1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "matrix_functions.h"
11 
12 template<typename T>
13 void test2dRotation(const T& tol)
14 {
15   Matrix<T,2,2> A, B, C;
16   T angle, c, s;
17 
18   A << 0, 1, -1, 0;
19   MatrixPower<Matrix<T,2,2> > Apow(A);
20 
21   for (int i=0; i<=20; ++i) {
22     angle = std::pow(T(10), (i-10) / T(5.));
23     c = std::cos(angle);
24     s = std::sin(angle);
25     B << c, s, -s, c;
26 
27     C = Apow(std::ldexp(angle,1) / T(EIGEN_PI));
28     std::cout << "test2dRotation: i = " << i << "   error powerm = " << relerr(C,B) << '\n';
29     VERIFY(C.isApprox(B, tol));
30   }
31 }
32 
33 template<typename T>
34 void test2dHyperbolicRotation(const T& tol)
35 {
36   Matrix<std::complex<T>,2,2> A, B, C;
37   T angle, ch = std::cosh((T)1);
38   std::complex<T> ish(0, std::sinh((T)1));
39 
40   A << ch, ish, -ish, ch;
41   MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A);
42 
43   for (int i=0; i<=20; ++i) {
44     angle = std::ldexp(static_cast<T>(i-10), -1);
45     ch = std::cosh(angle);
46     ish = std::complex<T>(0, std::sinh(angle));
47     B << ch, ish, -ish, ch;
48 
49     C = Apow(angle);
50     std::cout << "test2dHyperbolicRotation: i = " << i << "   error powerm = " << relerr(C,B) << '\n';
51     VERIFY(C.isApprox(B, tol));
52   }
53 }
54 
55 template<typename T>
56 void test3dRotation(const T& tol)
57 {
58   Matrix<T,3,1> v;
59   T angle;
60 
61   for (int i=0; i<=20; ++i) {
62     v = Matrix<T,3,1>::Random();
63     v.normalize();
64     angle = std::pow(T(10), (i-10) / T(5.));
65     VERIFY(AngleAxis<T>(angle, v).matrix().isApprox(AngleAxis<T>(1,v).matrix().pow(angle), tol));
66   }
67 }
68 
69 template<typename MatrixType>
70 void testGeneral(const MatrixType& m, const typename MatrixType::RealScalar& tol)
71 {
72   typedef typename MatrixType::RealScalar RealScalar;
73   MatrixType m1, m2, m3, m4, m5;
74   RealScalar x, y;
75 
76   for (int i=0; i < g_repeat; ++i) {
77     generateTestMatrix<MatrixType>::run(m1, m.rows());
78     MatrixPower<MatrixType> mpow(m1);
79 
80     x = internal::random<RealScalar>();
81     y = internal::random<RealScalar>();
82     m2 = mpow(x);
83     m3 = mpow(y);
84 
85     m4 = mpow(x+y);
86     m5.noalias() = m2 * m3;
87     VERIFY(m4.isApprox(m5, tol));
88 
89     m4 = mpow(x*y);
90     m5 = m2.pow(y);
91     VERIFY(m4.isApprox(m5, tol));
92 
93     m4 = (std::abs(x) * m1).pow(y);
94     m5 = std::pow(std::abs(x), y) * m3;
95     VERIFY(m4.isApprox(m5, tol));
96   }
97 }
98 
99 template<typename MatrixType>
100 void testSingular(const MatrixType& m_const, const typename MatrixType::RealScalar& tol)
101 {
102   // we need to pass by reference in order to prevent errors with
103   // MSVC for aligned data types ...
104   MatrixType& m = const_cast<MatrixType&>(m_const);
105 
106   const int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex;
107   typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType;
108   typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur;
109   MatrixType T;
110 
111   for (int i=0; i < g_repeat; ++i) {
112     m.setRandom();
113     m.col(0).fill(0);
114 
115     schur.compute(m);
116     T = schur.matrixT();
117     const MatrixType& U = schur.matrixU();
118     processTriangularMatrix<MatrixType>::run(m, T, U);
119     MatrixPower<MatrixType> mpow(m);
120 
121     T = T.sqrt();
122     VERIFY(mpow(0.5L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
123 
124     T = T.sqrt();
125     VERIFY(mpow(0.25L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
126 
127     T = T.sqrt();
128     VERIFY(mpow(0.125L).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
129   }
130 }
131 
132 template<typename MatrixType>
133 void testLogThenExp(const MatrixType& m_const, const typename MatrixType::RealScalar& tol)
134 {
135   // we need to pass by reference in order to prevent errors with
136   // MSVC for aligned data types ...
