 5, DataLayout> slice2(1,1,2,2,3);
106   Eigen::DSizes<ptrdiff_t, 5> indices2(1,1,3,4,5);
107   Eigen::DSizes<ptrdiff_t, 5> sizes2(1,1,2,2,3);
108   slice2 = tensor.slice(indices2, sizes2);
109   for (int i = 0; i < 2; ++i) {
110     for (int j = 0; j < 2; ++j) {
111       for (int k = 0; k < 3; ++k) {
112         VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
113       }
114     }
115   }
116 }
117 
118 template<typename=void>
119 static void test_const_slice()
120 {
121   const float b[1] = {42};
122   TensorMap<Tensor<const float, 1> > m(b, 1);
123   DSizes<DenseIndex, 1> offsets;
124   offsets[0] = 0;
125   TensorRef<Tensor<const float, 1> > slice_ref(m.slice(offsets, m.dimensions()));
126   VERIFY_IS_EQUAL(slice_ref(0), 42);
127 }
128 
129 template<int DataLayout>
130 static void test_slice_in_expr() {
131   typedef Matrix<float, Dynamic, Dynamic, DataLayout> Mtx;
132   Mtx m1(7,7);
133   Mtx m2(3,3);
134   m1.setRandom();
135   m2.setRandom();
136 
137   Mtx m3 = m1.block(1, 2, 3, 3) * m2.block(0, 2, 3, 1);
138 
139   TensorMap<Tensor<float, 2, DataLayout>> tensor1(m1.data(), 7, 7);
140   TensorMap<Tensor<float, 2, DataLayout>> tensor2(m2.data(), 3, 3);
141   Tensor<float, 2, DataLayout> tensor3(3,1);
142   typedef Tensor<float, 1>::DimensionPair DimPair;
143   array<DimPair, 1> contract_along{{DimPair(1, 0)}};
144 
145   Eigen::DSizes<ptrdiff_t, 2> indices1(1,2);
146   Eigen::DSizes<ptrdiff_t, 2> sizes1(3,3);
147   Eigen::DSizes<ptrdiff_t, 2> indices2(0,2);
148   Eigen::DSizes<ptrdiff_t, 2> sizes2(3,1);
149   tensor3 = tensor1.slice(indices1, sizes1).contract(tensor2.slice(indices2, sizes2), contract_along);
150 
151   Map<Mtx> res(tensor3.data(), 3, 1);
152   for (int i = 0; i < 3; ++i) {
153     for (int j = 0; j < 1; ++j) {
154       VERIFY_IS_APPROX(res(i,j), m3(i,j));
155     }
156   }
157 
158   // Take an arbitrary slice of an arbitrarily sized tensor.
159   TensorMap<Tensor<const float, 2, DataLayout>> tensor4(m1.data(), 7, 7);
160   Tensor<float, 1, DataLayout> tensor6 = tensor4.reshape(DSizes<ptrdiff_t, 1>(7*7)).exp().slice(DSizes<ptrdiff_t, 1>(0), DSizes<ptrdiff_t, 1>(35));
161   for (int i = 0; i < 35; ++i) {
162     VERIFY_IS_APPROX(tensor6(i), expf(tensor4.data()[i]));
163   }
164 }
165 
166 template<int DataLayout>
167 static void test_slice_as_lvalue()
168 {
169   Tensor<float, 3, DataLayout> tensor1(2,2,7);
170   tensor1.setRandom();
171   Tensor<float, 3, DataLayout> tensor2(2,2,7);
172   tensor2.setRandom();
173   Tensor<float, 3, DataLayout> tensor3(4,3,5);
174   tensor3.setRandom();
175   Tensor<float, 3, DataLayout> tensor4(4,3,2);
176   tensor4.setRandom();
177   Tensor<float, 3, DataLayout> tensor5(10,13,12);
178   tensor5.setRandom();
179 
180   Tensor<float, 3, DataLayout> result(4,5,7);
181   Eigen::DSizes<ptrdiff_t, 3> sizes12(2,2,7);
182   Eigen::DSizes<ptrdiff_t, 3> first_slice(0,0,0);
183   result.slice(first_slice, sizes12) = tensor1;
184   Eigen::DSizes<ptrdiff_t, 3> second_slice(2,0,0);
185   result.slice(second_slice, sizes12).device(Eigen::DefaultDevice()) = tensor2;
186 
187   Eigen::DSizes<ptrdiff_t, 3> sizes3(4,3,5);
188   Eigen::DSizes<ptrdiff_t, 3> third_slice(0,2,0);
189   result.slice(third_slice, sizes3) = tensor3;
190 
191   Eigen::DSizes<ptrdiff_t, 3> sizes4(4,3,2);
192   Eigen::DSizes<ptrdiff_t, 3> fourth_slice(0,2,5);
193   result.slice(fourth_slice, sizes4) = tensor4;
194 
195   for (int j = 0; j < 2; ++j) {
196     for (int k = 0; k < 7; ++k) {
197       for (int i = 0; i < 2; ++i) {
