1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 #define EIGEN_TEST_FUNC cxx11_tensor_reduction_sycl
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 
24 
25 static void test_full_reductions_sycl(const Eigen::SyclDevice&  sycl_device) {
26 
27   const int num_rows = 452;
28   const int num_cols = 765;
29   array<int, 2> tensorRange = {{num_rows, num_cols}};
30 
31   Tensor<float, 2> in(tensorRange);
32   Tensor<float, 0> full_redux;
33   Tensor<float, 0> full_redux_gpu;
34 
35   in.setRandom();
36 
37   full_redux = in.sum();
38 
39   float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float)));
40   float* gpu_out_data =(float*)sycl_device.allocate(sizeof(float));
41 
42   TensorMap<Tensor<float, 2> >  in_gpu(gpu_in_data, tensorRange);
43   TensorMap<Tensor<float, 0> >  out_gpu(gpu_out_data);
44 
45   sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float));
46   out_gpu.device(sycl_device) = in_gpu.sum();
47   sycl_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_data, sizeof(float));
48   // Check that the CPU and GPU reductions return the same result.
49   VERIFY_IS_APPROX(full_redux_gpu(), full_redux());
50 
51   sycl_device.deallocate(gpu_in_data);
52   sycl_device.deallocate(gpu_out_data);
53 }
54 
55 static void test_first_dim_reductions_sycl(const Eigen::SyclDevice& sycl_device) {
56 
57   int dim_x = 145;
58   int dim_y = 1;
59   int dim_z = 67;
60 
61   array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}};
62   Eigen::array<int, 1> red_axis;
63   red_axis[0] = 0;
64   array<int, 2> reduced_tensorRange = {{dim_y, dim_z}};
65 
66   Tensor<float, 3> in(tensorRange);
67   Tensor<float, 2> redux(reduced_tensorRange);
68   Tensor<float, 2> redux_gpu(reduced_tensorRange);
69 
70   in.setRandom();
71 
72   redux= in.sum(red_axis);
73 
74   float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float)));
75   float* gpu_out_data = static_cast<float*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(float)));
76 
77   TensorMap<Tensor<float, 3> >  in_gpu(gpu_in_data, tensorRange);
78   TensorMap<Tensor<float, 2> >  out_gpu(gpu_out_data, reduced_tensorRange);
79 
80   sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float));
81   out_gpu.device(sycl_device) = in_gpu.sum(red_axis);
82   sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(float));
83 
84   // Check that the CPU and GPU reductions return the same result.
85   for(int j=0; j<reduced_tensorRange[0]; j++ )
86     for(int k=0; k<reduced_tensorRange[1]; k++ )
87       VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
88 
89   sycl_device.deallocate(gpu_in_data);
90   sycl_device.deallocate(gpu_out_data);
91 }
92 
93 static void test_last_dim_reductions_sycl(const Eigen::SyclDevice &sycl_device) {
94 
95   int dim_x = 567;
96   int dim_y = 1;
97   int dim_z = 47;
98 
99   array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}};
100   Eigen::array<int, 1> red_axis;
101   red_axis[0] = 2;
102   array<int, 2> reduced_tensorRange = {{dim_x, dim_y}};
103 
104   Tensor<float, 3> in(tensorRange);
105   Tensor<float, 2> redux(reduced_tensorRange);
106   Tensor<float, 2> redux_gpu(reduced_tensorRange);
107 
108   in.setRandom();
109 
110   redux= in.sum(red_axis);
111 
112   float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float)));
113   float* gpu_out_data = static_cast<float*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(float)));
114 
115   TensorMap<Tensor<float, 3> >  in_gpu(gpu_in_data, tensorRange);
116   TensorMap<Tensor<float, 2> >  out_gpu(gpu_out_data, reduced_tensorRange);
117 
118   sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float));
119   out_gpu.device(sycl_device) = in_gpu.sum(red_axis);
120   sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(float));
121   // Check that the CPU and GPU reductions return the same result.
122   for(int j=0; j<reduced_tensorRange[0]; j++ )
123     for(int k=0; k<reduced_tensorRange[1]; k++ )
124       VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
125 
126   sycl_device.deallocate(gpu_in_data);
127   sycl_device.deallocate(gpu_out_data);
128 
129 }
130 
131 void test_cxx11_tensor_reduction_sycl() {
132   cl::sycl::gpu_selector s;
133   Eigen::SyclDevice sycl_device(s);
134   CALL_SUBTEST((test_full_reductions_sycl(sycl_device)));
135   CALL_SUBTEST((test_first_dim_reductions_sycl(sycl_device)));
136   CALL_SUBTEST((test_last_dim_reductions_sycl(sycl_device)));
137 
138 }
139