137   MatrixType& m = const_cast<MatrixType&>(m_const);
138 
139   typedef typename MatrixType::Scalar Scalar;
140   Scalar x;
141 
142   for (int i=0; i < g_repeat; ++i) {
143     generateTestMatrix<MatrixType>::run(m, m.rows());
144     x = internal::random<Scalar>();
145     VERIFY(m.pow(x).isApprox((x * m.log()).exp(), tol));
146   }
147 }
148 
149 typedef Matrix<double,3,3,RowMajor>         Matrix3dRowMajor;
150 typedef Matrix<long double,3,3>             Matrix3e;
151 typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
152 
153 void test_matrix_power()
154 {
155   CALL_SUBTEST_2(test2dRotation<double>(1e-13));
156   CALL_SUBTEST_1(test2dRotation<float>(2e-5));  // was 1e-5, relaxed for clang 2.8 / linux / x86-64
157   CALL_SUBTEST_9(test2dRotation<long double>(1e-13L));
158   CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
159   CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
160   CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14L));
161 
162   CALL_SUBTEST_10(test3dRotation<double>(1e-13));
163   CALL_SUBTEST_11(test3dRotation<float>(1e-5));
164   CALL_SUBTEST_12(test3dRotation<long double>(1e-13L));
165 
166   CALL_SUBTEST_2(testGeneral(Matrix2d(),         1e-13));
167   CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13));
168   CALL_SUBTEST_3(testGeneral(Matrix4cd(),        1e-13));
169   CALL_SUBTEST_4(testGeneral(MatrixXd(8,8),      2e-12));
170   CALL_SUBTEST_1(testGeneral(Matrix2f(),         1e-4));
171   CALL_SUBTEST_5(testGeneral(Matrix3cf(),        1e-4));
172   CALL_SUBTEST_8(testGeneral(Matrix4f(),         1e-4));
173   CALL_SUBTEST_6(testGeneral(MatrixXf(2,2),      1e-3)); // see bug 614
174   CALL_SUBTEST_9(testGeneral(MatrixXe(7,7),      1e-13L));
175   CALL_SUBTEST_10(testGeneral(Matrix3d(),        1e-13));
176   CALL_SUBTEST_11(testGeneral(Matrix3f(),        1e-4));
177   CALL_SUBTEST_12(testGeneral(Matrix3e(),        1e-13L));
178 
179   CALL_SUBTEST_2(testSingular(Matrix2d(),         1e-13));
180   CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13));
181   CALL_SUBTEST_3(testSingular(Matrix4cd(),        1e-13));
182   CALL_SUBTEST_4(testSingular(MatrixXd(8,8),      2e-12));
183   CALL_SUBTEST_1(testSingular(Matrix2f(),         1e-4));
184   CALL_SUBTEST_5(testSingular(Matrix3cf(),        1e-4));
185   CALL_SUBTEST_8(testSingular(Matrix4f(),         1e-4));
186   CALL_SUBTEST_6(testSingular(MatrixXf(2,2),      1e-3));
187   CALL_SUBTEST_9(testSingular(MatrixXe(7,7),      1e-13L));
188   CALL_SUBTEST_10(testSingular(Matrix3d(),        1e-13));
189   CALL_SUBTEST_11(testSingular(Matrix3f(),        1e-4));
190   CALL_SUBTEST_12(testSingular(Matrix3e(),        1e-13L));
191 
192   CALL_SUBTEST_2(testLogThenExp(Matrix2d(),         1e-13));
193   CALL_SUBTEST_7(testLogThenExp(Matrix3dRowMajor(), 1e-13));
194   CALL_SUBTEST_3(testLogThenExp(Matrix4cd(),        1e-13));
195   CALL_SUBTEST_4(testLogThenExp(MatrixXd(8,8),      2e-12));
196   CALL_SUBTEST_1(testLogThenExp(Matrix2f(),         1e-4));
197   CALL_SUBTEST_5(testLogThenExp(Matrix3cf(),        1e-4));
198   CALL_SUBTEST_8(testLogThenExp(Matrix4f(),         1e-4));
199   CALL_SUBTEST_6(testLogThenExp(MatrixXf(2,2),      1e-3));
200   CALL_SUBTEST_9(testLogThenExp(MatrixXe(7,7),      1e-13L));
201   CALL_SUBTEST_10(testLogThenExp(Matrix3d(),        1e-13));
202   CALL_SUBTEST_11(testLogThenExp(Matrix3f(),        1e-4));
203   CALL_SUBTEST_12(testLogThenExp(Matrix3e(),        1e-13L));
204 }
205