198         VERIFY_IS_EQUAL(result(i,j,k), tensor1(i,j,k));
199         VERIFY_IS_EQUAL(result(i+2,j,k), tensor2(i,j,k));
200       }
201     }
202   }
203   for (int i = 0; i < 4; ++i) {
204     for (int j = 2; j < 5; ++j) {
205       for (int k = 0; k < 5; ++k) {
206         VERIFY_IS_EQUAL(result(i,j,k), tensor3(i,j-2,k));
207       }
208       for (int k = 5; k < 7; ++k) {
209         VERIFY_IS_EQUAL(result(i,j,k), tensor4(i,j-2,k-5));
210       }
211     }
212   }
213 
214   Eigen::DSizes<ptrdiff_t, 3> sizes5(4,5,7);
215   Eigen::DSizes<ptrdiff_t, 3> fifth_slice(0,0,0);
216   result.slice(fifth_slice, sizes5) = tensor5.slice(fifth_slice, sizes5);
217   for (int i = 0; i < 4; ++i) {
218     for (int j = 2; j < 5; ++j) {
219       for (int k = 0; k < 7; ++k) {
220         VERIFY_IS_EQUAL(result(i,j,k), tensor5(i,j,k));
221       }
222     }
223   }
224 }
225 
226 template<int DataLayout>
227 static void test_slice_raw_data()
228 {
229   Tensor<float, 4, DataLayout> tensor(3,5,7,11);
230   tensor.setRandom();
231 
232   Eigen::DSizes<ptrdiff_t, 4> offsets(1,2,3,4);
233   Eigen::DSizes<ptrdiff_t, 4> extents(1,1,1,1);
234   typedef TensorEvaluator<decltype(tensor.slice(offsets, extents)), DefaultDevice> SliceEvaluator;
235   auto slice1 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
236   VERIFY_IS_EQUAL(slice1.dimensions().TotalSize(), 1);
237   VERIFY_IS_EQUAL(slice1.data()[0], tensor(1,2,3,4));
238 
239   if (DataLayout == ColMajor) {
240     extents = Eigen::DSizes<ptrdiff_t, 4>(2,1,1,1);
241     auto slice2 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
242     VERIFY_IS_EQUAL(slice2.dimensions().TotalSize(), 2);
243     VERIFY_IS_EQUAL(slice2.data()[0], tensor(1,2,3,4));
244     VERIFY_IS_EQUAL(slice2.data()[1], tensor(2,2,3,4));
245   } else {
246     extents = Eigen::DSizes<ptrdiff_t, 4>(1,1,1,2);
247     auto slice2 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
248     VERIFY_IS_EQUAL(slice2.dimensions().TotalSize(), 2);
249     VERIFY_IS_EQUAL(slice2.data()[0], tensor(1,2,3,4));
250     VERIFY_IS_EQUAL(slice2.data()[1], tensor(1,2,3,5));
251   }
252 
253   extents = Eigen::DSizes<ptrdiff_t, 4>(1,2,1,1);
254   auto slice3 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
255   VERIFY_IS_EQUAL(slice3.dimensions().TotalSize(), 2);
256   VERIFY_IS_EQUAL(slice3.data(), static_cast<float*>(0));
257 
258   if (DataLayout == ColMajor) {
259     offsets = Eigen::DSizes<ptrdiff_t, 4>(0,2,3,4);
260     extents = Eigen::DSizes<ptrdiff_t, 4>(3,2,1,1);
261     auto slice4 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
262     VERIFY_IS_EQUAL(slice4.dimensions().TotalSize(), 6);
263     for (int i = 0; i < 3; ++i) {
264       for (int j = 0; j < 2; ++j) {
265         VERIFY_IS_EQUAL(slice4.data()[i+3*j], tensor(i,2+j,3,4));
266       }
267     }
268   } else {
269     offsets = Eigen::DSizes<ptrdiff_t, 4>(1,2,3,0);
270     extents = Eigen::DSizes<ptrdiff_t, 4>(1,1,2,11);
271     auto slice4 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
272     VERIFY_IS_EQUAL(slice4.dimensions().TotalSize(), 22);
273     for (int l = 0; l < 11; ++l) {
274       for (int k = 0; k < 2; ++k) {
275         VERIFY_IS_EQUAL(slice4.data()[l+11*k], tensor(1,2,3+k,l));
276       }
277     }
278   }
279 
280   if (DataLayout == ColMajor) {
281     offsets = Eigen::DSizes<ptrdiff_t, 4>(0,0,0,4);
282     extents = Eigen::DSizes<ptrdiff_t, 4>(3,5,7,2);
283     auto slice5 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
284     VERIFY_IS_EQUAL(slice5.dimensions().TotalSize(), 210);
