1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "matrix_functions.h"
11 
12 double binom(int n, int k)
13 {
14   double res = 1;
15   for (int i=0; i<k; i++)
16     res = res * (n-k+i+1) / (i+1);
17   return res;
18 }
19 
20 template <typename T>
21 T expfn(T x, int)
22 {
23   return std::exp(x);
24 }
25 
26 template <typename T>
27 void test2dRotation(double tol)
28 {
29   Matrix<T,2,2> A, B, C;
30   T angle;
31 
32   A << 0, 1, -1, 0;
33   for (int i=0; i<=20; i++)
34   {
35     angle = static_cast<T>(pow(10, i / 5. - 2));
36     B << std::cos(angle), std::sin(angle), -std::sin(angle), std::cos(angle);
37 
38     C = (angle*A).matrixFunction(expfn);
39     std::cout << "test2dRotation: i = " << i << "   error funm = " << relerr(C, B);
40     VERIFY(C.isApprox(B, static_cast<T>(tol)));
41 
42     C = (angle*A).exp();
43     std::cout << "   error expm = " << relerr(C, B) << "\n";
44     VERIFY(C.isApprox(B, static_cast<T>(tol)));
45   }
46 }
47 
48 template <typename T>
49 void test2dHyperbolicRotation(double tol)
50 {
51   Matrix<std::complex<T>,2,2> A, B, C;
52   std::complex<T> imagUnit(0,1);
53   T angle, ch, sh;
54 
55   for (int i=0; i<=20; i++)
56   {
57     angle = static_cast<T>((i-10) / 2.0);
58     ch = std::cosh(angle);
59     sh = std::sinh(angle);
60     A << 0, angle*imagUnit, -angle*imagUnit, 0;
61     B << ch, sh*imagUnit, -sh*imagUnit, ch;
62 
63     C = A.matrixFunction(expfn);
64     std::cout << "test2dHyperbolicRotation: i = " << i << "   error funm = " << relerr(C, B);
65     VERIFY(C.isApprox(B, static_cast<T>(tol)));
66 
67     C = A.exp();
68     std::cout << "   error expm = " << relerr(C, B) << "\n";
69     VERIFY(C.isApprox(B, static_cast<T>(tol)));
70   }
71 }
72 
73 template <typename T>
74 void testPascal(double tol)
75 {
76   for (int size=1; size<20; size++)
77   {
78     Matrix<T,Dynamic,Dynamic> A(size,size), B(size,size), C(size,size);
79     A.setZero();
80     for (int i=0; i<size-1; i++)
81       A(i+1,i) = static_cast<T>(i+1);
82     B.setZero();
83     for (int i=0; i<size; i++)
84       for (int j=0; j<=i; j++)
85     B(i,j) = static_cast<T>(binom(i,j));
86 
87     C = A.matrixFunction(expfn);
88     std::cout << "testPascal: size = " << size << "   error funm = " << relerr(C, B);
89     VERIFY(C.isApprox(B, static_cast<T>(tol)));
90 
91     C = A.exp();
92     std::cout << "   error expm = " << relerr(C, B) << "\n";
93     VERIFY(C.isApprox(B, static_cast<T>(tol)));
94   }
95 }
96 
97 template<typename MatrixType>
98 void randomTest(const MatrixType& m, double tol)
99 {
100   /* this test covers the following files:
101      Inverse.h
102   */
103   typename MatrixType::Index rows = m.rows();
104   typename MatrixType::Index cols = m.cols();
105   MatrixType m1(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, cols);
106 
107   typedef typename NumTraits<typename internal::traits<MatrixType>::Scalar>::Real RealScalar;
108 
109   for(int i = 0; i < g_repeat; i++) {
110     m1 = MatrixType::Random(rows, cols);
111 
112     m2 = m1.matrixFunction(expfn) * (-m1).matrixFunction(expfn);
113     std::cout << "randomTest: error funm = " << relerr(identity, m2);
114     VERIFY(identity.isApprox(m2, static_cast<RealScalar>(tol)));
115 
116     m2 = m1.exp() * (-m1).exp();
117     std::cout << "   error expm = " << relerr(identity, m2) << "\n";
118     VERIFY(identity.isApprox(m2, static_cast<RealScalar>(tol)));
119   }
120 }
121 
122 void test_matrix_exponential()
123 {
124   CALL_SUBTEST_2(test2dRotation<double>(1e-13));
125   CALL_SUBTEST_1(test2dRotation<float>(2e-5));  // was 1e-5, relaxed for clang 2.8 / linux / x86-64
126   CALL_SUBTEST_8(test2dRotation<long double>(1e-13));
127   CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
128   CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
129   CALL_SUBTEST_8(test2dHyperbolicRotation<long double>(1e-14));
130   CALL_SUBTEST_6(testPascal<float>(1e-6));
131   CALL_SUBTEST_5(testPascal<double>(1e-15));
132   CALL_SUBTEST_2(randomTest(Matrix2d(), 1e-13));
133   CALL_SUBTEST_7(randomTest(Matrix<double,3,3,RowMajor>(), 1e-13));
134   CALL_SUBTEST_3(randomTest(Matrix4cd(), 1e-13));
135   CALL_SUBTEST_4(randomTest(MatrixXd(8,8), 1e-13));
136   CALL_SUBTEST_1(randomTest(Matrix2f(), 1e-4));
137   CALL_SUBTEST_5(randomTest(Matrix3cf(), 1e-4));
138   CALL_SUBTEST_1(randomTest(Matrix4f(), 1e-4));
139   CALL_SUBTEST_6(randomTest(MatrixXf(8,8), 1e-4));
140   CALL_SUBTEST_9(randomTest(Matrix<long double,Dynamic,Dynamic>(7,7), 1e-13));
141 }
142