1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrPathUtils_DEFINED
9 #define GrPathUtils_DEFINED
10 
11 #include "SkGeometry.h"
12 #include "SkRect.h"
13 #include "SkPathPriv.h"
14 #include "SkTArray.h"
15 
16 class SkMatrix;
17 
18 /**
19  *  Utilities for evaluating paths.
20  */
21 namespace GrPathUtils {
22     // Very small tolerances will be increased to a minimum threshold value, to avoid division
23     // problems in subsequent math.
24     SkScalar scaleToleranceToSrc(SkScalar devTol,
25                                  const SkMatrix& viewM,
26                                  const SkRect& pathBounds);
27 
28     int worstCasePointCount(const SkPath&,
29                             int* subpaths,
30                             SkScalar tol);
31 
32     uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
33 
34     uint32_t generateQuadraticPoints(const SkPoint& p0,
35                                      const SkPoint& p1,
36                                      const SkPoint& p2,
37                                      SkScalar tolSqd,
38                                      SkPoint** points,
39                                      uint32_t pointsLeft);
40 
41     uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
42 
43     uint32_t generateCubicPoints(const SkPoint& p0,
44                                  const SkPoint& p1,
45                                  const SkPoint& p2,
46                                  const SkPoint& p3,
47                                  SkScalar tolSqd,
48                                  SkPoint** points,
49                                  uint32_t pointsLeft);
50 
51     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
52     // u^2-v = 0 specifies the quad. The matrix is determined by the control
53     // points of the quadratic.
54     class QuadUVMatrix {
55     public:
56         QuadUVMatrix() {}
57         // Initialize the matrix from the control pts
58         QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
59         void set(const SkPoint controlPts[3]);
60 
61         /**
62          * Applies the matrix to vertex positions to compute UV coords.
63          *
64          * vertices is a pointer to the first vertex.
65          * vertexCount is the number of vertices.
66          * stride is the size of each vertex.
67          * uvOffset is the offset of the UV values within each vertex.
68          */
69         void apply(void* vertices, int vertexCount, size_t stride, size_t uvOffset) const {
70             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
71             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + uvOffset;
72             float sx = fM[0];
73             float kx = fM[1];
74             float tx = fM[2];
75             float ky = fM[3];
76             float sy = fM[4];
77             float ty = fM[5];
78             for (int i = 0; i < vertexCount; ++i) {
79                 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
80                 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
81                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
82                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
83                 xyPtr += stride;
84                 uvPtr += stride;
85             }
86         }
87     private:
88         float fM[6];
89     };
90 
91     // Input is 3 control points and a weight for a bezier conic. Calculates the
92     // three linear functionals (K,L,M) that represent the implicit equation of the
93     // conic, k^2 - lm.
94     //
95     // Output: klm holds the linear functionals K,L,M as row vectors:
96     //
97     //     | ..K.. |   | x |      | k |
98     //     | ..L.. | * | y |  ==  | l |
99     //     | ..M.. |   | 1 |      | m |
100     //
101     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm);
102 
103     // Converts a cubic into a sequence of quads. If working in device space
104     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
105     // result is sets of 3 points in quads. This will preserve the starting and
106     // ending tangent vectors (modulo FP precision).
107     void convertCubicToQuads(const SkPoint p[4],
108                              SkScalar tolScale,
109                              SkTArray<SkPoint, true>* quads);
110 
111     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
112     // ensure that the new control point lies between the lines ab and cd. The
113     // convex path renderer requires this. It starts with a path where all the
114     // control points taken together form a convex polygon. It relies on this
115     // property and the quadratic approximation of cubics step cannot alter it.
116     // This variation enforces this constraint. The cubic must be simple and dir
117     // must specify the orientation of the contour containing the cubic.
118     void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
119                                                 SkScalar tolScale,
120                                                 SkPathPriv::FirstDirection dir,
121                                                 SkTArray<SkPoint, true>* quads);
122 
123     enum class ExcludedTerm {
124         kNonInvertible,
125         kQuadraticTerm,
126         kLinearTerm
127     };
128 
129     // Computes the inverse-transpose of the cubic's power basis matrix, after removing a specific
130     // row of coefficients.
131     //
132     // E.g. if the cubic is defined in power basis form as follows:
133     //
134     //                                         | x3   y3   0 |
135     //     C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | x2   y2   0 |
136     //                                         | x1   y1   0 |
137     //                                         | x0   y0   1 |
138     //
139     // And the excluded term is "kQuadraticTerm", then the resulting inverse-transpose will be:
140     //
141     //     | x3   y3   0 | -1 T
142     //     | x1   y1   0 |
143     //     | x0   y0   1 |
144     //
145     // (The term to exclude is chosen based on maximizing the resulting matrix determinant.)
146     //
147     // This can be used to find the KLM linear functionals:
148     //
149     //     | ..K.. |   | ..kcoeffs.. |
150     //     | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix
151     //     | ..M.. |   | ..mcoeffs.. |
152     //
153     // NOTE: the same term that was excluded here must also be removed from the corresponding column
154     // of the klmcoeffs matrix.
155     //
156     // Returns which row of coefficients was removed, or kNonInvertible if the cubic was degenerate.
157     ExcludedTerm calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4], SkMatrix* out);
158 
159     // Computes the KLM linear functionals for the cubic implicit form. The "right" side of the
160     // curve (when facing in the direction of increasing parameter values) will be the area that
161     // satisfies:
162     //
163     //     k^3 < l*m
164     //
165     // Output:
166     //
167     // klm: Holds the linear functionals K,L,M as row vectors:
168     //
169     //          | ..K.. |   | x |      | k |
170     //          | ..L.. | * | y |  ==  | l |
171     //          | ..M.. |   | 1 |      | m |
172     //
173     // NOTE: the KLM lines are calculated in the same space as the input control points. If you
174     // transform the points the lines will also need to be transformed. This can be done by mapping
175     // the lines with the inverse-transpose of the matrix used to map the points.
176     //
177     // t[],s[]: These are set to the two homogeneous parameter values at which points the lines L&M
178     // intersect with K (See SkClassifyCubic).
179     //
180     // Returns the cubic's classification.
181     SkCubicType getCubicKLM(const SkPoint src[4], SkMatrix* klm, double t[2], double s[2]);
182 
183     // Chops the cubic bezier passed in by src, at the double point (intersection point)
184     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
185     // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1.
186     // Return value:
187     // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics,
188     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
189     // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics,
190     //             dst[0..3] and dst[3..6] if dst is not nullptr
191     // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic,
192     //             src[0..3]
193     //
194     // Output:
195     //
196     // klm: Holds the linear functionals K,L,M as row vectors. (See getCubicKLM().)
197     //
198     // loopIndex: This value will tell the caller which of the chopped sections (if any) are the
199     //            actual loop. A value of -1 means there is no loop section. The caller can then use
200     //            this value to decide how/if they want to flip the orientation of this section.
201     //            The flip should be done by negating the k and l values as follows:
202     //
203     //            KLM.postScale(-1, -1)
204     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
205                                     int* loopIndex);
206 
207     // When tessellating curved paths into linear segments, this defines the maximum distance
208     // in screen space which a segment may deviate from the mathmatically correct value.
209     // Above this value, the segment will be subdivided.
210     // This value was chosen to approximate the supersampling accuracy of the raster path (16
211     // samples, or one quarter pixel).
212     static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
213 
214     // We guarantee that no quad or cubic will ever produce more than this many points
215     static const int kMaxPointsPerCurve = 1 << 10;
216 };
217 #endif
218