285     for (int i = 0; i < 3; ++i) {
286       for (int j = 0; j < 5; ++j) {
287         for (int k = 0; k < 7; ++k) {
288           for (int l = 0; l < 2; ++l) {
289             int slice_index = i + 3 * (j + 5 * (k + 7 * l));
290             VERIFY_IS_EQUAL(slice5.data()[slice_index], tensor(i,j,k,l+4));
291           }
292         }
293       }
294     }
295   } else {
296     offsets = Eigen::DSizes<ptrdiff_t, 4>(1,0,0,0);
297     extents = Eigen::DSizes<ptrdiff_t, 4>(2,5,7,11);
298     auto slice5 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
299     VERIFY_IS_EQUAL(slice5.dimensions().TotalSize(), 770);
300     for (int l = 0; l < 11; ++l) {
301       for (int k = 0; k < 7; ++k) {
302         for (int j = 0; j < 5; ++j) {
303           for (int i = 0; i < 2; ++i) {
304             int slice_index = l + 11 * (k + 7 * (j + 5 * i));
305             VERIFY_IS_EQUAL(slice5.data()[slice_index], tensor(i+1,j,k,l));
306           }
307         }
308       }
309     }
310 
311   }
312 
313   offsets = Eigen::DSizes<ptrdiff_t, 4>(0,0,0,0);
314   extents = Eigen::DSizes<ptrdiff_t, 4>(3,5,7,11);
315   auto slice6 = SliceEvaluator(tensor.slice(offsets, extents), DefaultDevice());
316   VERIFY_IS_EQUAL(slice6.dimensions().TotalSize(), 3*5*7*11);
317   VERIFY_IS_EQUAL(slice6.data(), tensor.data());
318 }
319 
320 
321 template<int DataLayout>
322 static void test_strided_slice()
323 {
324   typedef Tensor<float, 5, DataLayout> Tensor5f;
325   typedef Eigen::DSizes<Eigen::DenseIndex, 5> Index5;
326   typedef Tensor<float, 2, DataLayout> Tensor2f;
327   typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
328   Tensor<float, 5, DataLayout> tensor(2,3,5,7,11);
329   Tensor<float, 2, DataLayout> tensor2(7,11);
330   tensor.setRandom();
331   tensor2.setRandom();
332 
333   if (true) {
334     Tensor2f slice(2,3);
335     Index2 strides(-2,-1);
336     Index2 indicesStart(5,7);
337     Index2 indicesStop(0,4);
338     slice = tensor2.stridedSlice(indicesStart, indicesStop, strides);
339     for (int j = 0; j < 2; ++j) {
340       for (int k = 0; k < 3; ++k) {
341         VERIFY_IS_EQUAL(slice(j,k), tensor2(5-2*j,7-k));
342       }
343     }
344   }
345 
346   if(true) {
347     Tensor2f slice(0,1);
348     Index2 strides(1,1);
349     Index2 indicesStart(5,4);
350     Index2 indicesStop(5,5);
351     slice = tensor2.stridedSlice(indicesStart, indicesStop, strides);
352   }
353 
354   if(true) { // test clamped degenerate interavls
355     Tensor2f slice(7,11);
356     Index2 strides(1,-1);
357     Index2 indicesStart(-3,20); // should become 0,10
358     Index2 indicesStop(20,-11); // should become 11, -1
359     slice = tensor2.stridedSlice(indicesStart, indicesStop, strides);
360     for (int j = 0; j < 7; ++j) {
361       for (int k = 0; k < 11; ++k) {
362         VERIFY_IS_EQUAL(slice(j,k), tensor2(j,10-k));
363       }
364     }
365   }
366 
367   if(true) {
368     Tensor5f slice1(1,1,1,1,1);
369     Eigen::DSizes<Eigen::DenseIndex, 5> indicesStart(1, 2, 3, 4, 5);
370     Eigen::DSizes<Eigen::DenseIndex, 5> indicesStop(2, 3, 4, 5, 6);
371     Eigen::DSizes<Eigen::DenseIndex, 5> strides(1, 1, 1, 1, 1);
372     slice1 = tensor.stridedSlice(indicesStart, indicesStop, strides);
373     VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
374   }
375 
376   if(true) {
377     Tensor5f slice(1,1,2,2,3);
378     Index5 start(1, 1, 3, 4, 5);
379     Index5 stop(2, 2, 5, 6, 8);
380     Index5 strides(1, 1, 1, 1, 1);
381     slice = tensor.stridedSlice(start, stop, strides);
382     for (int i = 0; i < 2; ++i) {
383       for (int j = 0; j < 2; ++j) {
384         for (int k = 0; k < 3; ++k) {
385           VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
386         }
387       }
388     }
389   }
390 
391   if(true) {
392     Tensor5f slice(1,1,2,2,3);
393     Index5 strides3(1, 1, -2, 1, -1);
394     Index5 indices3Start(1, 1, 4, 4, 7);
395     Index5 indices3Stop(2, 2, 0, 6, 4);
396     slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
397     for (int i = 0; i < 2; ++i) {
398       for (int j = 0; j < 2; ++j) {
399         for (int k = 0; k < 3; ++k) {
400           VERIFY_IS_EQUAL(slice(0,0,i,j,k), tensor(1,1,4-2*i,4+j,7-k));
401         }
402       }
403     }
404   }
405 
406   if(false) { // tests degenerate interval
407     Tensor5f slice(1,1,2,2,3);
408     Index5 strides3(1, 1, 2, 1, 1);
409     Index5 indices3Start(1, 1, 4, 4, 7);
410     Index5 indices3Stop(2, 2, 0, 6, 4);
411     slice = tensor.stridedSlice(indices3Start, indices3Stop, strides3);
412   }
413 }
414 
415 template<int DataLayout>
416 static void test_strided_slice_write()
417 {
418   typedef Tensor<float, 2, DataLayout> Tensor2f;
419   typedef Eigen::DSizes<Eigen::DenseIndex, 2> Index2;
420 
421   Tensor<float, 2, DataLayout> tensor(7,11),tensor2(7,11);
422   tensor.setRandom();
423   tensor2=tensor;
424   Tensor2f slice(2,3);
425 
426   slice.setRandom();
427 
428   Index2 strides(1,1);
429   Index2 indicesStart(3,4);
430   Index2 indicesStop(5,7);
431   Index2 lengths(2,3);
432 
433   tensor.slice(indicesStart,lengths)=slice;
434   tensor2.stridedSlice(indicesStart,indicesStop,strides)=slice;
435 
436   for(int i=0;i<7;i++) for(int j=0;j<11;j++){
437     VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j));
438   }
439 }
440 
441 
442 template<int DataLayout>
443 static void test_composition()
444 {
445   Eigen::Tensor<float, 2, DataLayout> matrix(7, 11);
446   matrix.setRandom();
447 
448   const DSizes<ptrdiff_t, 3> newDims(1, 1, 11);
449   Eigen::Tensor<float, 3, DataLayout> tensor =
450       matrix.slice(DSizes<ptrdiff_t, 2>(2, 0), DSizes<ptrdiff_t, 2>(1, 11)).reshape(newDims);
451 
452   VERIFY_IS_EQUAL(tensor.dimensions().TotalSize(), 11);
453   VERIFY_IS_EQUAL(tensor.dimension(0), 1);
454   VERIFY_IS_EQUAL(tensor.dimension(1), 1);
455   VERIFY_IS_EQUAL(tensor.dimension(2), 11);
456   for (int i = 0; i < 11; ++i) {
457     VERIFY_IS_EQUAL(tensor(0,0,i), matrix(2,i));
458   }
459 }
460 
461 
462 void test_cxx11_tensor_morphing()
463 {
464   CALL_SUBTEST_1(test_simple_reshape<void>());
465   CALL_SUBTEST_1(test_reshape_in_expr<void>());
466   CALL_SUBTEST_1(test_reshape_as_lvalue<void>());
467 
468   CALL_SUBTEST_1(test_simple_slice<ColMajor>());
469   CALL_SUBTEST_1(test_simple_slice<RowMajor>());
470   CALL_SUBTEST_1(test_const_slice());
471   CALL_SUBTEST_2(test_slice_in_expr<ColMajor>());
472   CALL_SUBTEST_3(test_slice_in_expr<RowMajor>());
473   CALL_SUBTEST_4(test_slice_as_lvalue<ColMajor>());
474   CALL_SUBTEST_4(test_slice_as_lvalue<RowMajor>());
475   CALL_SUBTEST_5(test_slice_raw_data<ColMajor>());
476   CALL_SUBTEST_5(test_slice_raw_data<RowMajor>());
477 
478   CALL_SUBTEST_6(test_strided_slice_write<ColMajor>());
479   CALL_SUBTEST_6(test_strided_slice<ColMajor>());
480   CALL_SUBTEST_6(test_strided_slice_write<RowMajor>());
481   CALL_SUBTEST_6(test_strided_slice<RowMajor>());
482 
483   CALL_SUBTEST_7(test_composition<ColMajor>());
484   CALL_SUBTEST_7(test_composition<RowMajor>());
485 }
486